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Polarization may be sensed by imaging modules. This is done in various engineering systems as well
as in biological systems, specifically by insects and some marine species. However, polarization per
pixel is usually not the direct variable of interest. Rather, polarization-related data serve as a cue for
recovering task-specific scene information. How should polarization-picture post-processing (P4) be
done for the best scene understanding? Answering this question is not only helpful for advanced
engineering (computer vision), but also to prompt hypotheses as to the processing occurring
within biological systems. In various important cases, the answer is found by a principled expression
of scene recovery as an inverse problem. Such an expression relies directly on a physics-based model
of effects in the scene. The model includes analysis that depends on the different polarization
components, thus facilitating the use of these components during the inversion, in a proper, even if
non-trivial, manner. We describe several examples for this approach. These include automatic removal
of path radiance in haze or underwater, overcoming partial semireflections and visual reverberations;
three-dimensional recovery and distance-adaptive denoising. The resulting inversion algorithms
rely on signal-processing methods, such as independent component analysis, deconvolution and
optimization.
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1. INTRODUCTION
An expanding array of animals are found to have a
visual system that is polarization-sensitive, using sev-
eral mechanisms [1,2]. This array includes various
marine animals [3–17] as well as air and land
species [18–22]. It has been hypothesized and demon-
strated that such a capacity can help animals in various
tasks, such as navigation (exploiting the polarization
field of the sky), finding and discriminating mates,
finding prey and communication.

Similarly, machine vision systems may benefit from
polarization. Thus, computational methods are being
developed for polarization-picture post-processing
(defined here as P4). Some tasks are enhancement of
images, and extraction of features useful for higher-
level operations (segmentation and recognition).
In this paper, we focus on inverse problems that can
be solved using P4. In these problems, a physical
model of effects occurring in the scene can be formu-
lated in a closed form. Inversion of the model
quantitatively recovers the scene, overcoming various
degradations. In the context of polarization, this
approach is used in remote sensing from satellites,
astronomy and medical imaging. In contrast, this
paper surveys several inverse problems relating to
objects, distances and tasks that are encountered or
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applicable to everyday scenarios. In such commonly
encountered cases and life-sizes, we show how
polarization provides a useful tool.

2. DESCATTERING
In atmospheric haze or underwater, scene visibility is
degraded in both brightness contrast and colour. The
benefit of seeing better in such media is obvious, for
animals, human operators and machines. The mechan-
isms of image degradation both in haze and underwater
are driven by scattering within the medium. The main
difference between these environments is the distance
scale. Other differences relate to the colour and angular
dependency of light scattering. Due to the similarity of
the effects, image formation in both environments can
be formulated using the same parametric equations:
the mentioned differences between the media are
expressed in the values taken by the parameters of
these equations.

It is often suggested that P4 can increase contrast in
scattering environments. One approach is based on
subtraction of different polarization-filtered images
[23–25], or displaying the degree of polarization
(DOP) [26,27]. This is an enhancement approach,
rather than an attempt to invert the image formation
process and thus recover the objects. Furthermore,
this approach associates polarization mainly with the
object radiance. However, rather than the object, light
scattered by the medium (atmosphere or water) is
often significantly polarized [6,28,29] and dominates
the polarization of the acquired light.
This journal is q 2011 The Royal Society
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Figure 1. Underwater imaging of a scene through a polarizing filter. Light enters the water and scatters towards the camera by

particles in the water, creating path radiance (dashed rays). This veiling light increases with the distance z to the object. Light
emanating from the object is attenuated and somewhat blurred as z increases, leading to the signal S (solid ray). The partial
polarization of the path radiance is significant. Without scattering and absorption along the line of sight (LOS), the object
radiance would have been Lobject. (Reproduced with permission from [33]. Copyright q IEEE.)
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(a) Model

In this section, we describe a simple model for image
formation in haze or water, including polarization.
Then, this model is mathematically inverted to recover
the object. Polarization plays an important role in this
recovery task [30–35].

As depicted in figure 1, an image acquired in a
medium has two sources. The first source is the
scene object at distance z, the radiance of which is
attenuated by absorption and scattering. This com-
ponent is also somewhat blurred by scattering, but
we neglect this optical blur, as we explain later. The
image corresponding to this degraded source is the
signal

Sðx; yÞ ¼ Lobjectðx; yÞtðzÞ; ð2:1Þ

where Lobject is the object radiance we would have
sensed, had there been no scattering and absorption
along the line of sight (LOS), and (x,y) are the
image coordinates. Here t(z) is the transmissivity of
the medium. It monotonically decreases with the
distance z.

The second source is ambient illumination. Part of
the illumination is scattered towards the camera by
particles in the medium. In the literature, this part is
termed path radiance [36], veiling light [6,16,37],
spacelight [4,6,16,29] and backscatter [38]. In litera-
ture dealing with the atmosphere, it is also termed
airlight [39]. This component is denoted by B.
It monotonically increases with z. The total image
irradiance is

I total ¼ S þ B: ð2:2Þ

Clearly, B is a positive additive component. It does not
occlude the object. So, how come B appears to veil the
scene? Furthermore, the image formation model
(equations (2.1) and (2.2)) neglects any optical blur.
Thus, how come hazy/underwater images appear
blurred? The answer to these puzzles is given in
Phil. Trans. R. Soc. B (2011)
Treibitz & Schechner [40]. Due to the quantum
nature of light (photons), the additive component B
induces random photon noise in the image. To under-
stand this, recall that photon flux from the scene and
the detection of each photon are Poissonian random
processes [41]. This randomness yields an effective
noise. The overall noise variance [41–43] of the
measured pixel intensity is approximately

s2 ¼ k2 þ I total

g
: ð2:3Þ

Here k and g are positive constants, which are specific
to the sensor. Due to equations (2.2) and (2.3), B
increases Itotal and thus the noise1 intensity. The
longer the distance to the object, the larger B is. Con-
sequently, the image is more noisy there, making it
more difficult to see small object details (veiling),
even if contrast-stretching is applied by image post-
processing. As analysed in Treibitz & Schechner [40],
image noise creates an effective blur, despite an
absence of blur in the optical process: the recoverable
signal has an effective spatial cutoff frequency, induced
by noise.

To recover Lobject by inverting equation (2.1), there
is first a need to decouple the two unknowns (per
image point) S and B, which are mixed by
equation (2.2). This is where P4 becomes helpful.
Let images be taken through a camera-mounted polar-
izer. As we will see below, polarization provides two
independent equations, to solve for the two mentioned
unknowns. Typically, the path radiance B is partially
polarized [6,16,23,28,39,44]. Hence, polarization-
filtered images can sense smaller or higher intensities
of the path radiance B, depending on the orientation
of the camera-mounted polarizer (figure 1), relative to
the polarization vector of the path radiance. There are
two orthogonal orientations of the polarizer for which
its transmittance of the path radiance reaches extre-
mum values Bmax and Bmin, where B ¼ Bmax þ Bmin.
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Figure 2. Polarization-based unveiling of a Mediterranean underwater scene under artificial illumination, at night. (a) Raw
image. (b) Recovered signal S. (Reproduced with permission from [35]. Copyright q IEEE.)
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At these orientations, the acquired images are

Imax � S

2
þ Bmax and Imin � S

2
þ Bmin: ð2:4Þ

Equation (2.4) assumes that the polarization of the
object signal is negligible relative to that of the path
radiance. In some cases this assumption may be
wrong, particularly at close distances. However, in
many practical cases, the approximation expressed by
equation (2.4) leads to effective scene recovery. The
two equations (2.4) provide the needed constraints to
decouple the two unknowns S and B, as described
in Kaftory et al. [31], Namer et al. [32], Schechner
et al. [34] and Treibitz & Schechner [35].
(b) Inversion

The above model applies both to natural lighting
(which is roughly uniform along horizontal lines of
sight) and artificial illumination. An example of the
latter is shown in figure 2. Here, a polarizer was
mounted on the light source, and another polarizer
was mounted on the camera. Rotating one of the
polarizers relative to the other yielded two images
modelled by equation (2.4). They were processed to
recover S.

To recover Lobject by inverting equation (2.1), there
is first a need to know t(z) per point. How can t(z) be
assessed? In natural lighting, where the lighting along
the LOS is roughly uniform [33,34],

B ¼ B1½1� tðzÞ�: ð2:5Þ

Here B1 is the value of B in an LOS which extends to
infinity in the medium. This value can be calibrated in
situ [32–35]. Recall that B is recovered using P4.
Consequently, based on equations (2.1) and (2.5),
the object radiance can be recovered approximately by

Lobjectðx; yÞ �
Sðx; yÞ

t½zðx; yÞ�

¼ Sðx; yÞ 1� Bðx; yÞ
B1

� ��1

: ð2:6Þ

This concludes the descattering process.
An example of descattering in haze (dehazing) is

shown in figures 3 and 4. The recovered image [31]
has strong contrast everywhere and vivid colours.
The colours are recovered, since the degradation
Phil. Trans. R. Soc. B (2011)
inversion is done per colour channel (wavelength
band). This automatically accommodates the depen-
dency of t, B1 and the DOP on the wavelength
band. Despite this, the recovered result is very noisy
in the background. This noise is not owing to the
mathematical dehazing process. Fundamentally, it is
owing to the poor background signal to noise ratio
(SNR) of the raw data: owing to the small value of
t(z) at large z, the signal (equation (2.1)) is low. More-
over, at these areas the noise is high, owing to
increased photon-noise induced by a high B, as
described above (equations (2.2) and (2.3)) and in
Treibitz & Schechner [40,45]. The noise can be
countered in a way described in §3.
3. THREE-DIMENSIONAL RECOVERY
(a) Distance map

Descattering based on P4 has an important by-pro-
duct: a three-dimensional mapping of the scene. This
outcome is explained in this section. As we now
show, the path radiance can be estimated based on
two polarization-filtered frames. Using equation (2.4),

Imax � Imin � Bmax � Bmin ¼ Bp; ð3:1Þ

where p is the DOP of the path radiance. This par-
ameter can be calibrated based on images taken
in situ [32–35]. Equation (3.1) yields the estimated
path radiance

Bðx; yÞ � ½I
maxðx; yÞ � Iminðx; yÞ�

p
: ð3:2Þ

This is an approximate relation, since it relies on the
assumption that the object signal is unpolarized.

As an example, figure 5 shows a negative image of
the path radiance estimated [31] based on the
images shown in figure 3. This appears to represent
the distance map of the scene: darker pixels are farther
from, while brighter pixels are generally closer to the
viewer. Actually, there is indeed an equivalence (up
to a couple of scale parameters) between B, the dis-
tance z and the medium transmissivity t: the
transmissivity monotonically decreases with z, while
B monotonically increases with z (see equation (2.5)).
In case of a uniform medium, the transmissivity is

tðzÞ ¼ expð�bzÞ; ð3:3Þ



(a) (b)

Figure 3. Polarization filtered images taken on a hazy day. (a)
Imax; (b) Imin. (Reproduced with permission from [31].
Copyright q IEEE.)

Figure 4. Scene dehazing using equation (2.6), based on
images shown in figure 3. The restoration is noisy, especially

in pixels corresponding to the distant mountain.
(Reproduced with permission from [31]. Copyright q IEEE.)

Figure 5. The estimated path radiance. This map is equival-
ent to the estimated atmospheric transmissivity, and thus the
distance to each scene point. In this image, dark pixels indi-

cate higher path radiance and thus a larger distance to the
objects shown in figure 3. (Reproduced with permission
from [31]. Copyright q IEEE.)

Figure 6. Optimization-based restoration of the scene in
figure 3. It regularizes the solution in a way that adapts to
the object distance. The restoration has low noise (compared
with figure 4), without excessive blur. (Reproduced with
permission from [31]. Copyright q IEEE.)
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where the constant b is the attenuation coefficient of
the medium. This constant coefficient is inversely
related to the attenuation distance in the medium:
the scale of b is approximately (0.1–1) m21 under-
water and approximately (1024–1023) m21 in haze.

Using equations (2.5), (3.3) and (3.2), the distance
map of the scene, z(x, y), can be estimated as

zðx; yÞ ¼ � 1

b
ln½tðx; yÞ� ¼ � 1

b
ln 1� Bðx; yÞ

B1

� �

� � 1

b
ln 1� Imaxðx; yÞ � Iminðx; yÞ

pB1

� �
: ð3:4Þ

Equation (3.4) shows how P4 yields an estimate of
the distance per image point. This estimation depends
on several global parameters (p, b, B1) which can
be assessed based on the image data [32,34,35].
The distance map z(x, y) expresses the observed
three-dimensional structure of the scene.

There are additional ways in which P4 can help in
three-dimensional recovery. Shape is often derived
Phil. Trans. R. Soc. B (2011)
using triangulation cues: stereoscopic vision and paral-
lax created by motion. It can be helpful to fuse the
polarization cue with triangulation (parallax), when
seeking three-dimensional recovery of a scene in scat-
tering media. This is done in Sarafraz et al. [46].
Binocular stereo helps the recovery particularly when
the path radiance has low DOP. On the other hand,
polarization helps the recovery irrespective of object
texture or surface markings to which stereoscopic
recovery is sensitive. Moreover, a stereoscopic setup
can simultaneously acquire two polarization-filtered
images, e.g. using a distinct polarizer orientation per
camera. This is helpful in dynamic scenes. Sarafraz
et al. [46] models the image formation process by com-
bining stereoscopic viewing geometry and scattering
effects. The recovery is then expressed as inversion of
this model.
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An additional way to exploit triangulation for shape
recovery is by using structured illumination. In this
method, one of the stereo cameras is replaced by a
light source, which projects a narrow beam on the
scene. Triangulation between the illuminated object
spot and the LOS yields the object distance, per
image point, while the beam scans the scene. Triangu-
lation becomes more complicated in scattering media,
owing to backscatter. Hence, Gupta et al. [30] incor-
porated backscatter polarization into analysis of
structured illumination.

(b) Distance adaptation of noise suppression

We now describe an additional benefit to the obser-
vation that the distance, transmissivity and path
radiance can be estimated using P4. In figure 4, the
dehazed image is noisy in the background, owing to
the high values of B and low values of t
there [34,35]. Image denoising can enhance images:
it attenuates the noise, but this comes at a cost of res-
olution loss [40]. Consequently, if denoising is to be
properly applied in the recovery, then it should only
be mild (or not be applied at all) in the scene fore-
ground, where the SNR is high. This way, foreground
areas suffer no resolution loss. On the other hand, back-
ground regions are very noisy, and may thus benefit
from aggressive noise-countering measures. In short,
descattering that accounts for noise should apply
denoising measures that are adaptive to the object
distance (or medium transmissivity). Fortunately, the
distance and transmissivity can be derived from
the polarization data, as described above.

This principle is the basis of descattering methods
that are described in Kaftory et al. [31], Schechner &
Averbuch [47]. There, the recovery is not done by
directly using equations (2.6) and (3.2). Instead, the
recovery task is expressed as an optimization problem.
As commonly done in optimization formulation, first,
a cost function C is defined for any potential (and gen-
erally wrong) guesses of Lobject and B, which are
denoted by Lobject

potential and Bpotential, respectively. The
sought optimal solution is the one that minimizes C:

fL̂object; B̂g ¼ arg minCðLpotential
object ;BpotentialÞ: ð3:5Þ

The optimal solution fL̂object; B̂g should fit the
model (2.4) and (3.1) to the data fImax, Iming but
at the same time, the sought fields fL̂object; B̂g
should be spatially smooth, not noisy. The two con-
flicting requirements: data fitting versus smoothness
(regularization), are expressed as terms in the cost
function

C L
potential
object ;Bpotential

� �
¼ ðfittingþ regularizationÞ:

ð3:6Þ

Until this point the optimization formulation
is standard. The novelty in Kaftory et al. [31] and
Schechner & Averbuch [47] is that the conflicting
requirements (fitting and smoothness) are mutually
compromised in a way which depends on the distance:
at farther objects, smoothness is more strongly imposed.

For example, in Schechner & Averbuch [47], the
following operator is used to measure non-
Phil. Trans. R. Soc. B (2011)
smoothness, and thus increase the cost function at
noisy potential solutions:

regularization �kWDL
potential
object k2 : ð3:7Þ

Here D is the two-dimensional Laplacian operator. A
more unsmooth result increases the absolute output
of the Laplacian. This increases C. Adaptivity to the
object distance is achieved by the weighting operator
W. It depends explicitly on the transmissivity t at each
pixel, hence it is implicitly adaptive to the object distance
z. Let

Wðx; yÞ ¼ ½1� tðx; yÞ�2: ð3:8Þ

Recall from equation (3.3) that t(x, y) [ [0,1]. Thus,
the weighting W emphasizes the regularization (hence
smoothness) at points corresponding to distant objects
(where t(x, y)! 0), and turns off the regularization at
close objects (where t(x, y)! 1). Kaftory et al. [31]
uses a more sophisticated regularization term. In any
case, the optimal solution (3.5) is found by numerical
algorithms that run on a computer. A result [31] is
shown in figure 6. Compared with figure 4, the result
in figure 6 suppresses noise in the background, without
blurring the foreground.

(c) Three-dimensional object shape, without

a medium

Section 3a shows that a medium that scatters partially
polarized light encompasses information about the
three-dimensional structure of the objects behind it.
However, often objects are very close, without a signifi-
cant medium between them and the camera or eye.
Then, other methods should be used to assess the
three-dimensional shape of objects. Many established
methods rely on triangulation, photometric stereo, shad-
ing and shadows. Nevertheless, new methods have
recently been developed for three-dimensional recovery,
that rely on partial polarization of reflected light.

Rahmann & Canterakis [48] observed that the
polarization of reflected light yields constraints on
the shape of opaque, specular objects. Consider
figure 7. An incident light ray is specularly reflected
from a surface. The incident ray, the specularly
reflected ray and the surface normal all reside in the
same plane, termed the plane of incidence (POI).
Assuming the incident ray to be unpolarized, the
specular reflection is partially polarized. The orien-
tation of the polarization vector is perpendicular to
the POI. Hence, measuring the orientation of the
polarization vector imposes one constraint on the sur-
face normal. Furthermore, the DOP of specularly
reflected light depends on the angle of incidence,
which equals the angle between the surface normal
and the LOS. For a given material, this dependency
is known, since it is dictated by the Fresnel coeffi-
cients. Hence, measuring the DOP imposes a second
constraint on the surface normal. Integrating the
constraints on the surface normals of all observed
points yields an estimate of the three-dimensional
shape [48]. A similar approach was developed for reco-
vering the shape of specular transparent objects [49],
where internal reflections inside the object had to be
accounted for.
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Figure 7. A plane of incidence (POI) is defined by the LOS and the surface normal. A source illuminates the object with
irradiance LS. Part of the light is specularly reflected, with radiance proportional to the specular reflectance coefficient.
This coefficient depends on the polarization component relative to the POI. It also depends on the angle of incidence f.

Another portion of the object irradiance is diffusely reflected. Diffuse reflection is created by the penetration of irradiance
into the surface. Consequent subsurface scattering yields radiance LD. A portion of LD leaves the surface towards the
camera, as dictated by the transmittance coefficient of the surface. Also this coefficient depends on f and the sensed
polarization component. P4 can help separate the diffuse and specular reflections, and derive shape information.
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Recovering the shape of diffuse objects with the
help of P4 has been done in Atkinson & Hancock [50].
In diffuse reflection, the orientation of the polarization
vector and the DOP provide constraints on the surface
normal, which are different from the constraints
stemming from specular reflection. Anyway, polariz-
ation-based shape cues [48–50] do not rely on
prominent object features, and apply even if the
objects are textureless. Hence, they complement
triangulation-based methods of shape recovery.
4. SEPARATION OF SEMI-REFLECTIONS
Semi-reflections pose a challenge to vision, either
biological or artificial. In nature, such reflections
exist in a water–air interface, when looking into or
out of water. In man-made environments, they are
created by glass windows,2 which superimpose a
scene behind the window and a reflection of a scene
in front of the window, as illustrated in figure 8. This
creates confusing images, as the one shown in
figure 9. Several methods were developed to attack
this problem. Some of them are based on motion
and stereo vision [51,52], but require extensive com-
putations. A simple, straightforward approach is to
use P4. A semi-reflecting interface affects the polariz-
ation state of reflected and transmitted light in a
different manner. This difference can be leveraged to
Phil. Trans. R. Soc. B (2011)
separate [53,54], recover, and label the reflected and
transmitted scenes.

The object behind the semi-reflector is transmitted,
thus variables associated with it are denoted by ‘T’.
An object on the camera-side of the semi-reflector is
reflected, thus variables associated with it are denoted
by ‘R’. Specifically, LT is the radiance of the trans-
mitted object (figure 8). Similarly, LR is the radiance
of the reflected object, as measured if the semi-reflector
was replaced by a perfect mirror. The two unknowns
LT (x, y) and LR (x, y) affect the sensed image, per
point (x, y). Similarly to §2, solving for the two
unknowns is facilitated by using two independent
equations, which are based on two polarization-filtered
images.
(a) Thin reflector

As we describe later in §4b, semi-reflections may be
accompanied by multiple spatial shifts. For simplicity,
let us ignore, for the moment, this effect. Simple
reflection (without observed spatial shifts) occurs in
an air–water interface. It also occurs in reflection by
thin windows. A ray incident on the reflecting surface
is partly reflected and partly transmitted. All rays are
in the POI (see figure 8). The POI sets two polariz-
ation components: parallel and perpendicular to the
POI. For each of these components, the semi-reflector
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These coefficients depend on the fixed angle of incidence f. They also depend on the polarization component, relative to the POI.
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has, respectively, reflectance and transmittance coeffi-
cients, rjj, r? and tjj, t?. Using a polarization-sensitive
camera, we may take images of the compound
scene. The camera-mounted polarizer is oriented at
the corresponding parallel and perpendicular direc-
tions (figure 8), yielding two images, which are
modelled by Schechner et al. [54]

I? �
LR

2

� �
r? þ

LT

2

� �
t?

and

Ik �
LR

2

� �
rk þ

LT

2

� �
tk:

ð4:1Þ

Equation (4.1) assumes that light emanating from the
scene objects (prior to reaching the semi-reflector) has
negligible partial polarization. In other words, all
polarization effects are caused by the semi-reflector.
Accordingly, the light intensity carried by LT is equally
split between I? and Ijj. The same split applies to LR.
In some cases this assumption may be wrong, particu-
larly when the objects are shiny. However, the
approximation expressed by equation (4.1) often
leads to effective scene recovery.

The two equations (4.1) provide the information
needed to decouple the two unknowns LT and LR, as
described in Schechner et al. [54]. If the coefficients frjj,
r?, tjj, t?g are properly set, then simply solving the two
linear equations (4.1) yields the two unknown scenes:

LRðx; yÞ � 2
I?ðx; yÞtk � Ikðx; yÞt?

r?tk � rkt?

and

LTðx; yÞ � 2
I?ðx; yÞrk � Ikðx; yÞr?

t?rk � tkr?
:

ð4:2Þ

We now explain how the coefficients are set. The coeffi-
cients frjj, r?, tjj, t?g are derived from the Fresnel
coefficients, while accounting for inter-reflections inside
the semi-reflector (see [54]). They depend on the media
interfacing at the semi-reflecting surface [54] (typically,
water, air and glass), which are known.
Phil. Trans. R. Soc. B (2011)
The coefficients also depend on the angle of inci-
dence f (see figure 8). If this angle is known, then
frjj, r?, tjj, t?g are uniquely set. However, f is usually
unknown, and needs to be estimated based on the
raw images fI?, Ijjg. This is done in Schechner
et al. [54] using the following trick. Any wrong
estimation of f yields the wrong coefficients frjj, r?,
tjj, t?g. This, in turn, yields a wrong recovery via
equation (4.2). A wrong recovery is rather easily
spotted, since it exhibits a significant crosstalk [54]
between the estimated images fLR, LTg. Crosstalk is
detected computationally, using cross-correlation.
Hence, a simple computational algorithm, which
seeks to minimize the correlation between the estimated
fLR, LTg automatically rejects wrong solutions. This
leads to a correct f.

The method we just described, which uses cross-
correlation to find the mixture parameters, implicitly
assumes that the original signals LR and LT are
independent of each other. Algorithms that make
this assumption for the purpose of signal separation
are often referred to as independent component
analysis (ICA).
(b) Overcoming visual reverberations

Light rays incident on a window are reflected back and
forth inside the glass. Such internal reflections affect
the contribution of both sources: a spatial effect is cre-
ated of dimmed and shifted replications. Figure 9
demonstrates this effect in a real photograph taken
via a window. In addition to the superimposed scenes
(toys of a star versus a tree in the Sun), a shifted and
weaker replica of the Sun and tree is clearly seen.
This is caused by internal reflections that take place
inside a window. In addition to that clear replica,
there is also a replica of the other scene (star).
Additional higher order replicas exist for both objects,
but are often too dim to see. Overall, the acquired
photograph contains a superposition not only of the
two original scenes, but also of those same scenes dis-
placed to various distances and in different powers.
Prior studies (including the one described in §4a)
did not account for this effect. There, the model and



Figure 9. A real-world frame acquired through a transparent
window. In addition to the superposition of two scenes, note
the secondary reflections (replications), e.g. of the Sun and
tree. (Reproduced with permission from [55]. Copyright q

IEEE.)
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Figure 10. Primary and secondary reflections of LT (solid) and
LR (dotted). The distance between the emerging rays is d0.

Figure 12. The reconstructed LT in the experiment
corresponding to figure 9. It has neither visual reverberations

nor apparent trace of the complementary scene LR, the
estimate of which is shown in figure 11. (Reproduced with
permission from [55]. Copyright q IEEE.)

Figure 11. The reconstructed LR in the experiment corre-
sponding to figure 9. It has neither visual reverberations
nor apparent trace of the complementary scene LT, the
estimate of which is shown in figure 12. (Reproduced with

permission from [55]. Copyright q IEEE.)

Review. Inversion by P4 Y. Y. Schechner 645
algorithms focused on the limit case, in which the dis-
placement between the replicas is negligible. This is
not a valid situation in general.

Visual spatial displacements created by optical
reflections are analogous to temporal displacements
created by reflections of temporal sound and radio sig-
nals. In analogy to the displaced replica in our study, a
sound reflection creates a delayed echo. In the field
of acoustics, this effect is generally referred to as rever-
berations. Hence, we use the term visual reverberations
to describe the effect we deal with.

This section generalizes the model and treatment of
semi-reflections to deal with this effect. Consider
figure 10. A light ray from the object LR reaches the
window. There, it undergoes a series of reflections
and refractions. The internal reflections inside the
window create a series of rays emerging from
the window. For example, let us derive the intensities
of some of these rays. First, the ray LR partly reflects
Phil. Trans. R. Soc. B (2011)
from the front air–glass interface, yielding a ray the
intensity of which is LRR, where R is the reflectance
of the interface. The ray LR is also partly transmitted
into the glass, with transmittance coefficient T. The
ray in the glass hits the back glass–air interface, and
partially reflects there. This internally reflected ray
returns to the front air–glass interface, and is partially
transmitted through the interface to the air, towards
the camera. Thus, before it emerged into the air, this
ray underwent a total of two transmissions through
the front interface, and one reflection at the back inter-
face (figure 10). Thus, the emerging ray has intensity
LRRT2. Similarly, the intensities of other reflected
rays in the system can be derived.

A similar analysis applies to a ray from the object LT,
as illustrated in figure 10. This ray also undergoes a
series of reflections and refractions, resulting in a
series of rays emerging from the window. For example,
first, the ray LT partly transmits through the back air–
glass interface, and then partly transmits through the
front glass–air interface. Thus, these two
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transmissions yield a ray the intensity of which is LTT2.
In addition, the transmitted ray in the glass undergoes
two internal reflections (one in the front and the other
in the back interface), before it returns to the front
glass–air interface, where it is partially transmitted to
the air (figure 10), towards the camera. Thus, before
it emerged into the air, this ray underwent a total of
two transmissions (one at each interface) and two
internal reflections (one at each interface). Thus, the
emerging ray has intensity LTR2T2. The power of
successive secondary reflections rapidly tends to zero.

Since the window is flat, all the rays are in the POI.
The distance between successive emerging rays (sec-
ondary reflections) is d0. The reflectance coefficients
per polarization component are R? and Rjj, at each
interface of the window.3 Similarly, the transmittance
coefficients per polarization component are T? and
Tjj, at any one of the two interfaces of the window.4

The closed-form expressions for fRjj, R?, Tjj, T?g
are given in Diamant & Schechner [55].

It is clear from figure 10 that the secondary reflec-
tions create a spatial effect. Each object point is
sensed simultaneously in different image points, since
the energy of an object point is dissipated among differ-
ent reflection orders. Hence, the transmitted scene
undergoes a convolution with a particular point-spread
function (PSF). As seen in figure 10, the PSF of the
transmitted scene is

h
k
T ¼ T 2

k ½dðxÞ þ R2
kdðx� dÞ þ R4

kdðx� 2dÞ . . .�; ð4:3Þ

when measuring only the polarization component par-
allel to the POI, while d is the Dirac delta function.
Here d is the distance between successive visual
echoes of LT, as received by the camera (in pixels).
It is given by d ¼ a d0, where d0 is the physical distance
(in centimetres) between secondary reflections,
depicted in figure 10, and a is the camera magnifi-
cation. In this model, each object point corresponds
to a parallel set of rays, which in turn corresponds to
a set of equally interspaced pixels [55].

Similarly, the PSF of the reflected scene is

h
k
R ¼ Rk½dðxÞ þ T2

k dðx� dÞ þ T 2
kR2
kdðx� 2dÞ . . .�; ð4:4Þ

when measuring only the parallel polarization com-
ponent. The perpendicular components also undergo
convolutions: the corresponding PSFs hR

? and hT
? are

derived analogously,5 by using R? and T? instead of
Rjj, Tjj in equations (4.3) and (4.4).

The acquired image intensity is a linear superposi-
tion of the reflected and transmitted scenes. In §4a,
this superposition was pointwise, since in the imaging
conditions there, spatial effects were not seen. In con-
trast, here the superposition is of convolved scenes.
Generalizing equation (4.1), the acquired images are

I? �
LR

2

� �
� h?R þ

LT

2

� �
� h?T

and

Ik �
LR

2

� �
� h
k
R þ

LT

2

� �
� h
k
T;

ð4:5Þ

where * denotes convolution.
Phil. Trans. R. Soc. B (2011)
Solving for the two unknowns fLR, LTg is possible
using the two equations (4.5), though the solution is
more elaborate than equation (4.2). A mathematical
way to extract fLR, LTg is described in Diamant &
Schechner [55]. A way to solve the problem is using
an optimization formulation, similar to the one
described in §3b. In analogy to equation (3.5), the
optimal sought solution is

fLR;LTg ¼ arg minC ðLpotential
R ;Lpotential

T Þ; ð4:6Þ

wherefLR
potential,LT

potentialg areanypotential (and generally
wrong) guesses for the reflected and transmitted scenes.

The optimal solution should fit the model (4.5) to
the data fI?, Ijjg, but at the same time, the sought
field LR should be spatially smooth, not noisy (there
is no practical need to impose smoothness on LT,
since it is inherently less noisy [55]). As an example,
consider figure 9. This is I?. The image Ijj is somewhat
similar. Based on these two images [55], the recovered
LR is depicted in figure 11, while LT is shown in
figure 12. In both images, the recovery has no apparent
crosstalk and no reverberations.
(c) Separating specular and diffuse reflections

A related problem to semi-reflection from transparent
surfaces is reflection from opaque objects. Here, too,
the image has two components, as illustrated in
figure 7. One component is diffuse reflection. It is
strongly affected by the inherent colour of the object,
but is rather insensitive to change of viewpoint and
the DOP of which is usually low. The other component
is specular reflection, the colour of which matches the
illumination colour. It is highly sensitive to changes of
viewpoint, and its DOP is often significant. Separating
and recovering each of these components is important,
for several reasons: each of these reflection types gives
different cues about the object shape, as described in
§3c; specular reflection may confuse triangulation
methods, hence removing specularities is useful in this
context; and the different colours of these components
may confuse vision.

P4 is helpful for inverting the diffuse/specular mix-
ture, hence separating these reflection components.
Umeyama and Godin [56] acquired images at different
orientations of a polarizer (figure 7). This way, it
changes the relative contribution of two components
in the images. The acquired images then undergo
ICA to solve for the two unknown fields: the specular
image and the diffuse image. Nayar et al. [57] fuse
colour and polarization data to recover the components.
5. DISCUSSION
The methods described above have been demonstrated
in man-made systems involving computers. An inter-
esting question is, whether these methods indicate
that animals may also recover scenes using their polar-
ization-sensitive vision. Do some animals see farther in
a medium, by descattering the scene using polariz-
ation? Are there animals that use polarization in
order to assess distances to objects, or estimate the
shape of objects, even roughly, in the context of
some task (e.g. preying or courting)? Can animals
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that prey through the surface of seas or lakes (some
birds, fish, crocodiles), upwards or downwards, use
polarization in order to remove semi-reflections from
the surface? Perhaps polarization is used for separating
specular from diffuse reflection [19] in nature to
provide an advantage in seeking food in the open air?

It is also possible to consider exploitation of these
effects to confuse predators. Suppose a predator uses
path-radiance polarization for distance assessment.
Then, a marine animal that has a polarizing skin
would confuse this distance assessment, hence gaining
an advantage in avoiding attack by the predator. These
are fascinating questions and possibilities. Biological
systems do not work as the computational algorithms
described in this paper. But, the algorithms prove
feasibility: some computational systems can recover
scenes using polarization. Biological brains are also
computational systems. Perhaps they do it too.

This paper surveys the work I have done with several
coauthors to whom I am grateful: Yuval Averbuch, Yaron
Diamant, Ran Kaftory, Nir Karpel, Nahum Kiryati, Mohit
Gupta, Einav Namer, Shahriar Negahdaripour, Amin
Sarafraz, Srinivas Narasimhan, Shree Nayar, Joseph
Shamir, Sarit Shwartz, Tali Treibitz and Yehoshua Zeevi.
Thanks are also due to Justin Marshall, David O’Carroll,
Nick Roberts and Nadav Shashar, for the useful
discussions at the 2008 Heron Island Polarization
Conference. Their insights into the potential relevance to
animal vision come across in this paper. Yoav Schechner is
a Landau Fellow - supported by the Taub Foundation.
This work is supported by the Israel Science Foundation
(Grant 1031/08) and the US-Israel Binational Science
Foundation (BSF) Grant 2006384. This work was
conducted in the Ollendorff Minerva Center. Minerva is
funded through the BMBF. This work relates to
Department of the Navy Grant N62909-10-1-4056 issued
by the office of Naval Research Global. The United States
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ENDNOTES
1The increase in the intensity (variance) of the noise is not only rela-

tive to the signal S. Rather, the absolute level of the noise intensity

increases with B, owing to equations (2.2) and (2.3).
2Semi-reflections are also created by plastic windows. However, trans-

parent plastic materials are more prone than glass to the photoelastic

effect [33]. In this effect, stress in the transparent material changes the

polarization of light propagating inside the window. This may confuse

polarization-based methods for separation of semi-reflections.
3These are not the coefficients r? and rjj used in §4a. The relation

between any r and its corresponding R will become clear in the

following discussion.
4These are not the coefficients t? and tjj used in §4a, since t? and tjj
express the overall transmittance of light through the combined

effect of both window interfaces.
5Note that if d � 0 (thin window), the scene and model analysed in

this section degenerate to those discussed in §4a. Specifically, if d ¼

0, equation (4.3) degenerates to hT
jj ¼ tjj d (x), where tjj is a transmit-

tance used in §4a. In other words, tjj ¼ Tjj
2(1 þ Rjj

2 þ Rjj
4 . . .).

Similarly, the other coefficients ft?, rjj, r?g used in §4a are obtained

by using d ¼ 0 in hT
? , hR

jj and hR
?, respectively.
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7 Mäthger, L. M., Shashar, N. & Hanlon, R. T. 2009 Do

cephalopods communicate using polarized light reflec-
tions from their skin? J. Environ. Biol. 212, 2133–2140.
(doi:10.1242/jeb.020800)

8 Michinomae, M., Masuda, H., Seidou, M. & Kito, Y.
1994 Structural basis for wavelength discrimination in

the banked retina of the firefly squid Watasenia scintillans.
J. Environ. Biol. 193, 1–12.

9 Parkyn, D. C., Austin, J. D. & Hawryshyn, C. W. 2003
Acquisition of polarized-light orientation in salmonids
under laboratory conditions. Anim. Behav. 65, 893–904.

(doi:10.1006/anbe.2003.2136)
10 Roberts, N. W., Chiou, T.-H., Marshall, N. J. & Cronin,

T. W. 2009 A biological quarter-wave retarder with
excellent achromaticity in the visible wavelength

region. Nat. Photon. 3, 641–644. (doi:10.1038/npho-
ton.2009.189)

11 Roberts, N. W., Gleeson, H. F., Temple, S. E, Haimberger,
T. J. & Hawryshyn, C. W. 2004 Differences in the optical
properties of vertebrate photoreceptor classes leading

to axial polarization sensitivity. J. Opt. Soc. Am. A 21,
335–345. (doi:10.1364/JOSAA.21.000335)

12 Roberts, N. W. & Needham, M. G. 2007 A mechanism
of polarized light sensitivity in cone photoreceptors of
the goldfish Carassius auratus. Biophys. J. 93, 3241–3248.

(doi:10.1529/biophysj.107.112292)
13 Sabbah, S., Lerner, A., Erlick, C. & Shashar, N. 2005

Under water polarization vision—a physical examination.
Recent Res. Dev. Exp. Theor. Biol. 1, 1–53.

14 Shashar, N. & Cronin, T. W. 1996 Polarization

contrast vision in octopus. J. Environ. Biol. 199,
999–1004.

15 Waterman, T. H. 1981 Polarization sensitivity. In
Handbook of sensory physiology, VII/6B (ed. H. J. A.

Dartnall), pp. 281–469. Berlin, Germany: Springer.
16 Wehner, R. 2001 Polarization vision—a uniform sensory

capacity? J. Environ. Biol. 204, 2589–2596.
17 Wolff, L. B. 1997 Polarization vision: a new sensory

approach to image understanding. Image Vis. Comp. 15,

81–93. (doi:10.1016/S0262-8856(96)01123-7)
18 Dacke, M., Nilsson, D.-E., Warrant, E. J., Blest, A. D.,

Land, M. F. & O’Carroll, D. C. 1999 Built-in polarizers
form part of a compass organ in spiders. Nature 401,
470–473. (doi:10.1038/46773)

19 Kelber, A., Thunell, S. & Arikawa, K. 2001 Polarisation-
dependent colour vision in papilio butterflies. J. Environ.
Biol. 204, 2469–2480.

20 Labhart, T. & Meyer, E. P. 2002 Neural mechanisms in
insect navigation: polarization compass and odometer.

Curr. Opin. Neurobiol. 12, 707–714. (doi:10.1016/
S0959-4388(02)00384-7)

21 Muheim, R., Phillips, J. B. & Akesson, S. 2006 Polarized
light cues underlie compass calibration in migratory
songbirds. Nature 313, 837–839.

http://dx.doi.org/doi:10.1364/JOSAA.27.000865
http://dx.doi.org/doi:10.1007/s00359-009-0491-y
http://dx.doi.org/doi:10.1093/icb/43.4.549
http://dx.doi.org/doi:10.1038/scientificamerican0200-80
http://dx.doi.org/doi:10.1242/jeb.020800
http://dx.doi.org/doi:10.1006/anbe.2003.2136
http://dx.doi.org/doi:10.1038/nphoton.2009.189
http://dx.doi.org/doi:10.1038/nphoton.2009.189
http://dx.doi.org/doi:10.1364/JOSAA.21.000335
http://dx.doi.org/doi:10.1529/biophysj.107.112292
http://dx.doi.org/doi:10.1016/S0262-8856(96)01123-7
http://dx.doi.org/doi:10.1038/46773
http://dx.doi.org/doi:10.1016/S0959-4388(02)00384-7
http://dx.doi.org/doi:10.1016/S0959-4388(02)00384-7


648 Y. Y. Schechner Review. Inversion by P4
22 Sweeney, A., Jiggins, C. & Johnsen, S. 2003 Insect com-
munication: polarized light as a butterfly mating signal.
Nature 423, 31–32. (doi:10.1038/423031a)

23 Chang, P. C. Y., Flitton, J. C., Hopcraft, K. I., Jakeman, E.,
Jordan, D. L. & Walker, J. G. 2003 Improving visibility
depth in passive underwater imaging by use of polariz-
ation. Appl. Opt. 42, 2794–2802. (doi:10.1364/AO.42.
002794)

24 Denes, L. J., Gottlieb, M., Kaminsky, B. & Metes, P.
1999 AOTF polarization difference imaging. Proc. SPIE
3584, 106–115. (doi:10.1117/12.339812)

25 Harsdorf, S., Reuter, R. & Töneön, S. 1999 Contrast-
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