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Understanding the behaviour of complex environmental systems, particularly as critical thresholds are

approached, is vitally important in many contexts. Among these are the moisture-limited vegetation sys-

tems in semi-arid (SA) regions of the World, which support approximately 36 per cent of the human

population, maintain considerable biodiversity and which are susceptible to rapid stress-induced collapse.

Change in spatially self-organized vegetation patterning has previously been proposed as a means of iden-

tifying approaching thresholds in these systems. In this paper, a newly developed cellular automata model

is used to explore spatial patterning and also the temporal dynamics of SA vegetation cover. Results show,

for the first time, to my knowledge, in a cellular automata model, that ‘critical slowdown’ (a pronounced

reduction in post-perturbation recovery rates) provides clear signals of system fragility as major thresholds

are approached. A consequence of slowing recovery rates is the appearance of quasi-stable population

states and increased potential for perturbation-induced multi-staged population collapse. The model

also predicts a non-patterned cover where environmental stress levels are high, or where more moderate

stress levels are accompanied by frequent perturbations. In the context of changing climatic and environ-

mental pressures, these results provide observable indicators of fragility and threshold proximity in SA

vegetation systems that have direct relevance to management policies.
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1. INTRODUCTION
The loss of natural surface vegetation in semi-arid (SA)

regions leads to a broad range of detrimental effects

including enhanced sediment mobility and depletion of

agricultural potential, deleterious hydrological and cli-

matic effects on many scales, and reduction in global

carbon sequestration [1]. SA regions are also important

in supporting approximately 36 per cent of the World’s

human population and a highly diverse flora and fauna

[1,2]. There is a pressing need to gauge the health

status of vegetated SA landscapes and the likelihood of

accelerated future die-off as relevant thresholds are

crossed [2]. A potentially promising approach focuses

on identifying modifications of the self-organized spatial

patterning of SA vegetation in response to changes in

environmental stress [3,4]. Many published reports docu-

ment a variety of patterns in SA vegetation from locations

in Africa, Australia, Middle East, North and South Amer-

ica [5]; examples are shown in figure 1. Empirical and

theoretical data (e.g. [4,6–10]) suggest a short-range

facilitative effect (on the scale of metres) encourages the

growth/establishment of plants and is most likely a conse-

quence of improved moisture availability owing to

shading, reduced evaporation rates and increased water

infiltration rates [3,10]. Conversely, competition for soil

moisture occurs at larger radial distances, owing to net-

works of relatively shallow root systems and increased
.bailey@ouce.ox.ac.uk
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run-off rates potentially owing to surface crust formation

[3,4,7,10,11]. This system is analogous to the activation-

inhibition systems first described by Turing [12], where

patterns emerge spontaneously as symmetry-breaking

instabilities. Successful theoretical models have repro-

duced the characteristic self-organizing patterns (e.g.

‘spots’ and ‘labyrinths’) of natural SA vegetation by

tuning the scale and strength of the competition and

facilitation effects (e.g. [3,8]). Relevant features such as

hysteresis and bistability over restricted parameter

ranges have also been previously reported (e.g. [13]). A

comprehensive review of efforts to model pattern for-

mation is given by Borgogno et al. [5]. The possibility

of using such patterns to assess levels of environmental

stress, the state of health of vegetation systems and also

to forewarn of imminent (threshold-related) transitions

is a tantalizing practical application of such work [3].

Indeed, progress has been made in assessing threshold

proximity through the analysis of spatial distribution prop-

erties in SA vegetation data [4] and in a range of model

data, for lake eutrophication [14] and a more general

spatial population dynamics model [15].

Limitations of pattern-based approaches in the present

context are that much SA vegetation does not display

strong patterning and also that pattern re-adjustment to

changes in prevailing conditions may take a significant

time. Additional indicators are therefore likely to be

useful in making more general progress towards threshold

prediction. The proximity of transitions is notoriously dif-

ficult to assess, both in modelled and in real natural

systems [16,17]. Recent advances [16,18,19] have

shown critical slowdown (CSD: an increase in the
This journal is q 2010 The Royal Society
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Figure 1. Greyscale images of semi-arid (SA) vegetation in

Chad, Mali and Republic of Niger, captured from Google-
Earth (v. 5.1). Dark shades are inferred vegetation and white/
lighter shades are inferred bare sediment. In each image,
North is vertical and each image covers approximately 300 �
300 m. From left to right, the image locations are (a)
1381102900 N, 1815009.070 E (Republic of Niger);
11852009.5200 N, 15859042.70 E (Chad); 16802011.8900 N,
0848051.9500 W (Mali); (b) 12844002.2800 N, 3805040.470 E
(Republic of Niger); 13806008.2900 N, 2813019.1200 E (Republic

of Niger); 13811051.9600 N, 2800014.8000 E (Republic of Niger).
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relaxation time of a system following a small pertur-

bation) and/or increased signal variance, to be capable

of identifying the approach of catastrophic thresholds in

some systems (although the cautionary findings of

Hastings & Wysham [20] show that this cannot be univer-

sally expected). Predicting when a given system will

undergo rapid collapse can only be attempted when

reliable forecasts of future forcing are available. In the

absence of such forecasts, a pragmatic approach is to

identify system states with enhanced susceptibility to col-

lapse under the likely spectrum of future perturbations.

Prior to this study it was unclear whether SA vegetation

systems were expected to display CSD, and the associated

effects, and more generally, how any such temporal

dynamics may relate to the appearance of self-organizing

spatial patterns.

The results described here are from a new cellular

automata model, where cells relate to positions on an

idealized surface that can accommodate individual

plants. The model is used to investigate the interplay of

spatial patterning and the temporal dynamics of popu-

lation density under a range of different forcing

conditions, with a focus on practical solutions to assessing

system fragility.
2. BRIEF MODEL DESCRIPTION
Simulations were conducted using a probabilistic cellular

automata model, with a square (two-dimensional) grid

defining the modelled space, regularly tiled by square

cells, with periodic boundaries. The approach taken is

similar in essence to that of Thiery et al. [8], in that

a defined neighbourhood is used to calculate local
Proc. R. Soc. B (2011)
plant-interaction effects, although several new features

are introduced (such as age-dependent interactions).

The model was implemented in MATLAB (v. 7.7.0,

R2008b), using code written by the author and exper-

iments were run on a grid of 250 � 250 cells (unless

otherwise stated). Unoccupied cells are recorded as 0,

occupied as 1 and time progresses discretely (each step

being referred to as a model year). For the initial con-

dition, the model grid is populated randomly with a

density of P0 (0–1) live cells with random ages between

1 and 50. The probability of survival for any given cell

is governed by three factors: (i) response of the live cell

to global ‘environmental stress’; (ii) the cell age; and

(iii) the effects of local interaction from cells within a

neighbourhood defined by five concentric shells. Within

this neighbourhood, nearby occupied cells (in shells

1 and 2) provide a net facilitating effect, shell 3 is neutral

and more distant occupied cells (in shells 4 and 5) exert

net competition. The strength of (and sensitivity to)

these neighbourhood influences is dependent on both

the age of the cell in question and of the cells in its neigh-

bourhood. Cells arbitrarily reach maturity at 25 years and

the probability of survival decreases as age increases

thereafter, such that survival beyond 60 years is highly

improbable, even under favourable environmental con-

ditions. The global ‘environmental stress’ parameter, a

(which is common to all cells), is a lumped parameter

that combines all relevant sources of abiotic environ-

mental stress (e.g. moisture and nutrient availability).

The term a denotes the external forcing factor for this

model and as it is decreased, the probability of cell

death increases and the population density on the grid

naturally reduces (and vice versa). A full description of

the model (including a description of a, justification for

the various age dependencies and details on model initia-

lization) is given in the electronic supplementary material.
3. STABLE SOLUTIONS
Under constant forcing conditions (a ¼ constant), the

model settles down over time from the initial condition

to a stable solution, where no systematic trends or peri-

odic oscillations are observed in the grid population

density (p). For a . 0.2, the sensitivity to a is relatively

low and the spatial coverage is dense (p . 0.9) and homo-

geneous. As a is decreased through the range 0.2 �
a � 20.5 (with P0 ¼ 1), lower equilibrium populations

are observed, in association with the spontaneous emer-

gence of spatial patterning (figure 2): first, empty spots

appear; these expand to bare patches and as a is reduced

further, bare patches connect, forming distinctive

labyrinth-type patterns; as a is further reduced, the

labyrinth pattern fragments into isolated patches, then

to isolated spots. A similar pattern progression towards

isolated spots has been observed in other spatial models

(e.g. [3,13]), with bare surface reached after the spotted

pattern. A significant difference in the present model is

that isolated spots are followed by a homogeneous and

non-patterned state as stress is increased, with eventual

full extinction (bare surface) reached when a , 20.5.

Occupied cells shown in figure 2 are coloured darker

with age, which has the advantage of not visually over-

exaggerating the contribution of very young live cells

(i.e. relatively small individual plants). Under ‘stable’
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Figure 2. The central figure shows stable population density (peq) at different environmental stress levels (a), for two initial
conditions: full cover (p0 ¼ 1, blue squares) and unoccupied (p0 ¼ 0, red squares). The dashed red line shows the transition
to the upper stable state. The dashed black line shows stable p for the case where all neighbourhood scores are neglected (effec-
tively the survival curve for lone cells). Examples of stable patterns are shown (100 � 100 cells in each case), representative of

the progression of increasingly degraded patterns as a is reduced, plotted as yellow for bare ground, with darker shades repre-
senting older cells, to the level of full maturity at 25 years (see main text and electronic supplementary material for further
details of age dependence).
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conditions, minor fluctuations (owing to the probabilistic

nature of the model) promote a continuous slow adjust-

ment of spatial patterning, but the pattern type is

preserved, in the same sense that the population fluctu-

ates around the mean value. Qualitatively, there is a

good degree of correspondence between these stable sol-

ution results and the observed patterns shown in figure 1.

However, the stable solutions are not unique over the full

range of a and bistability is observed over a narrow a

range (a1 � a� a2, with a1 ¼ 0 and a2 ¼ 20.065),

referred to as the ‘bistable region’ hereafter. Within the

bistable region, it is the initial population that determines

which solution is reached for any given a, and in figure 2

stable solutions with p0 ¼ 1 are shown as filled blue

squares and those with p0 ¼ 0 are shown as filled red cir-

cles. Distinct spatial patterning occurs only in the upper

limb and this is discussed further in §6.

The transition to bistability is an important aspect of

system behaviour because of the associated potential for

population collapse to a lower density state. Assessing

the proximity of an approaching bifurcation point has

clear practical relevance and is the focus of the following

section.
Proc. R. Soc. B (2011)
4. EARLY WARNING INDICATORS OF
BIFURCATION POINT
(a) Spatial patterning

As a is reduced towards the bifurcation point (a1), there

is a smooth transition in patterning, from open spots,

which elongate to form the connected labyrinth pattern

(figure 2). Once labyrinth patterns are established, critical

transitions are possible within this model. This pro-

gression in patterns offers some possibility of gauging

the proximity of the system to a bifurcation point, when

it is relatively close. However, under conditions of fluctu-

ating stress (i.e. temporal variability in a), re-adjustment

of patterns over short time scales (discussed in §7)

means interpretations based on single snapshots may be

unreliable, and that pattern assessment over several years

may be necessary to adequately gauge the system state.
(b) Critical slowdown

Observations of several other types of systems indicate

that CSD has the potential for providing indication of

threshold proximity (e.g. [19]; see §1). To the author’s

knowledge, the effects of CSD have not been previously
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investigated in SA vegetation data (observed or mod-

elled), or in spatially defined cellular automata models.

A key experiment therefore tested whether the current

model undergoes CSD as the system is driven to the

bifurcation point. Figure 3a shows example p time-

series data where the model, run to equilibrium at

constant a (0 � a � 0.4) was perturbed in year 700 by

high stress (a ¼ 21), causing immediate population

reduction. From year 701 onwards, a is returned to the

initial value and the population recovers back to the equi-

librium level seen prior to the perturbation, peq (here,

average p from years 680–699). The precise form of the

recovery depends on the magnitude of the perturbation.

The recovery time (t) is defined as the period taken for

p to reach 0.5peq and t increases considerably as the

bifurcation point is approached (inset to figure 3a). In

principle therefore, CSD (as defined by the increase

in t) potentially provides a clear leading indicator of

stress-induced population collapse. Further, CSD is

apparent prior to the first appearance of persistent pat-

terning (open patches) in vegetation cover at a ffi 0.2.

The idealized conditions of these experiments

(figure 3a), where stable population densities are per-

turbed by single, short, relatively minor shocks, do not

reflect the highly variable real-world stressors (e.g. rainfall

variability) in SA systems. Under temporally variable

(noisy) stress conditions, the effects of CSD are less

visible in time-series data, but may, in principle, be ident-

ifiable through increases in both signal variance and in

the first-order autoregression coefficient (here AR) in

moving-window data [19]. The soil moisture store (a

major source of stress in SA regions) serves to integrate

the white noise of rainfall variability, resulting in a time

series with red noise spectral properties [21,22]. There-

fore, to simulate temporal variability in forcing, a-values

were generated with red spectral properties using

equation (4.1) (taken from [16]):

at ¼ 1� 1

k

� �
ðat�1 � �aÞ þ �aþ wae; ð4:1Þ

where at is the a-value at year t, k is the approximate

period of the noise (years) (k ¼ 5), �a is mean a (time-

averaged), va controls the levels of annual variability in

at and 1 is a random value drawn (each year) from a stan-

dard normal distribution (mean ¼ 0, variance ¼ 1). As an

example, Hunt [23] reports the relative standard devi-

ation of annual Sahel rainfall to be approximately 13

per cent. The integrating effect of soil hydrology reduces

this variability [21,22] and va ¼ 0.1 was chosen for the

present simulations, yielding sa � 17%. This approach

most likely provides adequate variability to assess the

effects of CSD.

Figure 3b shows a typical time series of p, where �a was

decreased linearly from þ1.5 (low stress) to 20.5 (high

stress) over 1000 model years. Following increasingly

large oscillations in p, a relatively rapid collapse occurs

from year 770. As the threshold (at year 770) is

approached, Var increases by a factor of approximately

600, and AR increases from near zero to approximately

0.95. Figure 3c shows the 10th and 90th percentiles for

each parameter from 100 similar runs, confirming that

the increases observed are beyond the level of inter-run

variability and thus statistically significant (the precise
Proc. R. Soc. B (2011)
threshold point varies over a range of approx. 100 years,

owing to the influence of noise, and this is reflected in

the width of the percentile limits shown). Further exper-

iments (data not shown) confirmed that CSD can be

distinguished from potential ‘false-positives’, where

increases in Var are driven by increases in sa, rather than

being a consequence of reduction in �a (where a fluctuations

are not sufficiently large, and negative, to cause significant

decreases in mean p). In this case, AR values remain

stable at approximately zero. The questions of why CSD

occurs in the present model, and how it is linked to the

spatial domain (patterning) are addressed in §6.

In principle then, monitoring for CSD provides con-

siderable potential for gauging the proximity of

bifurcation points in real SA systems. The practical diffi-

culty of obtaining the required lengthy, high temporal

resolution data series [17,19] of p may potentially be over-

come by using combinations of high-resolution sampling

for palaeoecological indicators (e.g. pollen), coupled with

remotely sensed data where available, although these

possibilities are yet to be explored.

The present section shows that the approach of the bis-

table region is ‘announced’ by spatial patterning and by

the effects of CSD. The next section describes the fragility

of the population in this lead-up to the bistable region

and then the likelihood of population collapse once the

bistable region is entered.
5. POPULATION FRAGILITY
The fragility of the simulated population is a useful con-

cept that can be defined in a number of ways. For

example, sensitivity, x, can be calculated as the change

in population (Dp) owing to a change (a small one-year

increase) in stress (a reduction in a, Da): x ¼ Dp/Da. In

the present model, x increases significantly with environ-

mental stress towards the bifurcation point (inset to

figure 3a). However, because the dependence of x on a

takes on a strong dependence on Da within the bistable

region, an additional evaluation of ecological resilience

(sensu 16) is useful: the minimum perturbation (in a)

necessary to switch p from a higher to a lower stable state.

Based on data shown in figure 2, the magnitude of per-

turbation in a required to force a transition to the lower

stable population state, should be smaller under greater

levels of background environmental stress. In separate

experiments (data not shown), a 1-year reduction in

environmental stress (from a to ap, and defining a� ¼

ap 2 a) necessary to cause this transition was found:

a� ¼ 21.55 when a ¼ 0 (connected labyrinth);

a� ¼ 21.51 when a ¼ 20.02 (fragmented labyrinth)

and a� ¼ 21.45 when a ¼ 20.05 (isolated spots). As

expected, smaller perturbations are required under more

stressful conditions. However, this simple picture of resi-

lience can be taken further. The reduction in recovery rate

described in §4b means that under some circumstances

the return (post-perturbation) to stable equilibrium may

take many thousands of model years (mechanisms

discussed in §6). This slow recovery (large t) results in

highly persistent quasi-stable states (QS-states), where p

is out of equilibrium with the background stress level

and p remains effectively constant over decades to centu-

ries. These QS-states have particular relevance for

population resilience in cases where t is large in
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Figure 3. (a) Post-perturbation recovery. The model was run to equilibrium at a-values in the range 0 � a � 0.4; a remained

constant throughout each experiment except for 1 year (year 700), where a was reduced to 21. Example p time-series data are
shown, normalized to unity using mean p (years 680–699). The inset shows the dependence on a of pre-perturbation equili-
brium population (peq), perturbation sensitivity (x) and half-recovery time (t) for the present model (open symbols) and the
separate case where neighbourhood effects are neglected (dashed line) (discussed in main text). (b) An example p time series

(1 of 100 similar runs) driven by a with a red noise distribution (and decreasing mean; see main text). The vertical line marks
the threshold point, identified by eye. First-order autoregression coefficients (AR) and variance (Var) are also shown. Calcu-
lation of AR and Var requires stationary data and each p dataset was de-trended by subtracting a robust local regression,
based on weighted linear least squares and a first-degree polynomial model, with a span of 75 years (using the rlowess
MATLAB function). A 100-year window was moved through the residual data, within which AR and Var were calculated (follow-

ing Dakos et al. [19]) using the Yule–Walker method (the aryule MATLAB function). (c) The 10th and 90th percentiles of the
100 Var and AR datasets described in (b), and the median p response. (d) The model was run with a ¼ 0, reaching equilibrium
at p ¼ 0.67 in the first 1000 years (not shown). Repeated decadal-spaced perturbations of a ¼ 20.75 (lasting 1 year) were
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comparison to the frequency at which perturbations occur.

This is demonstrated in figure 3d, where perturbations are

imposed on an equilibrium population stabilized at a ¼ 0.

As expected, a single relatively large perturbation (1 year

with ap ¼ 22) drives the system to a low-p state, from

which recovery is extremely slow (dashed line in

figure 3d), even though the stress level is returned to the

pre-shock level of a ¼ 0. The existence of QS-states

means that repeated smaller shocks (ap ¼ 21) have a simi-

lar effect. In this case, the population is unable to recover

before the next perturbation arrives, and ‘ratchets’ down to

the same low population-density QS-state (lower solid line

in figure 3d). In the practical sense, both of these
Proc. R. Soc. B (2011)
transitions to low-density states represent effectively irre-

versible shifts in system state (over time scales of

hundreds of years), not driven by changes in mean stress,

but by one or more perturbations. The point at which

the system becomes susceptible to this multi-staged

effect depends on t and on the frequency/magnitude of

the stress events. However, the probability of multi-stage

collapse increases dramatically as the patterning becomes

more degraded, and as such, patterning potentially provides

an accurate guide to the fragility, and potential recovery

rate, of the population. Why the recovery rate slows, allow-

ing multi-stage collapse, and how is this connected to

spatial patterning, is the focus of §6.
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6. RECOVERY RATES AND THE IMPORTANCE
OF SPATIAL PATTERNING
Populations in equilibrium at progressively lower values

of a (as a! a2; see §3) become increasingly sensitive

to perturbations (here, sharp decreases) in a (figure 3a).

Consequently, post-perturbation recovery proceeds from

more degraded states (cf. figure 2). Recovery of p to the

pre-perturbation equilibrium level (peq) requires the

colonization of empty cells on the grid. At lower values

of a (where a . a2), the survival of isolated cells, not sup-

ported by facilitation, becomes less probable (relevant

data shown in figure 2, for the case where all neighbour-

hood effects are set to zero, ci ¼ 0). As a is reduced, the

survival of new ‘re-colonizing’ cells therefore depends

increasingly on empty cell locations being favourable

in terms of facilitation. Where patches exist, post-

perturbation (whatever their form; cf. figure 2), the

interior of these patches, and relatively thin ‘habitable’

regions bounding them, provide this facilitation. Conver-

sely, the concentration of net competition further beyond

the patch may actually result in harsher conditions in the

inter-patch regions than would be the case for unpopu-

lated bare ground (figure 4a, discussed below),

depending on a. Under such circumstances, recovery

only proceeds as the expansion of existing patches. The

smaller and the more isolated the patches are over

the entire grid (i.e. the bigger the perturbation and
Proc. R. Soc. B (2011)
hence the more degraded the patterning), the smaller

the bounding area providing adequate facilitation,

and the lower the possible recovery rate. Similarly, lower

a increases the dependence on facilitation by reducing

the habitability of the inter-patch zones. Together, these

factors explain the slower recovery rate both under

conditions of lower a and for larger perturbations. Con-

versely, under progressively lower environmental stress

(higher a), the sensitivity to perturbations is reduced

and the probability of inter-patch survival increases,

until ultimately no facilitation is required for individual

cells to survive. Under these conditions, re-colonization is

highly likely for all non-occupied cells and re-colonization

of the grid progresses relatively quickly.

In the case where population recovery begins from

below the lower equilibrium level (and a , a1), individual

cells throughout the grid have a similar and relatively low

chance of survival. The chance of cells reaching maturity,

and therefore providing stronger facilitation, remains rela-

tively low, and the likelihood of several adjacent cells

surviving long enough to form a coherent patch is effec-

tively zero. Therefore, patches do not form, p remains

relatively low and the age distribution peaks at low

values. As a increases, the expected cell lifetime increases

and this maturity brings greater facilitation; eventually,

the probability of having adjacent long-surviving cells

becomes large enough to allow small groupings to

emerge. Once present, these small patches provide a

self-sustaining (facilitating) environment that buffers

patch members from environmental stress, allowing

higher population density (locally) than would be the

case were no neighbourhood effects included (dashed

line in figure 2). This point marks the end of the lower

limb of the bistable region and the transition to the

higher p state. Following on from this, it is to be expected

that no patterning or CSD should be observed if neigh-

bourhood effects are removed. Model results do indeed

show this to be the case and example data are shown in

the inset to figure 3a, where recovery rate (t) remains

constant independent of a, and no patterning is

observed in these or other similar simulations when

neighbourhood (competition and facilitation) effects are

set to zero (figure 2).

Figure 4 provides a demonstration of the spatial effects

described above, plotting contours of calculated survival

probability ( ~T , see electronic supplementary material)

for two experiments, both with the population stabilized

at a ¼ 20.05. In the upper panel, the model was first

run to equilibrium at a ¼ 1 (for 200 years, yielding p �
0.92), and a was then reduced to 20.05 and the model

allowed to reach a new equilibrium in the isolated-spot

state (cf. figure 1), with p � 0.42. In the second case

(lower panel), initial stabilization was at a ¼ 21 (yielding

p ¼ 0), followed again by stabilization at the same

a ¼ 20.05, yielding a non-patterned stable state (cf.

figure 1), with p � 0.20. Contours of ~T show the strong

facilitation effects of the patches, the harsh inter-patch

conditions (figure 4a), and the relatively homogeneous

and low survival probabilities of the lower-p state

(figure 4b). We may speculate, based on these results,

that the prevalence of sparse non-patterned vegetation

in many SA regions of the World is consistent with

either high background stress levels, or with more moder-

ate stress levels coupled with frequent perturbations,
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sufficient to maintain the population on the lower limb of

the bistable solutions (figures 2 and 3d).

Spatial effects therefore control the population recov-

ery rate. The question of whether a population recovery,

once underway, could be identified, is the focus of §7.
7. TRANSIENT SOLUTIONS
Figure 5 shows representative snapshots of model grids

from simulations, where a was increased linearly from

lower stress conditions (a ¼ 0.5), to higher stress

(a ¼ 20.5), and then reduced back (linearly) to a ¼ 0.5

over 2000 years (0.001 a yr21). The instantaneous popu-

lation density (p, as shown) is hysteretic, not in

equilibrium with a, and the lag in population re-adjust-

ment depends on the rate of change in a (as shown).

On the downward limb (decreasing a), transient patterns

spontaneously emerge, which are qualitatively similar to

the stable solutions shown in figure 2. However, on the

upward limb, returning from the bare state as stress is

reduced, a different set of emergent patterns is observed.

Population increases first as homogeneous cover, and

then within the bistability region, small patches emerge

and expand, coalescing to form connected structures

with corridors of bare surface, leading to isolated bare

patches and ultimately ‘full’ coverage. This progression

of expanding patches is the expected consequence of

the processes described in §6. Further, multiple partial

re-adjustments under fluctuating stress levels result in a
Proc. R. Soc. B (2011)
rich variety of modelled patterns. Increasing a causes

existing pattern elements to expand, while decreases pro-

mote shrinkage and the expansion of bare patches.

Pattern re-adjustment therefore has much potential to

record information on short-term fluctuations in stress

and also the long-term trajectory of p. However, it is poss-

ible for qualitatively similar patterns to result from a range

of different stress histories and accurate evaluations of

system state, based on patterning, may therefore necessi-

tate observations of patterning trends over time rather

than assessments of single vegetation coverage

‘snapshots’.
8. CONCLUSIONS
— A wide range of spatial patterns is observed in the

model results, from highly (self-) organized structures

to homogeneous effectively random distributions. Pat-

tern formation emerges spontaneously owing to the

effects of net competition and facilitation, and the

resultant patches provide self-sustaining environments

that allow considerably higher levels of environmental

stress to be tolerated than is the case for isolated plants

(or, equivalently, the case where local effects are

neglected).

— Understanding the effects of patterning on plant sur-

vival shows why bistability must occur in this system

and why the bifurcation point is announced by a

slow-down in post-perturbation recovery rate, driven



Thresholds in semi-arid vegetation R. M. Bailey 1071
by spatially localized interactions and observed in

population time series as increases in both variance

and autocorrelation.

— Rapid perturbation-induced population collapse is

possible within the bistable region. Under higher

levels of environmental stress, the reduction in recov-

ery rates (and the associated change to more degraded

patterning) significantly decreases the resilience of the

population to repeated perturbations. The prevalence

of sparse non-patterned vegetation cover is an

expected consequence of highly stressed and/or

frequently perturbed systems.

— In areas where patterning persists, changes in transient

patterns have potential to provide reliable indicators of

the system state and trajectory.

— The present results come from a model which is

defined only in its spatial relationships. The ability

of this model to produce meaningful time-series signa-

tures suggests that looking for comparable signals in

other spatially defined models/systems of different

phenomena may be profitable.

The author is grateful to: El Breman, Lizzy Jeffers and
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