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Weather is one of the most basic factors impacting animal populations, but the typical strength of such

impacts on population dynamics is unknown. We incorporate weather and climate index data into analysis

of 492 time series of mammals, birds and insects from the global population dynamics database. A con-

undrum is that a multitude of weather data may a priori be considered potentially important and hence

present a risk of statistical over-fitting. We find that model selection or averaging alone could spuriously

indicate that weather provides strong improvements to short-term population prediction accuracy. How-

ever, a block randomization test reveals that most improvements result from over-fitting. Weather and

climate variables do, in general, improve predictions, but improvements were barely detectable despite

the large number of datasets considered. Climate indices such as North Atlantic Oscillation are not

better predictors of population change than local weather variables. Insect time series are typically less

predictable than bird or mammal time series, although all taxonomic classes display low predictability.

Our results are in line with the view that population dynamics is often too complex to allow resolving

mechanisms from time series, but we argue that time series analysis can still be useful for estimating

net environmental effects.
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1. INTRODUCTION
How and to what extent weather and climate affect the

dynamics of populations is a question that has interested

ecologists since the early days of population ecology. In

fact, one of the most well-known and long-lived debates

in ecology concerned whether the dynamics of wild

animal populations are mainly regulated by exogenous

environmental factors [1] or by endogenous density-

dependent processes [2]. Although modern thinking

usually views endogenous and exogenous factors in a

more unified way, operating together on any population

[3], we lack a macro-ecological view of the typical impor-

tance of weather compared with other factors across many

populations and species. Beyond these fundamental eco-

logical questions, the role of the environment in shaping

the dynamics of populations is of interest in applied con-

texts. This is exemplified by the current concern about

effects of climate change, which has sparked an ever-

increasing interest in estimating how environmental

factors affect populations.

While the plain fact that weather can and does impact

populations is beyond dispute, the problem of how to

integrate weather into understanding of the dynamics of

specific populations has generated its own debates. Cer-

tain well-studied species have been shown to react to

fluctuations in climate and weather through an intricate

interplay between demographic traits and combinations

of environmental factors. In soay sheep (Ovis aries) on

St Kilda, UK, weather affects survival differently among
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different age classes, while the age distribution fluctuates

independently of total population size [4]. Predicting the

response of this population to weather change therefore

requires detailed data on population structure or

individual-based data. This has generated the idea that

‘the devil is in the details’ for understanding population

change [5], implying that extensive data and background

knowledge may be necessary to resolve the mechanisms

by which changes in weather and climate lead to changes

in population size.

Population data, however, often come in the form of

time series resulting from censuses or surveys, and there

is an extensive number of studies where weather variables

have been included in analyses of such series (e.g. [6–10]).

Apart from the potential problem of complexity, weather

is often just an indirect cause of population change. For

instance, herbivore species depend on vegetation for fora-

ging, which in turn may be driven by rainfall. Inferring

how rainfall affects population dynamics from time

series may then require prior knowledge about the mech-

anisms leading from rainfall through vegetation growth to

herbivores, including potential feedback from herbivores

to vegetation [11]. Thus, the extent to which time series

analyses are useful for inferring mechanisms in popu-

lation dynamics is under debate [12]. While there

certainly are limitations to time series analyses, at least

part of the debate seems to stem from an over-expectation

of what kind of answers they can provide. Along these

lines it has been argued that time-series analysis may

often be the best tool, given the limited information typi-

cally available on a population, and can serve as a starting

point for examining hypotheses prior to further explora-

tion with detailed data [13]. Time-series analysis can

also be used as a tool aimed at improving predictions of
This journal is q 2010 The Royal Society
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abundance [14], in line with the classical role of time-

series analysis in statistics.

In the absence of detailed prior knowledge of a system,

there are potential risks and rewards to incorporating

weather variables in time-series analysis. Environmental

variance influencing population dynamics is routinely

referred to in time-series analyses without any explicit

inclusion of environmental factors. For instance, process

error variance in discrete time population models is

often equated with environmental variance [3], while in

practice the importance of exogenous factors in relation

to endogenous factors is nearly impossible to determine

unless the exogenous factors can be identified and

measured [15]. Including weather variables offers the

potential to clarify other factors affecting populations by

explaining part of the variation and may, for instance,

improve estimates of density dependence [16]. On the

other hand, because of the many potential weather vari-

ables that could be considered, explicit incorporation of

weather in time-series analyses runs the risk of over-fitting

in the sense that seemingly statistically significant effects

may be spurious [12]. A partial remedy may be to use cli-

mate indices such as North Atlantic Oscillation (NAO),

which have been found to often correlate more strongly

with demographic traits or population abundance than

local weather variables [17]; the hypothesis is that NAO

may capture the overall fluctuations of a mix of relevant

weather variables [18].

We use 492 population time series from the global

population dynamics database (GPDD), large-scale

weather data [19], and climate indices representing the

NAO and the Southern Oscillation (SO) to address ques-

tions about the role of weather in population dynamics.

The GPDD has been suggested as an important tool for

exploring questions in population ecology [20]. Previous

studies using the GPDD have focused on population

viability [21], and regulation and density dependence

[22–25], but none have included weather or climate vari-

ables. We address three main questions: first, how much

do weather variables appear to improve predictions of

population dynamics and how much of the apparent

improvement can be attributed to over-fitting? Second,

are climate indices such as NAO and SO better predictors

than local weather variables? Third, to what extent are

populations predictable, given knowledge of weather?

We focus on short-term predictability (through residual

variance) because it relates to the practical and direct

impact of weather rather than its relative impact. The

results show that the data are related to weather covariates

but that the effects are weak and that the data are often

highly unpredictable at an annual scale.
2. MATERIAL AND METHODS
(a) Population data

The GPDD [26] consists of over 5000 time series on popu-

lation abundance estimates across a wide range of taxa,

geographical locations and sample periods. The database

has been used to analyse density dependence [22,23,25],

population cycles [27], extinction risk [28] and population

variability [20]. We applied selection criteria to choose suit-

able datasets from the database. We removed datasets that

were short (taking less than 10 unique values), sparse

(more than 30% missing data), sampled at non-annual
Proc. R. Soc. B (2011)
intervals, based on harvest or non-index data, collected

from a location for which weather data were not available

for the entirety of the study or in other ways did not

meet our selection criteria (see electronic supplementary

material for further details). Additional species data (such

as approximate lifespan) that are not in the GPDD were

obtained from [28].

(b) Weather and climate data

Weather data were obtained from a global database of

gridded weather variables at 0.5 � 0.58 resolution [19].

At each grid, monthly weather data have been spatially

interpolated from weather station records. For each popu-

lation time series, we extracted weather data from the grid

in which the population data were collected. We further

obtained large-scale climate data in the form of winter

NAO (http://www.cgd.ucar.edu/cas/jhurrell/indices.html) and

annual SO (http://www.bom.gov.au/climate/current/soihtm1.

shtml) indices. Winter NAO is indicative of winter climate

in the North Atlantic region, while SO is related to El Niño

and large-scale weather events mostly affecting the Pacific

region [29].

From these data, we derived two collections of weather co-

variates (one small and one large). The small collection was

chosen to reduce the risk of over-fitting while at the same time

increasing the risk that an important variable would be missed.

This includes summer and winter temperature and precipitation

as well as winter NAO and annual SO. Weather indices were

obtained by averaging the daily mean of maximum and mini-

mum temperature, and total precipitation for summer (June–

August) and winter (December–February). For the change in

a population index from year t 2 1 to year t, the temperature

and precipitation in the summer of year t 2 1 and in the

winter between year t 2 1 and year t were used as covariates.

The NAO for the same winter and SO for year t 2 1 were also

used as covariates. The collection thus contains six covariates

for each population dataset.

The large collection included more seasons, additional

variables and more possible lags in the effect of weather.

Specifically it included winter (December–February),

spring (March–May), summer (June–August) and autumn

(September–November) averages of daily minimum and

maximum temperature, and of precipitation and frost day

frequency. For the population change from year t 2 1 to

t, seasonal weather indices from the winter between year

t 2 2 and t 2 1 to the autumn in year t, climate NAO

indices from the winter between year t 2 3 and t 2 2 to the

winter between year t 2 1 and t, and SO indices from the

years t 2 3, t 2 2 and t 2 1 were used as covariates. In sum-

mary, the large collection contains 38 weather and climate

covariates for each population time series.

All covariates were standardized to mean 0 and variance

1 to simplify the analyses.

(c) Models

We modelled log-transformed population data using linear

autoregressive (AR) models having either one or two AR

terms and with either no covariate or one weather or climate

covariate at the time. Combinations of multiple weather or

climate variables were not considered owing to the combina-

torial explosion of the number of models that would need to

be examined. In total, each time series was fitted to 14 differ-

ent models for the small collection of weather variables and

to 78 different models for the large collection. The most
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general model was of the form

xt ¼ a0 þ a1xt�1 þ a2xt�2 þ bwt�1 þ et�1;

t ¼ 3; . . . ; n;
ð2:1Þ

where xt is log-transformed population index in year t, 1t is

normally distributed with standard deviation s and wt2 1 is

the weather covariate corresponding to the population tran-

sition from year t 2 1 to year t. For each dataset, two

models without covariates (with either one or two AR

terms) and two models for each of the covariates (with

either one or two AR terms) were fitted. Our main parameter

of interest is s2, which is usually referred to as the process

error variance, or even the environmental variance. Here,

we will refer to s2 as the prediction error variance, to mini-

mize ecological implications of the nomenclature. The

prediction error is the variance of one-step-ahead predictions

of the data on the log scale and our main aim is to see to

what extent weather variables can improve predictions.

Prediction error may arise because of, among other things,

environmental variation, model misspecification and

measurement error.

We used maximum likelihood methods to obtain the

parameter estimates. For time series with no missing data,

maximum likelihood estimates of AR models are identical

to linear regression estimates and for these datasets we

used the lm function in R [30] to fit the models. For datasets

where some data were missing, we maximized the likelihood

numerically using the optim routine in R. The estimate of

s2 was bias-corrected by multiplying the maximum

likelihood estimate by the number of data points divided by

the degrees of freedom. This bias correction is exact for

linear regression but corresponds to a first-order correction

for time series.

We limited our analysis to simple AR models (equation

(2.1)), rather than including either state-space models to

incorporate measurement error [31] or autoregressive

moving average (ARMA) models [25]. Many of the GPDD

time series are short, which could cause high imprecision

in parameter estimates of more complex models owing to

shallow likelihoods (see [32] for state-space models). Also,

our results illustrate the hazards of over-fitting from model

selection or model averaging, and adding several-fold

model structures to the analysis could exacerbate over-fitting

problems owing to the increase in the number of models that

would be applied to each dataset.

(d) Model selection and model averaging

Because of the many potential weather and climate covariates

possible for any of the datasets, only one covariate at a time

was included in the model (2.1), and model selection was

used to differentiate between covariates, as well as between

one or two density dependence lags. A small-sample

correction to AIC, the AICc, defined as

AICc ¼ AICþ 2kðkþ 1Þ
T � k� 1

;

where k is the number of model parameters and T is the

number of data points (T ¼ n 2 2 if there are no missing

data), has been shown to be superior to AIC for AR time

series [33]. Inference via model selection can be achieved

by inference from the best model, in the sense that the

model with smallest AICc value is selected and used for

obtaining estimates of quantities of interest. Inference from

the best model has the drawback that no account is taken
Proc. R. Soc. B (2011)
for the uncertainty of the model selection process, and the

performances of models other than the best one are not con-

sidered. An alternative approach to inference is model

averaging. This may be done by computing model weights

based on the information criterion via

wi ¼
expð�AICci=2ÞP
j expð�AICcj=2Þ

where AICci is the AICc value for models i and j run over all

models under consideration [34]. The model weights can

then be used to estimate a parameter of interest, say u, by

û ¼
X

wj ûj ;

where ûj is the estimate under model j. Although model aver-

aging is philosophically problematic in a frequentistic

framework and the choice of model weights is somewhat arbi-

trary, AIC-based model weighting performs well by smoothing

model-averaged estimators relative to best-model estimators

[35]. Our results will alternately be presented in terms of

model-averaged estimates and best-model estimates.

(e) Over-fitting and model selection bias

When too many models are included in a model selection

process there is a risk of over-fitting in the sense that a covari-

ate included in a selected model may only be spuriously

related to the data [36]. In other words, even if no covariate

had any effect on any of the datasets, the AICc best model

would still be expected to include a covariate for some of

the datasets and the model-averaged estimates would be

expected to be derived via model weights that are non-zero

for some of the models with a covariate. This is related to

the multiple comparisons problem in hypothesis testing and

is a more severe hazard with increasing size of the collection

of datasets used for model selection. We therefore evaluated

whether the reductions in s2 owing to model selection were

greater than expected by chance by resampling the covari-

ates. For each population time series, we resampled the

covariates 100 times, refitted all models to the original popu-

lation data (but using the resampled covariates), and recorded

the resulting model selection estimates of s2. For each dataset,

we then calculated a p-value estimate as the proportion of

times the estimate of s2 corresponding to the resampled co-

variates were smaller than the true estimate of s2. The lower

the p-value, the more the original covariates decrease the pre-

diction error relative to the resampled covariates. In order to

preserve some of the potential autocorrelation of the covari-

ates, the resampling was done by repeatedly sampling blocks

of 3 consecutive years with replacement [37] and retrieving

the weather covariates corresponding to those years. We

resampled years rather than individual environmental vari-

ables in order to maintain any correlations between the

covariates.

(f ) Goodness of fit

Goodness of fit was checked by analysing the residuals of the

AICc best model. We tested for autocorrelation of the

residuals using the Ljung–Box test and for normality using

the Shapiro test.
3. RESULTS
After removing datasets that did not meet our selection

criteria (see electronic supplementary material), 66 data-

sets on mammals, 225 on birds and 201 on insects
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remained and were used in further analyses. All these

datasets were from either Europe or North America,

with 47 per cent of the mammal datasets, 69 per cent of

the bird datasets and 96 per cent of the insect datasets

originating from Europe.

Of all the datasets analysed, the AICc best model failed

to pass either the residual normality or the residual auto-

correlation test at the 95 per cent level for 24 per cent of

the datasets for the small collection of covariates and for

20 per cent for the large. Considering the tests individu-

ally, 14 per cent for the small collection and 11 per cent

for the large collection failed the normality test, and 10

per cent failed the autocorrelation test for the both the

small and the large collection. Autocorrelated residuals

may be a sign of observation error [31], an autocorrelated

environment [15], a stage-structured population or non-

linear dynamics [25]. Rather than including more

complex models in our analysis at the risk of over-fitting,

we tested the sensitivity of our results to goodness of fit

by comparing results using all 492 datasets to results

from the collection of datasets that passed both of the

goodness-of-fit tests. Restricting the analyses to these

data had only minor quantitative and no qualitative

effects on the results.
(a) Effects of weather and climate

Of the total 492 datasets, the AICc best model included a

covariate in 124 cases (25%) for the small collection and

in 371 cases (75%) for the large collection. Within the

taxonomic classes the best model included a covariate

for 9 (14%) and 41 (62%) of the datasets for mammals,

64 (28%) and 170 (76%) of the datasets for birds, and

51 (25%) and 160 (80%) of the datasets for insects, for

the small and large collections, respectively. Ignoring the

risk of over-fitting, the best-model estimate of s2 was

reduced by up to 64 per cent for the small collection rela-

tive to the best model without covariates and up to 92 per

cent for the large collection (figure 1). However, for only

19 of the datasets for the small collection and for 35 of the

datasets for the large collection did the best model signifi-

cantly reduce the prediction error variance relative to the

resampled covariates at the 95 per cent level. The

reduction in the model-averaged estimate of the predic-

tion error variance was significant at the 95 per cent

level in 22 cases for the small collection and in 31 cases

for the large collection (figure 1). In general, model-

averaged estimates, as expected, appeared smoother

than the best-model estimates.

It is clear from the above that effects of the covariates

were not strong enough to provide a high power of detect-

ing their influence on any particular dataset. However, the

simultaneous analyses of a large collection of datasets

provided an opportunity to detect more subtle patterns.

To explore this, we looked at the distribution of the

resampled p-values across all datasets. Under a null

hypothesis of no effect of the covariates the distribution

is expected to be approximately uniform. A histogram

showed that in fact the distribution of p-values corre-

sponding to model-averaged estimates of s2 appeared

shifted to the left relative to the uniform (see electronic

supplementary material, figure S1). This was confirmed

by a Monte Carlo test where the distribution of p-values

was compared with the distribution of p-values under
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the resampled covariates. As a test statistic, we used the

integral of the difference between the empirical cumulat-

ive distribution function of the p-values and the

cumulative distribution function of the uniform distri-

bution (the identity function between 0 and 1). A

positive value of the test statistic then indicates that

the distribution of p-values is left-shifted relative to the

uniform. The test came out significant for both the

small and the large collection of covariates (p , 0.01).

This means that the prediction error variances corre-

sponding to the true covariates in general tended to be

smaller than the variances for the resampled covariates,

indicating that the weather and climate indices in fact

do have an effect in reducing the prediction error for at

least some datasets (although we cannot tell for which).

Figure S1 in the electronic supplementary material also

shows the distribution of q-values computed using the

method of [38]. For a given p-value threshold to deter-

mine significance, the q-value is the estimated

proportion of significant p-values that are falsely signifi-

cant (type I errors)—that is, the proportion of false

discoveries. For example, for a p-value threshold of 0.05,

approximately 61 per cent of the 22 putatively significant

weather effects are spurious for the small collection, and

17 per cent of the 31 effects for the large collection.

Moreover, for the large collection of covariates the

mean of the model-averaged prediction error variances

across all datasets (the mean of s2 was 0.40) was signifi-

cantly smaller than the mean over each of the 100 batches

of resampled covariates. The latter ranged from 0.40 to

0.42. The mean across all datasets was not significantly

smaller than means for the resample batches for the

small collection of covariates.
(b) Weather data or climate indices?

To investigate how NAO and SO perform relative to the

weather data in reducing prediction error for the GPDD,

we checked whether the climate indices were overrepre-

sented in the AICc best model. To this end, we restricted

attention to the datasets for which the best model included

a covariate. We used a x2-test to see if the proportion of

datasets for which the best model had a weather, NAO

or SO covariate differed from what would be expected if

the covariate in the best model was uniformly distributed

over all possible covariates (see electronic supplementary

material, figure S2). The distribution differed significantly

from the uniform only for the small collection of weather

covariates (p , 0.01). This, however, was owing to an

under-representation of the number of datasets for which

the best model included an SO index. Such an under-

representation might be expected because the SO mostly

influences the Pacific region and only a few datasets were

from western North America (36 of the total 492 datasets

were sampled west of 1008W). Restricting these analyses

only to datasets for which the best model had a weather

or NAO covariate yielded no significant results. Hence

there were no indications that NAO or SO was a better pre-

dictor than the weather covariates for the population data

analysed here.
(c) How predictable are the population data?

A fundamental question in population ecology and man-

agement is to what extent the dynamics of populations are
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Figure 1. The quotient between the variance estimates after model selection, s2
w, and the variance estimate of the one of the two

models without covariates with the lowest AICc value, s2
dd , plotted against time-series length, n. For the first and third rows, the

s2
w are best-model estimates, and for the second and fourth rows they are model-averaged estimates. The two upper rows show

estimates under the small collection of covariates and the two lower rows show estimates under the large collection. (a)
Mammal datasets, (b) birds and (c) insects. Datasets for which the reduction in variance was significant at the 95 per cent
level according to the resample test are marked with a cross.
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predictable. It is therefore of interest to see how predict-

able the data in the GPDD are on an annual time scale

using linear models, and whether predictability differs

between mammals, birds and insects. Since the prediction

errors here are modelled at the log scale, they are multipli-

cative at the population scale. For a prediction error

standard deviation of 1 at the log scale, there is a 95 per

cent probability that the population size one time step
Proc. R. Soc. B (2011)
ahead will stay between m exp (21.96) �0.14 m and m

exp (1.96) �7.10 m, where m is the median predicted

population size. A prediction error standard deviation of

1 therefore means that the population size one time step

ahead is highly unpredictable. For a prediction error stan-

dard deviation of 0.5 a 95 per cent one-step-ahead

predictive interval is given by (0.38 m, 2.66 m) and for a

standard deviation of 0.25 by (0.61 m, 1.63 m). Figure 2
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Figure 2. Model-averaged estimates of the prediction error standard deviation at the log scale for the large collection of covari-
ates shown against (a) time-series length, (b) species lifespan and (c) latitude. (i) Mammal datasets, (ii) birds and (iii) insects.
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shows the model-averaged estimates of s for the large col-

lection of covariates against time-series length, species

lifespan (maximal age attained by individuals [28]) and

latitude. A large portion of the datasets were only

weakly predictable by the linear model at an annual

scale (say s . 0.5). While there were datasets that were

highly unpredictable for all three taxonomic classes,

there were fewer insect than mammal or bird time series

with a small prediction error variance; for 1 per cent of

the insect datasets, 14 per cent of the mammal datasets

and 34 per cent of the bird datasets the model-averaged

estimate of s for the large collection was smaller than

0.25. Relations between predictability and time-series

length, lifespan and latitude were generally weak, but

prediction error variance decreased with length of lifespan

for mammal data (figure 2).
4. DISCUSSION
Our results show that the statistical signatures of weather

on population dynamics, not to be confused with direct

effects of weather on life-cycle components, are weak or

absent in most datasets. Nonetheless, taken as a group,

there is statistical evidence that weather plays a role in

explaining the dynamics of at least some species. The

broad picture obtained of the statistical signatures of

weather effects could provide a reference against which

to compare claims of relatively strong or weak effects

(figure 1). Additionally, the hazards of over-fitting that
Proc. R. Soc. B (2011)
have been raised in principle [12] have been broadly

demonstrated in practice. For short time series, a drastic

reduction in prediction error is required to separate a real

effect from over-fitting and there is a relatively high prob-

ability, increasing with the number of models considered,

that a covariate unrelated to the data will greatly reduce

the prediction error (figure 1). At the same time, increas-

ing the number of covariates increases the chance of

including relevant variables. For any particular popu-

lation, an effect of weather on population dynamics

would however be difficult to detect and separate from

over-fitting unless strong.

Climate indices have been shown to be strong predic-

tors of the dynamics for a range of populations [17,39]

and can outperform local weather variables by acting as

weather packages [18]. For instance, winter NAO may

capture different forms of severe winter weather poten-

tially affecting winter mortality in many populations

[40]. Since climate indices are to some extent predictable,

there is hope that strong influence of these on populations

may help ecologists to predict population dynamics [29].

Given the difficulty of detecting effects of weather even

when relatively few covariates are considered, as demon-

strated here, using climate indices as weather packages

to replace a plethora of weather variables seems even

more appealing. Unfortunately, although it is clear from

previous studies that climate indices can have strong

effects on populations, our results indicate that climate

indices do not provide a general solution.
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The biological effects of weather are likely to be stron-

ger than the statistical signatures of weather in our

analyses for several reasons. First, observation or

sampling errors in the population indices or in weather

covariates may have reduced the power of detecting real

effects and diluted the magnitude of effects. If that is

the sole cause, it is likely to be a common problem with

ecological time series since many of the time series in

the GPDD are taken from the scientific literature.

Second, even our large set of covariates lacks nuances of

weather impacts that could be important for individual

populations. In a broad analysis of several hundred popu-

lations belonging to different species and taxonomic

classes some compromises are unavoidable. For instance,

for simplicity we chose to use the same types of covariates

for all population time series (rather than selecting covari-

ates based on species biology) in order to make results

more easily interpretable and to avoid subjectivity in the

selection. In an analysis of any particular population,

using fewer and more carefully selected covariates will

probably improve the power of detecting real effects of

environmental covariates. Third, population dynamics is

complex and detecting responses to environmental

change may require detailed data on population structure

as well as an understanding of the mechanisms leading

from environmental to population change [5]. Our results

are thus consistent with the view that the effects of vari-

ation in climate and weather on population dynamics

are typically too complex to be readily picked up from

time series on population abundance.

The variances of one-year-ahead predictions of the

data are strikingly large for many of the populations we

analysed. Relative to mammals and birds there are few

insect datasets with a small residual variance (figure 2).

Within the mammal datasets the prediction error variance

decreases with lifespan. A decrease in prediction error

variance with lifespan at an annual time scale may be

because of an increase in overlap of generations. However,

even for some long-lived birds and mammals the predic-

tion error variance was large enough to make

predictions very uncertain. This raises the question of

whether population dynamics in general can be signifi-

cantly better predicted when detailed demographic data

and knowledge are available.
5. CONCLUSIONS
Due to their aggregate nature, time series on population

abundance do not contain sufficient information to ulti-

mately resolve mechanisms leading from environmental

variation to population fluctuations [11,12]. However,

time series analyses can be used to compare hypotheses

and estimate the net effects of important environmental

variables on populations. Our results show that, while

off-the-shelf weather covariates do in general tend to

have an effect on population time series, they can be

difficult to pick up from any single dataset. For studies

of specific populations, a priori hypotheses about which

weather factors are important may reduce the number

of covariates that need to be tested, thereby reducing

the risk of over-fitting and increasing the power of the

analysis. Hence, for detecting the impact of weather we

recommend limiting analyses to just a few covariates for

which there are well-founded reasons to believe they
Proc. R. Soc. B (2011)
might have a strong effect on the dynamics. This applies

to local weather variables as well as to climate indices.
We are indebted to Chongyang Wang for his help with
extracting data for analysis and thank Chris Wilmers,
Andreas Lindén and Jörgen Ripa for comments and
suggestions that helped improve the manuscript. The
research was supported by the Hellman Family Faculty
Fund at the University of California, Berkeley.
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