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Abstract
Heart failure (HF) is a modern epidemic and a heterogeneous disorder with many therapeutic
options. While the average response to each individual treatment is favorable, significant
interindividual variation exists in the response to HF therapeutics. As a result, the optimal regimen
for an individual patient or subgroup of patients is elusive, with current treatment being mainly
empirical. Pharmacogenetic customization of HF therapy may provide an important opportunity to
improve the treatment of HF. Common genetic variations exist in genes related to most classes of
HF drugs, many of which have known functional consequences for or established relationships
with drug response. This review summarizes the current understanding of the pharmacogenetics of
HF therapeutics, including angiotensin-converting enzyme inhibitors and β-blockers, and focuses
on recent advances and medium-term expectations for the field.
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Introduction
Heart failure (HF) is a modern epidemic and an increasing public health concern. As
mortality from coronary artery disease and stroke decline, the prevalence of HF increases,
with approximately 5 million individuals affected and more than 500,000 new cases
annually in the US. HF is lethal, with 1-year mortality rate estimates ranging from 25 to
45% [1,2]. The management of HF is also costly because of the chronic, progressive nature
and frequent exacerbations of the disease, resulting in 3.4 million hospital visits in 2006 in
the US [2]. Furthermore, with an incidence of approximately 10% in patients over 65 years
of age and an aging population, this disease is likely to increase in importance [2].

HF is a heterogeneous disorder arising from a variety of etiologies that result in inadequate
cardiac performance. After an initial (and potentially ongoing) insult, the disease is
characterized by cascades of adverse physiological responses that lead to vasoconstriction,
fluid retention and further compromise of cardiac function. These sympotoms are often
accompanied by adverse cardiac remodeling and dilation, with reduced ejection fraction,
although half of all patients with HF maintain an ejection fraction that is almost normal [3].
Maladaptive physiological responses in HF are well described, including the upregulation of
the renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system, as well
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as other responses that are less understood, such as the involvement of inflammatory and
apoptotic pathways in this disease [1,4–6].

Treatment strategies that are proven to reduce mortality are limited to use in patients with
HF with reduced ejection fraction; therefore, this review focuses mainly on this patient
group. Most therapeutic agents with established benefit act by interrupting the
neurohormonal pathways discussed previously (ie, RAAS and the sympathetic nervous
system), such as β-blockers (BBs), angiotensin-converting enzyme (ACE) inhibitors (ACE-
Is), angiotensin receptor blockers (ARBs) and aldosterone antagonists [7]. However, other
therapies such as hydralazine-isosorbide dinitrate (HN) combination therapy have
mechanisms of action that are less understood. Other important drugs that are commonly
used in HF include drugs targeting disease symptoms, such as diuretics and digoxin, or
complications, such as warfarin.

As the number of drug classes that are indicated for use in HF has increased (currently at
least seven drug classes), it has become more difficult to determine whether each additional
therapy has incremental benefit that outweighs the added risks and cost for specific
individuals or subgroups of patients. While the average population response to HF
therapeutics is favorable, significant interindividual variation exists in the response (Figure
1). This variability should not be surprising given the diverse etiologies and genetic
backgrounds upon which the HF phenotype can occur. Common genetic variation exists in
genes related to most classes of HF drugs, and many of these variants have known
functional consequences. As more is understood about the interplay of drugs and genes,
genetic sequence variants may help to explain some of the variation in patient responses, and
therefore may help physicians to provide more rational, efficient and targeted treatments for
HF [8].

This review discusses the current understanding of the pharmacogenetics of HF therapies,
focusing on recent advances and expectations for the near future. Therapies discussed
include ACE-Is, ARBs, aldosterone receptor antagonists, BBs, natriuretic peptides (NPs),
HN, diuretics and warfarin. These examples vary in terms of the amount of data available
and, therefore, are illustrative of the range of advances in studying pharmacogenetics from
an early stage of understanding (eg, HN) to more advanced stages (eg, warfarin). A better
understanding of the pharmacogenetics of HF therapies, its advances and limitations, and
how this field is advancing toward clinical use is important to optimize how physicians
incorporate this emerging clinical science.

Antagonizing the renin-angiotensin-aldosterone system
Inhibition of the RAAS is a major focus of therapy in HF. There have been a large number
of pharmacogenetic studies related to agents targeting the RAAS. The most interesting
genetic variants and associated phenotypes for response to HF therapy, categorized by
relevant therapeutic agent, are summarized in Table 1.

Angiotensin-converting enzyme inhibitors
Treatment with an ACE-I is a cornerstone of HF therapy, and is recommended to all patients
with HF without contraindication [7]. ACE-Is have demonstrated survival benefit in
multiple randomized clinical trials for HF with reduced ejection fraction [9]. These agents
block the production of angiotensin II by antagonizing ACE (encoded by the ACE gene),
reducing the adverse effects of angiotensin II, including vasoconstriction, aldosterone
production and ventricular remodeling [5].
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Many studies have been conducted to identify pharmacogenetic interactions of ACE-I, but a
clear understanding of these interactions remains elusive [10–19]. One polymorphism that
has been studied extensively is a 287-bp insertion/deletion (I/D) in intron 16 of the ACE
gene (rs4646994). While one study suggested that the ACE I/D genotype affects ACE-I
efficacy in heart failure [14], this variant remains of uncertain importance, and has been
reviewed elsewhere recently (see references [20,21]). In terms of adverse drug effects, a
polymorphism in the gene encoding the neurokinin-2 receptor (TACR2) has been associated
with ACE-I-induced cough, a frequent side effect that often leads to discontinuation of the
drug [22]. A large, ongoing clinical trial, the PERindopril GENEtic association study
(PERGENE), may provide new insights into ACE-I pharmacogenetics [23]. This cohort trial
aims to genotype polymorphisms from 11 candidate genes in patients (n = 12,218) treated
with ACE-Is for stable coronary artery disease. Although HF is not an endpoint of this
study, new pharmacogenetic interactions that can be tested in patients with HF may be
identified.

Angiotensin receptor blockers
Clinically, ARBs are primarily useful in HF as a substitute for ACE-Is and have been
demonstrated to have comparable survival benefit in this setting [24,25]. ARBs inhibit the
binding of angiotensin II to its primary receptor, angiotensin receptor type 1, which is
encoded by AGTR1. While there are relatively few studies of ARB pharmacogenetics
specifically in patients with HF, several studies in hypertension have been conducted and
many of the response phenotypes (eg, blood pressure lowering and reversal of hypertrophy)
are relevant for HF. One study revealed significantly faster reduction of left ventricular
hypertrophy after the initiation of ARB therapy in ACE D-allele carriers [26]. Another study
examining the efficacy of ARBs as add-on therapy to ACE-Is demonstrated that carriers of
the C-allele at the AGTR1 A1166C polymorphism (rs5186), which is located in a microRNA
binding site in the 3′ untranslated region [27], had greater blood pressure and N-terminal
proB-type NP (NT-proBNP) responses to treatment [28]. The study was provocative, but
was underpowered, necessitating validation studies before further inferences can be made.
Additional AGTR1 variants may also be related to blood pressure reductions resulting from
ARB treatment. A small study of irbesartan in patients with hypertension identified a
significant relationship between irbesartan concentration and AGTR1 genotype for blood
pressure reduction. The associated SNP is in the promoter of AGTR1 (rs1492078) [29],
suggesting a potential role via transcriptional regulation. ARBs are metabolized via the
cytochrome P450 (CYP) enzymes, and genetic variations in CYP enzymes have been
implicated in affecting the response to some ARBs [30]. Specifically, the CYP2C9*2 variant
was demonstrated to increase the blood pressure reduction observed with irbesartan in
patients with hypertension [31], with some evidence for an impact on losartan efficacy [32–
34].

Aldosterone receptor antagonists
Aldosterone receptor antagonists have demonstrated reductions in mortality in two clinical
trials: one in patients with severe HF [35] and one in patients with HF after acute myocardial
infarction [36]. Thus, these agents are Class I indicated in suitable patients [7].
Pharmacogenetic data for the effect of aldosterone antagonists is limited, but one small
study has investigated the pharmacogenetics of these agents in patients with HF [37].
Patients receiving standard HF therapy (n = 93) were randomly assigned to receive
spironolactone or placebo. Among patients receiving spironolactone, only ACE I/D insertion
carriers had significant improvement in ejection fraction, compared with baseline values.
Conversely, when comparing changes in ejection fraction between the spironolactone and
placebo groups, ACE D/D homozygotes trended toward a stronger effect (3.0 in D/D vs 1.7;
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p = not significant) [37]. Additional studies to further elucidate the role of pharmacogenetics
in response to aldosterone receptor antagonists are needed.

β-adrenergic antagonists
BBs have been demonstrated to reduce HF mortality in multiple randomized clinical trials
and are recommended for the treatment of all patients with HF without contraindications [7].
BBs antagonize the β-adrenergic receptors (β-ARs), a family of GPCRs that increase heart
rate and cardiac contractility, and stimulate renin release in the kidneys. Despite the efficacy
of these compounds in clinical trials, response to BBs varies significantly, with inconsistent
recovery of ejection fraction, and many patients continuing to experience disease
progression [38]. These agents also have potential adverse effects, particularly during dose
titration, such as reduced contractility, bradycardia and the potential to cause or worsen HF
exacerbations [39]. Increasing evidence suggests that genetic factors may explain some of
this variability. The pharmacogenetic factors associated with BBs have been reviewed in
detail elsewhere (see reference [40]), and the discussion in this review summarizes the key
points and focuses on current and future directions. The key genetic variants relevant to BB
therapy, their molecular phenotypes and the associated clinical phenotypes are summarized
in Table 2.

Adrenergic receptor polymorphisms
The adrenergic receptor genes are highly polymorphic, and many of the variants have
functional consequences. Much attention has focused on ADRB1 and ADRB2, which encode
the β-AR1 and β-AR2, respectively; these receptors are the molecular targets for BBs. The
variants in these genes and their functional consequences have been well researched (see
references [41,42]). Variants in both ADRB1 and ADRB2 have been associated with
improvements in ejection fraction with BB treatment [43,44]. Subsequently, several large
cohort studies have been conducted to examine the relationship between β-AR
polymorphisms, mortality rates and treatment with carvedilol or metoprolol in patients with
HF [45–47]; one study has been conducted in patients with acute coronary syndrome [46].
These studies have revealed varying results, with two studies indicating an important
association for the ADRB2 haplotype, but not ADRB1 variants [45,46], one indicating that
the ADRB1 Arg389Gly variant is significant, but not the ADRB2 variants [47], and two
studies demonstrating no significant association with any of these variants [48,49]. Taken
together, these data do not support a definitive conclusion. It is important to note that all of
these studies are limited because they included few or no patients who were BB naive,
making inference as to the effects of the drug more difficult.

Conversely, the randomized, controlled β-blocker Evaluation of Survival Trial (BEST)
investigated the effects of bucindolol (ARCA biopharma Inc) [50]. The clinical trial was
terminated prematurely, failed to meet its primary endpoint and demonstrated little overall
benefit with bucindolol therapy, in contrast with other published trials of BB therapy in HF.
Subsequent pharmacogenetic analyses of these data revealed that there was enhanced benefit
for bucindolol among ADRB1 Arg389 homozygotes [51]. Following the discovery of this
pharmacogenetic association, the developers of bucindolol submitted an NDA to the FDA
for bucindolol to be used in conjunction with a genetic test for the ADRB1 Arg389Gly
genotype; bucindolol would have been the first genetic-guided therapy to be approved for
HF. Recently, the FDA review panel examined this issue, but did not recommend approval
[52]. While clinical use of pharmacogenetics to guide BB therapy awaits further data, the
experience with bucindolol is indicative of how close pharmacogenetics may be to being
applied in the clinic for HF.
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α-AR variants may also have an impact on the response to BB therapy. ADRA2C encodes
the α2c-AR, which regulates presynaptic norepinephrine release. Another substudy of the
BEST trial examined the effects of a frame-shift mutation caused by a 12-nucleotide
deletion in exon 1 of ADRA2C (rs61767072) [53]. A previous analysis suggested that
patients with a strong sympatholytic response to bucindolol were at an increased risk of
adverse events, indicating that changes in the ability of ADRA2C to regulate sympathetic
activity might be involved [54]. While no difference in sympathetic activity by genotype
was observed in the placebo group, patients with the ADRA2C deletion demonstrated a
greater sympatholytic response than wild-type homozygotes to bucindolol treatment; only
wild-type homozygotes exhibited reductions in mortality and in need for transplantation
with bucindolol treatment [53].

Within the adrenergic system, some important multilocus or epigenetic effects have recently
been discovered. Pharmacogenetic analysis of a large cohort of patients with hypertension
demonstrated that the ADRB1 Ser49/Arg389 haplotype was associated with increased
mortality at baseline and significant improvement with atenolol therapy, but no response to
treatment with verapamil [55]. However, allelic associations were not tested, making the
contribution of each allele and the extent of any interaction unclear. The ADRB1 Arg389

allele may also interact with polymorphisms in ADRA2C. Kardia et al recently identified
significant gene-gene interactions between ADRB1 and ADRA2C [56], confirming results
from a previous study demonstrating that Arg389 homozygotes carrying a deletion in
ADRA2C experienced the greatest improvement in left ventricle ejection fraction (LVEF)
with BB treatment [57].

Other associated genes
Downstream of the gene encodingβ-AR, polymorphisms in proteins related to signal
transduction may also affect individual response to BBs. For example, G-protein receptor
kinase 5 (GRK5) phosphorylates β-ARs in the myocardium, resulting in uncoupling of the
receptor from adenyl cyclase [58]. A non-synonymous Glu41Leu substitution in the GRK5
gene identified by Liggett et al results in enhanced uncoupling in vitro and in animal models
[59]. A pharmacogenetic interaction between the Gln41Leu polymorphism and BB use was
also identified in humans. In a prospective cohort of African American patients (n = 375),
the authors also showed that Leu41 carriers had better survival than Gln41 homozygotes in
the absence of BB therapy, while there was no difference between genotype groups when
treated with BB, indicating selective benefit of BB for Gln homozygotes [59]. These
findings were confirmed by Cresci et al in African Americans; however, no association was
observed in Caucasians, in whom the variant is approximately one-tenth as frequent
compared with African Americans [47].

Given the far-ranging effects of manipulating the adrenergic system, polymorphisms in even
more distantly associated genes or pathways may impact variability in response to BB. For
example, one of the early associations of the ACE I/D polymorphism was BB response [60],
although this finding has not been confirmed by further studies [61]. More recently, a study
of patients (n = 309) with idiopathic dilated cardiomyopathy from the BEST trial was
conducted examining the polymorphisms in the gene encoding endothelin 1 (EDN1), based
upon previous research demonstrating decreases in endothelin levels with bucindolol
treatment [62]. A pharmacogenetic interaction was identified between bucindolol treatment
and EDN1 genotype. Two SNPs, rs5370 and rs2071942 (loci are in linkage disequilibrium
(LD)), were associated with the rate of HF hospitalization and all-cause mortality in
bucindolol-treated patients, but not in the placebo group [63].
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β-blocker metabolism
Polymorphisms affecting drug metabolism may also be important in BB selection and
dosing. CYP2D6 metabolizes metoprolol and, to a lesser extent, carvedilol. A study by Bijl
et al determined that CYP2D6*4 homozygotes (ie, poor metabolizers) had significantly
lower heart rate and diastolic blood pressure with metoprolol treatment than either
CYP2D6*1 homozygotes (ie, extensive metabolizers) or heterozygotes (ie, intermediate
metabolizers) [64]. No differences were observed by genotype in patients treated with
atenolol. In patients with HF receiving metoprolol, a small study by Sharp et al
demonstrated that the CYP2D6 genotype influenced metoprolol blood concentration
significantly, but had no effect on metoprolol dosing or clinical outcomes [65]. However,
the study was underpowered with respect to poor metabolizers (n = 3), suggesting that
further research is required [65].

Other agents of interest in heart failure
Natriuretic peptide system

The importance of the NP system in cardiovascular homeostasis and HF has been
recognized increasingly [66]. The NP system is understood to be an important counter-
regulatory system that reduces blood pressure and has general salutary effects in HF. There
are three naturally occurring NPs: atrial NP (ANP); B-type NP (BNP); and C-type NP
(CNP). BNP has applications in HF diagnosis and prognosis, but this molecule and the other
NPs are also useful as therapeutics. Recombinant BNP (ie, nesiritide) and ANP (ie,
carperitide) have been approved for the treatment of HF in the US and Japan, respectively,
and other ‘designer’ peptides are being investigated [67,68].

Improved targeting of NP therapies is highly desirable because these compounds are
currently expensive, parenteral and associated with adverse effects despite being efficacious.
Pharmacogenetics may help to improve targeting, as substantial evidence suggests the
importance of genetic variation in the NP system (reviewed in reference [66]). An analysis
from the Framingham Study identified three SNPs in NPPA and NPPB that were
significantly associated with both circulating NP levels and blood pressure [69]. From a
strictly pharmacogenetic perspective, there have been limited published studies related to
NPs and HF, but ongoing studies promise important results within the next few years. An
NIH-funded pharmacogenetic assessment of the effect of recombinant BNP in patients with
HF, measuring pharmacokinetic (ie, drug levels and elimination) and pharmacodynamic (ie,
serum and urine cyclic guanosine monophosphate) endpoints, is ongoing. In addition, an
ongoing, large (n = 7000), randomized clinical trial of BNP in acutely decompensated HF
(ASCEND-HF) is also collecting genetic samples and should have adequate power to
investigate the effects of drug and genotype interactions on important clinical outcomes such
as dyspnea and clinical events (ie, death or hospitalization) [70].

Isosorbide-dinitrate/hydralazine
Combination therapy with HN is, to our knowledge, the first drug that is approved and
marketed based on race, having been tested for the treatment of HF in self-identified
African-Americans. This therapy has resulted in many interesting questions regarding
medical care, race and genetics. Racial differences in response to HN treatment were first
identified in a post-hoc analysis of the V-HeFT-II trial that compared HN with enalapril in
patients with HF [71]. As a result, the benefit of HN in addition to standard therapy (ie, BBs
and ACE-Is) was then tested in self-identified African-Americans in the African-American
Heart Failure Trial (AA-HeFT) [72]. The randomized trial demonstrated a 40% reduction in
the relative risk for death, leading to FDA approval of the drug. This approach highlights the
question of whether it is desirable to use race to assign medical therapy, and underscores the
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need to better understand the genetic and biological differences that belie such race-based
differences in efficacy. Race is a social construct that is at best an approximate proxy for
biological differences, and includes several other components such as shared cultural and
environmental factors that must be separated from genetic/biological factors.
Pharmacogenetics may be able to more precisely identify the genetic differences in such
cases, and may nullify the motivation to use race as a classifier for medical treatment. Thus,
it is a high research priority to identify the genetic underpinnings of race-based difference in
drug efficacy, such as those observed with HN.

With respect to HN therapy, the genetic determinants of response remain an active area of
investigation, but some data indicate that polymorphisms in the gene NOS3, encoding
endothelial nitric oxide synthase, may contribute to the race-specific benefit. Because HN is
thought to act as a nitric oxide donor, individuals with lower NOS3 activity might be
expected to benefit more from HN therapy. A substudy of the AA-HeFT trial identified three
NOS3 polymorphisms with significant differences in frequency in African-Americans and
Caucasians [73]. A pharmacogenetic interaction was identified between a non-synonymous
polymorphism (rs1799983) that results in an Asp298Glu mutation. Glu298 homozygotes
benefited significantly from HN treatment, whereas Asp298 carriers did not [73]. However,
because this effect was mostly in quality-of-life scores and given the limited sample size (n
= 352), this study should be interpreted as hypothesis-generating.

Diuretics
Diuretics are recommended in patients with HF who have evidence of fluid retention [7].
Several classes of diuretics are administered; however, loop diuretics are the most frequently
used agents. Although there are relatively few pharmacogenetic studies examining diuretics,
some results relevant to HF exist.

Specific to diuretic therapy in HF, a small study examining the interaction of
polymorphisms in CYP2C9 and SLCO1B1 (solute carrier organic anion transporter family,
member 1B1) genes and torsemide, a long-acting loop diuretic used in patients with HF,
demonstrated that CYP2C9*3 and SLCO1B1 C521T (rs4149056) had a significant effect on
the plasma concentration and half-life of torsemide [74]. Other diuretic classes have also
been investigated. For example, Lynch et al studied two SNPs in the NPPA/NPPB gene
regions, rs5063 and rs5065, in patients (approximate n = 38,000) in a subgroup of the
Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT)
[75]. In patients carrying at least one C-allele at rs5065, treatment with chlorthalidone
resulted in a significantly lower incidence of coronary heart disease, stroke and combined
cardiovascular disease, as well as significantly lower all-cause mortality, when compared
with amplodipine treatment; these effects appeared to be independent of changes in blood
pressure.

Warfarin
Anticoagulation therapy with warfarin is commonly indicated in patients with HF because of
comorbid conditions that result in an increased risk of thromboembolism, such as atrial
fibrillation or severely impaired left ventricular function. Warfarin acts by binding to the
vitamin K 2,3-epoxide reductase complex (VKORC1), the enzyme responsible for reducing
vitamin K to its active form [76]. Warfarin is primarily metabolized to its inactive form by
CYP2C9 [77]. By interfering with vitamin K recycling, warfarin prevents the vitamin K-
dependent carboxylation of the clotting Factors II, VII, IX and X, thus exerting its
anticoagulant effect [78]. Warfarin is one of the best understood examples of the role of
pharmacogenetic interactions, with excellent reviews recently published on this topic
[79,80]. The two key genes in warfarin pharmacogenetics VKORC1 and CYP2C9 account
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for approximately 40% of variation in warfarin dosing (Figure 2) [81]. Several
developments that are illustrative of the advancement of pharmacogenetics in HF are
discussed in this section.

The use of pharmacogenetics to determine the dosing of warfarin is at advanced stages of
development, serving as a good example to illustrate the requirements for bringing
pharmacogenetics to the clinic, including practical genotype-based dosing guide and
randomized interventional pharmacogenetic trials Warfarin is one of the only drugs to have
been investigated for pharmacogenetic interactions using a genome-wide approach. Two
studies by Cooper et al [82] and Takeuchi et al [83] examined patients (n = 379 and 1053,
respectively) beginning warfarin therapy. While neither study identified any new
associations, the feasibility of a genome-wide approach was confirmed, as were the effects
from VKORC1 and CYP2C9 variants.. Genetically driven dosing algorithms have been
derived and published for warfarin [84,85]. In addition, a large, NIH-sponsored
interventional trial (Clarification of Optimal Anticoagulation through Genetics [COAG]) is
ongoing to assess the benefit of genotyping prior to the initiation of treatment on warfarin
dosing and on adverse effects. The COAG trial is expected to be completed in 2012
(ClinicalTrials.gov identifier: NCT00839657).

Warfarin also serves as a good test case for examining the cost-effectiveness of genetic
testing prior to drug initiation. Although genotyping can help guide warfarin dosing [86–88],
it has not been demonstrated adequately that genotyping helps to avoid adverse effects. A
recent meta-analysis did not find sufficient evidence to support the use of genetic
information for warfarin dosing [89]. Another study suggested that there was a 10% chance
that genotype-guided warfarin dosing would be cost-effective, even with fairly optimistic
assumptions for genotyping cost and processing time [90]. However, with the results of
studies such as the COAG trial or with future advances in genotyping technologies,
genotyping may become an important clinical strategy for determining warfarin dose.

Conclusion
HF should be considered a prime target for pharmacogenetics and personalized medicine
given the great burden of disease and multiplicity of therapeutic options. Research progress
in pharmacogenetics is broadly accelerating as a result of improving research technologies
with lower costs, larger study cohorts, and increased awareness and acceptance in the wider
medical community. Cardiovascular therapies are no exception to the increase in interest in
pharmacogenetics, as illustrated by the examples described in this review, such as BBs and
warfarin, which are at an advanced stage. However, even in these advanced cases, as well as
in newer examples such as NPs, much research remains before clinical pharmacogenetics
will be commonplace. First, and most importantly, is the need for emphasis to be placed on
investigating the clinical implementation of genetically guided therapy. Warfarin is an
instructive example, demonstrating that the creation of usable pharmacogenetic tools rely
not only on associating a genotype with a drug-response phenotype, but also requires
creating usable decision guidelines, establishing superiority to empirical therapy and
demonstrating cost-effectiveness. These requirements necessitate more interventional
pharmacogenetic studies (ie, assigning patients to genetic-based therapy compared with
empirical therapy) to meet this goal. The second main challenge is to apply
pharmacogenetics earlier in the drug development process such that future clinical
applications of PGs do not require as long to develop as the current generation. If early-
phase trials included broad genotyping and association to surrogate endpoints, phase III
pivotal trials could simultaneously include candidate gene studies, greatly accelerating
progress toward clinically useful genetic markers and genetically guided therapy. While
there has been relatively slow clinical adaptation of pharmacogenetic findings thus far, this
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situation is changing, and is likely to accelerate. If successful, pharmacogenetics will define
a new era of advancement, producing many new tools to improve the treatment of patients
using genetics.
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Figure 1. Variation in drug response within a disease population
The different coloring of figures represents underlying genetic heterogeneity between
individuals with the same medical diagnosis. Pharmacogenomics seeks to understand this
heterogeneity, use it to have better estimates of the risks and benefits of medical
intervention, and then utilize it to provide improved care for individual patients.
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Figure 2. Pharmacogenetic influences on warfarin dosing
(A) The warfarin drug pathway. (B) The average maintenance dose of warfarin is dependent
on VKORC1 (vitamin K 2,3-epoxide reductase complex) and CYP2C9 (cytochrome P450
family 2 subfamily C polypeptide 9) genotypes (data from reference [81]).
INR international normalized ratio, V variant, WT wild-type
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