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Abstract
SPECT/CT has emerged over the past decade as a means of correlating anatomical information
from CT with functional information from SPECT. The integration of SPECT and CT in a single
imaging device facilitates anatomical localization of the radiopharmaceutical to differentiate
physiological uptake from that associated with disease and patient-specific attenuation correction
to improve the visual quality and quantitative accuracy of the SPECT image. The first clinically
available SPECT/CT systems performed emission-transmission imaging using a dual-headed
SPECT camera and a low-power x-ray CT sub-system. Newer SPECT/CT systems are available
with high-power CT sub-systems suitable for detailed anatomical diagnosis, including CT
coronary angiography and coronary calcification that can be correlated with myocardial perfusion
measurements. The high-performance CT capabilities also offer the potential to improve
compensation of partial volume errors for more accurate quantitation of radionuclide measurement
of myocardial blood flow and other physiological processes and for radiation dosimetry for
radionuclide therapy. In addition, new SPECT technologies are being developed that significantly
improve the detection efficiency and spatial resolution for radionuclide imaging of small organs
including the heart, brain, and breast, and therefore may provide new capabilities for SPECT/CT
imaging in these important clinical applications.

Introduction
Medical diagnosis is a complex process which relies ultimately on the human perception and
intellect to gather information from multiple sources, to sort through many possible actions,
and to arrive at the course which best dictates care for an individual patient. Whereas we
now rely on a full spectrum of technological innovations that span the discipline of medical
imaging, for centuries the only medical image was that gathered by human vision. The most
fundamental type of medical imaging was established by Roentgen with the discovery of x-
rays one century ago which forever changed the means by which information can be
gathered from the human body. Additional advances arose in the 1960s and 1970s when
modern medical imaging methods were developed, including Nuclear Medicine (SPECT and
PET), computed tomography, digital radiography, and diagnostic ultrasound, and when the
fundamentals of nuclear magnetic resonance imaging were established and tested. The
development of these technologies has been rapid over the past several decades and has led
to use of sophisticated instruments that are both cost-effective and yield diagnostic
information that cannot be discerned with unaided human vision. Along with these
technological advances, both the quantity and the complexity of information used in the
medical diagnostic process have reached levels that were unimaginable even a decade ago.
For this reason, it is important to seek and refine technology that not only can increase the
information available, but also can assist the diagnostician in synthesizing and relating data
that are available from all of these multiple sources.

Diagnosis of disease involves a subtle yet challenging process, one which seeks to identify
disorders at the earliest stages of development and biological expression. Imaging methods
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such as projection radiography, angiography, computed tomography, magnetic resonance
imaging, and ultrasound offer the highest levels of spatial resolution for defining anatomical
structures. Furthermore, by administration of contrast media, these methods can visualize
blood flow and other functional processes in the cardiovascular, pulmonary, gastrointestinal,
urinary, and musculoskeletal systems. However, detection of disease with anatomical
imaging methods often requires gross structural changes to be apparent before the diagnosis
is definitive. The reliance on anatomical information for diagnosis also makes it difficult to
monitor the response of diseased and normal tissues in the critical post-therapy period. In
comparison, radiotracer imaging methods such as single photon emission tomography
(SPECT) and positron emission tomography (PET) are well-suited to provide critical
information about the functional, metabolic, and molecular status of tissues and organs.
Radionuclide imaging also can extract measurement data at picomolar and nanomolar
concentration levels, rather than the millimolar levels needed for imaging contrast agents
with anatomical imaging methods. As a result, subtle and often earlier changes can be
detected with targeted radionuclide agents using nuclear imaging than is possible with
anatomical imaging methods. While radionuclide imaging has important characteristics for
disease detection, it also has well-recognized limitations in spatial resolution and statistical
quality [1,2]. Furthermore, while Nuclear Medicine relies on imaging radiopharmaceuticals
that are targeted at specific biochemical processes, uptake can occur in both diseased and
normal sites and it is important to differentiate these sites to correctly evaluate the patient's
status. It therefore has been long recognized and practiced in Nuclear Medicine and
Radiology that images acquired using multiple modalities can provide complementary
diagnostic information.

A fundamental form of dual-modality imaging occurs when the physician acquires
functional (eg SPECT, PET) and anatomic (eg CT, MRI) images of a patient using separate
systems. The physician then can view the functional and anatomical images side-by-side on
a view box or display monitor to identify complementary features in the images, and thereby
extract a decision from that correlated information. However, the practical process of
acquiring and spatially (and sometimes temporally) correlating data from two or more
imaging systems is complicated by several factors. First, the multiple data sets for an
individual generally are acquired on separate days, on different systems, and following
unrelated protocols at different locations and by different operators. As a result, operational
details of each study may be unknown and such information as well as the images
themselves may be difficult to access at a common site. Second, it generally is difficult to
maintain the patient in a consistent geometry across separate imaging studies with respect to
body position in terms of the curvature of the spine and neck, location of the extremities, the
shape of the patient table, the patient respiratory state and cardiac cycle, and shape and
status of the patient's gastric, intestinal, and urinary contents. Software techniques have been
developed that can register and fuse images from multiple sources [3-7], and are best suited
for correlating images from rigid structures such as the brain [8] and skeleton [9,10]. Even
when multi-modality image data are available from dual-modality systems, structures within
the images can be displaced by respiration, cardiac motion, and other voluntary and
involuntary motions. This implies that software-based methods will retain important roles in
achieving accurate levels of image registration even when patient studies are performed with
PET/CT or SPECT/CT devices [11].

Nevertheless, image registration has proved to be difficult when applied alone in the thorax,
abdomen, and pelvis where body structures are elastic and deformable, and can change
shape over short periods of time due to internal and external patient motion. The problem of
image co-registration is complicated when the images represent fundamentally different
information (eg PET vs. MRI, SPECT vs. CT) that may offer few commonly-recognizable
landmarks and are acquired at different levels of spatial resolution. For these reason, dual-
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modality systems [12-19] increasingly are being used to acquire complementary image data
with geometrical configurations that are as consistent to one another as possible, and in a
way that facilitates the logistics of spatially registering data and then combining or fusing
data from multi-modality imaging procedures. These systems have proven beneficial in
facilitating attenuation correction of radionuclide data with patient-specific attenuation maps
acquired from CT [20-23], and in correlating functional information from the radionuclide
image with anatomical studies visualized with CT. Multi-modality image correlation is
gaining increased importance in defining treatment planning options for radiation oncology
and surgery [7,24-27]. It also promises to have an important role in improving quantitation
of radiopharmaceutical uptake [28,29] needed for radiation dosimetry [26,30-32] and to
monitor subtle changes such as those needed for assessing therapeutic response and
therapeutic monitoring. These recognized capabilities have advanced the use and adoption
of dual-modality imaging represented by PET/CT and SPECT/CT.

Dual-Modality Imaging Systems
Direct methods of combining structural and functional information were conceived and
implemented in prototype form during the historical beginning of emission and transmission
computed tomography, most notably the work by Kuhl, Hale, and Eaton who obtained the
first transaxial transmission CT scan of a patient's thorax using their Mark II brain SPECT
scanner in the mid-1960s [33]. Despite this pioneering work, the modern use of transmission
imaging with external radionuclide transmission sources was not introduced for attenuation
correction in SPECT [34,35] and PET [36,37] until the 1980s. The use of external
transmission scanning is still used with SPECT to perform both attenuation correction and
anatomical localization at sites of radionuclide accumulations. However, this approach has
some fundamental limitations, primarily with regard to relatively poor statistical quality
which limits the anatomical detail and contrast resolution produced by the transmission scan.
As a result, transmission imaging using external radionuclide sources has not achieved
routine widespread use with SPECT.

Over the past decade, dual-modality imaging has evolved as a method to facilitate the
process of integrating and correlating medical images. For SPECT/CT and PET/CT, such
imaging is performed with a system that acquires data from two image modalities supported
on a single integrated gantry. The imaging study is performed with the patient remaining on
the patient table, which is translated from the CT scanner to the PET or SPECT system to
acquire the correlated x-ray and radionuclide image data. The resulting dual-modality image
data then can be transferred electronically to a common computer for data correction,
reconstruction, display, integration, and analysis. Both SPECT/CT [12,38] and PET/CT
systems [16,18,39] are commercially available for clinical as well as pre-clinical imaging.
Furthermore, dual-modality PET/MRI systems are under development for small-animal
imaging [40,41] and for human brain imaging; SPECT/MRI systems are being developed for
pre-clinical imaging of small animal models [42]. (One manufacturer (Gamma Medica) has
marketed a tri-modality (PET, SPECT, and CT) device for small-animal imaging.) In
comparison to traditional single-modality imaging approaches, the dual-modality systems
offer unique capabilities in combining data from two imaging modalities in way that
simplifies, yet facilitates, image correlation with the goal of revealing useful diagnostic
information that is not easily extracted when the imaging studies are performed
independently.

Early Development of SPECT/CT
In the late 1980s, researchers began devising methods to combine radionuclide emission
imaging directly with x-ray transmission imaging in a single system. Possibly the earliest
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such system was proposed by Mirshanov [43], who received a Soviet patent for a combined
transmission-emission tomograph in 1987. This system (Figure 1) was designed so that the
patient could undergo simultaneous radionuclide and x-ray imaging with separate
scintillation and semiconductor detector viewing the same patient volume, with the resulting
emission and transmission data then were recorded with a common image buffer. Although
apparently not reduced to practice, this system was perhaps the first that envisioned a
combined system with which an x-ray rather than a radionuclide source was integrated
directly to produce the transmission data as part of a radionuclide imaging study. Another
early design for a dual-modality imaging system was disclosed in an international patent
application “Transmission/emission and registered imaging (TERI) computed tomography
scanners” by Kaplan [44]. This work proposed acquiring the CT transmission and SPECT
emission data simultaneously using imaging detectors (Figure 2) to maintain spatial
registration between the two image data sets and to obtain maps of attenuation coefficients
to compensate the SPECT data for attenuation. A critical challenge in implementing a
simultaneous SPECT/CT system lies in the still-unsolved difficulty of designing a common
detector with sufficient temporal and energy resolution to discriminate the primary
radionuclide photons from both the x-ray signal and from scatter of the radionuclide
photons. Designing a detector capable of simultaneous x-ray and radionuclide imaging
remains a fundamental technical barrier in developing a system for truly simultaneous
emission and transmission imaging with performance levels matching those achieved with
currently available CT and SPECT systems.

The development of experimental SPECT/CT systems was undertaken by Hasegawa et al at
the University of California, San Francisco (CSF) in the late 1980s and early 1990s [45,46].
These investigators envisioned a radionuclide imaging system that incorporated a low-power
x-ray generator and source for transmission imaging [46]. A prototype system (Figure 3a)
included a collimated array of high-purity germanium (HPGe) detectors [47,48] to record
photons from both the external x-ray source and the internal radionuclide distribution that
then were processed with photon-counting electronics to discriminate the x-ray data (eg
produced at 120 kV) and the radionuclide data (eg emitted at 140 keV for 99mTc). An image
(Figure 3b) of a pig administered a myocardial perfusion agent (99mTc-sestamibi) shows
radiopharmaceutical uptake in the myocardium displayed in red superimposed on in the
grayscale CT image of the animal [49,50]. The development of the UCSF emission-
transmission CT system demonstrated the technical feasibility of acquiring the x-ray and
radionuclide image data simultaneously using an HPGe detector array with high-
performance photon-counting electronics. However, this system also revealed several
important limitations. First, the prototype system had a physically small (ie 24-element)
detector that required several hours to acquire both the emission and transmission data.
Moreover, the expense of HPGe made it difficult to envision how this detector technology
could be implemented practically at a realistic size and cost. Second, the x-ray tube in the
prototype system was operated at a very low power level (eg approximately 100-120 kV at 1
mA) but still produced x-ray data with sufficiently high count-rates to cause pulse pile-up
that contaminated both the emission and transmission data [51]. The UCSF group designed
and tested prototype electronics that allowed the HPGe detector array in the SPECT/CT
system to be switched between photon-counting mode for radionuclide imaging and current-
mode for x-ray imaging [52-54] for near-simultaneous x-ray and radionuclide imaging using
a single detector array. However, it was difficult to envision how such an approach could be
cost-effective or practical in a clinical setting. Third, a SPECT/CT system operated with an
x-ray tube equivalent to that in a modern CT scanner also would have to account for a
roughly 107-fold difference in photon fluence encountered in x-ray and radionuclide
imaging. For example, a Siemens Somatom x-ray source operated at 125 kV with 2.5-mm
aluminum plus 0.4-mm of copper filtration and with a 24° tungsten target produces 3.5×106

photons/mAs/mm2 at a distance of 75 cm [55], or 1.18×109 photons/mm2 at a distance of 1
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m when the x-ray tube is operated with a filament current of 600 mA typical of a modern x-
ray source. This is equivalent to the photon fluence from a 1.5×1016 GBq (4.0×105 Ci)
radionuclide source assuming a yield of 1 photon per disintegration (although it is unlikely
that a radionuclide source having this strength could be configured physically since self-
absorption within the source would limit the photon fluence rate). Similarly, the amount of
radioactivity injected in the patient typically is limited by dosimetry concerns to ∼20 mCi
(740 MBq), or roughly 20-millon-fold lower. Furthermore, the amount of x-ray scatter that
occurs within the patient can be estimated roughly as 0.1% of the primary photon fluence,
equivalent to a source strength of ∼400 Ci (1.5×1013 GBq), or a scatter fluence rate 1.2×106

photons/s/mm2. The photon fluence rates of both the primary and scatter fields are beyond
the count-rate capabilities of modern radionuclide imaging system. As a result, it is difficult
to envision how a simultaneous SPECT/CT system could be developed with performance
matching currently available separate SPECT and CT systems. However, the foregoing
analysis helps to emphasize the advantages of transmission imaging with an x-ray versus a
radionuclide source in that the former offers faster scans, higher statistics, and better spatial
resolution. Furthermore, unlike a radionuclide source, an x-ray source can be turned off and
discarded when necessary without any radioactive waste-disposal issues.

The “modern” SPECT/CT system was also originally developed by Hasegawa, et al, at
USCF in the mid-1990s [21]. The development of the system grew out of prior experience
with the prototype dual-modality system described above which used a single detector to
acquire the SPECT/CT data either sequentially or simultaneously. However, as previously
discussed, these studies demonstrated the difficulty in acquiring the otherwise incompatible
SPECT/CT data simultaneously with a single detector. The modern SPECT/CT system
utilizes an alternative approach which has proven to be more robust and incorporates
separate state-of-the-art SPECT and CT sub-systems. The SPECT and CT sub-systems can
be placed in tandem (ie in-line) for imaging and integrated with a common patient (or
animal) table and computer system (Figure 4). This group integrated a GE XR/T SPECT and
GE 9800 Quick CT systems with an elongated table that could be positioned for either CT or
SPECT imaging [21] without removing the patient from the system. The patient table was
mechanically supported with an external brace at the far end of the CT system to minimize
downward table deflection when it was extended to the SPECT sub-system. This allowed
the CT and SPECT data to be acquired sequentially with the CT data reconstructed in the
CT scanner with a conventional filtered backprojection algorithm, then transferred to an
external host computer via magnetic tape. The CT data were available for anatomical
display, or could be converted (as described below) to obtain a CT-derived map of linear
attenuation coefficients to correct the radionuclide data for photon attenuation. The
radionuclide projection data acquired with the scintillation camera system were transferred
via diskette onto the host computer for iterative reconstruction, allowing the SPECT data to
be reconstructed with attenuation correction using the CT-derived attenuation map. These
reconstruction and post-processing steps produced three different displays: the x-ray CT data
reconstructed from the CT scanner; the radionuclide emission data reconstructed with
attenuation correction from the x-ray CT data; and a fused image in which the radionuclide
data were displayed in color over a co-registered CT image displayed in grayscale.

Fundamentals of SPECT/CT
Image Registration

Several aspects of the prototype SPECT/CT system remain as important in current SPECT/
CT systems, and many of these are important in PET/CT as well. First, the general
experience with both SPECT/CT and PET/CT is that dual-modality imaging can simplify
the spatial registration of emission and transmission data in comparison to images obtained
on separate systems at separate times. This is especially helpful when uptake of a given
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radiopharmaceutical is associated with both disease and normal processes. For example,
PET accumulation of 18F-FDG occurs in normal heart, brain, kidney, and urinary bladder as
well as in regions of inflammation and malignant disease [56,57]. Similarly, SPECT
visualized uptake of agents such as 111In-ProstaScint in normal structures such as the
prostate, blood pool, and bone marrow, and such uptake can be difficult to differentiate from
that associated with prostate carcinoma [58]. By simplifying the process of localizing
radiopharmaceutical uptake with CT correlation, dual-modality imaging can help to identify
a specific site of radiopharmaceutical accumulation for planning radiation or surgical
treatment planning or to differentiate uptake that occurs physiologically from that indicative
of disease [14,24,59].

Image registration is improved in dual-modality imaging since the radionuclide and CT data
are obtained while the patient maintains the same body position, posture, arm and leg
configuration, and table shape during image acquisition. To the extent that the body position
remains static throughout image acquisition, this will help to assure accurate image
registration even with table translation during the SPECT and CT scanning process.
However, the SPECT image acquisition commonly requires 15 to 60 minutes. For
myocardial perfusion imaging, the SPECT study requires both rest and stress acquisitions at
separate times between which the patient commonly is removed from the table. Similarly,
the CT image can be performed within one or a few breath holds with high-performance
diagnostic CT, but may require 5 minutes for a low-dose x-ray system. The patient can
move, cough, or stretch, or twitch during the scanning process, and internal organs will
move due to cardiac or respiratory motion, peristalsis, gas motility, and/or bladder filling
[60,61]. Mis-registration errors due to respiratory motion often can be reduced by acquiring
the image during quiet tidal respiration which provides fairly consistent acquisitions of the
SPECT and CT data. However, the dual-modality acquisitions can exhibit geometrical
changes between the SPECT and CT images, making it impossible to simply merge the data
without correcting for gross mis-registration errors of several millimeters or more. The
primary method of improving image registration relies on image translation following image
acquisition and reconstruction, without applying the more subtle transforms of image
rotation or regional image warping or shear. Image registration can be applied globally when
needed, for example, to compensate for patient table sag, gross patient motion, or mis-
calibration between the digital images used to form the CT and SPECT data [62,63]. Current
clinical practice continues to rely on the physician's knowledge and experience in
interpreting mis-registration errors that remain in the dual-modality image data, generally by
comparison of the SPECT data before and following attenuation correction and CT co-
registration [64,65]. These studies [64,66] suggest that the combination of SPECT and CT
imaging facilitates attenuation correction of myocardial perfusion SPECT with CT co-
registration but emphasizes the challenges of translating results from static phantoms to
living, breathing patients who move both voluntarily and involuntarily [65,67].

Attenuation Correction
CT can be used to perform attenuation correction of radionuclide emission data since the CT
image inherently represents an anatomical map of linear attenuation coefficients (μs)
reconstructed at the effective energy of the x-ray beam [20,21,34,35]. This process of
generating a map of linear attenuation coefficients in CT is complicated by “beam
hardening,” the process in which lower-energy photons are preferentially absorbed as they
pass through the patient in a thickness-dependent manner that increases the mean energy in
the transmitted x-ray beam emerging from the patient [68,69]. If uncorrected, x-ray beam
hardening will, for example, produce images in which the CT values in the center of the
body (ie that recorded in the thickest part of the object) are reconstructed with lower
attenuation coefficient values than in the periphery, where x-ray absorption is lower and
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beam hardening less severe. Modern CT scanners largely account for and correct beam
hardening so that a CT scan of uniformly soft tissue regions are reconstructed with uniform
image intensity. Beyond normal beam-hardening corrections, when the CT scan is used to
derive μ values to correct SPECT (or PET) data for photon attenuation, it must be calibrated
so that it represents the linear attenuation coefficients at the photon energy of the
radionuclide used to acquire the emission data rather than the mean energy of the x-ray
beam used to form the CT image [20-23]. The necessary calibration data can be obtained by
acquiring CT scans of a phantom [21] having chambers filled with various concentrations of
biologically equivalent materials, for example. air, 60% ethanol (ie a fat simulant), water,
normal saline, and various concentrations (ie 50, 100, 200, 300, 400 mg/cm3) of dipotassium
hydrogen phosphate (K2HPO4) as a bone-mineral simulant. Alternatively, it is possible to
use solid tissue-equivalent materials for the calibration measurement [70]. The CT value of
each calibration material then is extracted by defining a region of interest corresponding to
each calibration region in the phantom. The linear attenuation coefficient for each such
material also can be calculated from the known chemical contents of each region. The
calibration data then are represented by relating the extracted image value (in Hounsfield
Units, HU) and the calculated linear attenuation coefficient (in units of cm-1) of each
calibration material at the photon energy of the γ-rays emitted by the radionuclide source.
These data are represented as a piecewise linear calibration curve across the range of image
densities seen in clinical CT scans (eg from -1000 to +2000 HU). Typically, the calibration
curve is represented as a piecewise bilinear fit in which has different slopes below 0 HU
regions of the body which are combinations of air and soft tissue and above 0 HU
representing regions which are composed of soft-tissue and bone (Figure 5). The resulting
curve is used to convert values in the patient's CT scan from Hounsfield units to those
representing the linear attenuation coefficient (ie cm-1) for each CT image pixel. The
resulting tomographic image of linear attenuation coefficients (ie commonly known as an
“attenuation (or μ) map”) then can be incorporated into an iterative reconstruction algorithm
to correct the radionuclide tomogram (ie SPECT or PET image) for errors due to photon
attenuation. If only used to correct the radionuclide image for photon attenuation, the CT
data can be acquired with a considerably lower statistical quality and coarser spatial
resolution than required for diagnostic-quality imaging and therefore can deliver
significantly lower dose than that for a diagnostic CT study. However, if improved signal-to-
noise performance is needed for direct anatomical diagnosis of the CT scan at higher spatial
resolution, including the use of iodine contrast, the anatomical image must be acquired with
a diagnostic CT system with a conventional, albeit high, CT radiation dose and spatial
resolution.

Patient Table Design
SPECT/CT systems ideally would be designed with all of the radionuclide and x-ray
imaging components placed around a common field of view. However, as noted above, the
primary x-ray beam used to form the CT image can produce x-ray scatter fluence rate
significantly higher than that emitted by the radiopharmaceutical administered to the patient
for the emission image. For this reason, modern SPECT/CT (and PET/CT) systems typically
separate the imaging planes of the x-ray source and the radionuclide distance by an axial
distance of 50 cm or more. This physical separation prevents the primary x-ray beam from
striking the radionuclide detectors and minimizes the magnitude of x-ray cross-scatter and
related perturbations in the acquisition of radionuclide data of modern SPECT/CT cameras.
This requires a patient table that can support the patient while extended between the CT
scanner and SPECT sub-system without sagging under the patient's weight and without
otherwise vertically displacing the patient between the SPECT and CT imaging positions.
As a result, the patient table must be designed with minimal sag while extended for imaging
with the SPECT/CT system. Often, table deflection is minimized by supporting the table on
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both ends in a way that allows the acquired SPECT and CT data to be spatially correlated
and co-registered in a consistent way.

Applications and Capabilities of SPECT/CT
Image Quality in SPECT/CT

Over the past decade, the introduction of SPECT/CT coincided with advances in computing
power and iterative reconstruction algorithms and these have led to significant
improvements in SPECT image quality obtained. The details of iterative reconstruction in
radionuclide imaging have been discussed widely in the scientific literature and will not be
repeated here. However, iterative reconstruction methods such as maximum-likelihood
expectation-maximization (ML-EM) [71,72] and ordered-subset expectation-maximization
(OS-EM) [73-75] offer benefits by allowing incorporation of mathematical models for
physical effects [76] that can introduce errors into the SPECT data. These include photon
attenuation [50,77], depth-dependent spatial resolution loss (also known as the “geometrical
response”) of the radionuclide collimator, and scatter [78-81]. Use of iterative reconstruction
for correction of photon attenuation requires an attenuation map derived by transmission
imaging with an external radionuclide transmission source or with transmission x-ray
imaging with SPECT/CT. X-ray transmission imaging in SPECT/CT also provides a patient-
specific map of Compton coefficients that can be used for model-based scatter estimation
[78-81] to compensate the radionuclide data for scatter. A final method of improving image
quality models the geometrical configuration of the radionuclide collimator (ie including
parallel-hole or pinhole collimators) that corrects the SPECT for the geometrical response of
the collimator [82-85]. These compensation methods are becoming common for improving
the spatial resolution, contrast, and signal-to-noise characteristics of SPECT imaging,
including those obtained with SPECT/CT (Figure 6).

Quantitative Accuracy with SPECT/CT
SPECT increasingly is used to quantify the uptake of the radiopharmaceutical in a tumor, the
myocardium, or other target region. Typically, this is done by defining volumes-of-interest
(Ovis) around the target region to integrate the number of events (ie or counts), assumed to
be proportional to the activity in the volume thus defined. The activity (ie in units of MBq or
mCi) then is calculated using a calibration factor obtained by imaging a phantom containing
a known concentration of the same radionuclide as the radiopharmaceutical used to image
the patient. However, as noted, the quantitative accuracy of radionuclide measurements with
SPECT can be compromised by several physical factors, attenuation [20,21,35,76,86] and
scatter [87-92]. In addition, the quantitative accuracy of SPECT can be compromised by
partial-volume errors [93]. That is, the spatial resolution of the radionuclide imaging system
causes “spill-out” of radioactivity (ie counts) from the target region into the background and
“spill-in” of counts from the background into the target region. These errors are inherent to
radionuclide imaging but can be compensated using patient-specific information derived
from CT in a SPECT/CT scanner. For example, radionuclide data can be compensated for
errors from photon attenuation and scatter radiation [82,94-96] using patient-specific images
or “maps” of linear attenuation coefficients derived from CT. When correlated CT data are
available, they also can be used to define the size and shape of target regions, and thereby
compensate the image of the apparent distribution of activity for partial volume errors
caused by the finite spatial resolution of the radionuclide imaging system [32]. Therefore,
while it often is noted in the scientific literature that SPECT is not quantitative [97-100] and
suffers both accuracy and precision errors, it increasingly is being recognized that SPECT/
CT with appropriate reconstruction algorithms can compensate the radionuclide data for
photon attenuation, partial volume errors, and scatter radiation [29,76,82,94-96,101] in a
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way that significantly improves the accuracy of radionuclide quantitation in comparison to
measurements obtained with SPECT alone.

Koral, et al, [31,102] have used correlated SPECT and CT data to quantify the radionuclide
content of individual tumor regions. The study acquired SPECT and CT data from separate
imaging systems that then were fused in software from patients with non-Hodgkin's
lymphoma who were undergoing radioimmunotherapy with 131I-labeled monoclonal
antibodies. The quantitation process used CT to derive patient-specific attenuation maps for
attenuation correction and CT-defined tumor volumes to correct small (<200 g) tumors for
partial-volume correction of the radionuclide data. The shape of the time-activity curve was
derived from daily conjugate-view images of a tracer administration of the radiolabeled anti-
B1 antibody. This approach allows estimation of the radionuclide content and therefore the
radiation dose delivered to individual tumors that could be resolved with CT but were not
necessarily visualized on the conjugate-view scintigraphic images.

Clinical Applications of SPECT/CT
SPECT/CT has been applied and its clinical benefits have been demonstrated across a wide
spectrum of applications (Table 1), including both cardiovascular and oncologic imaging.
Specifically, correlated CT data facilitate attenuation correction that improves both the
contrast [103] and quantitative accuracy of radionuclide imaging performed with SPECT.
Furthermore, SPECT/CT provides anatomical data to localize radiotracer uptake and
facilitate SPECT diagnoses.

SPECT/CT is important for tumor imaging in terms of improving anatomical localization of
disease, helping to define the extent of disease, and improving differentiation of
physiological and pathological uptake [14,104-108]. This parallels the clinical experience
with 18F-FDG PET and PET/CT imaging.

A role not commonly shared with PET and PET/CT involves of the use of SPECT and
SPECT/CT for analyzing radionuclide uptake and radiation dosimetry of tumor-specific
SPECT agents in radioimmunotherapy [109-111]. In this setting, SPECT/CT has the
potential to improve quantitative accuracy by facilitating the correction for photon
attenuation and scatter radiation, as described above. Finally, as also noted above, the size
and shape of target regions in the field of view can be quantified and used to correct partial-
volume errors in the radionuclide data [30-32]. These methods offer the potential of
improving quantitation of radionuclide uptake in and therefore radiation dosimetry of tumor,
bone marrow [112], and other normal sites as well as in the targeted tumors in
radioimmunotherapy. In addition, the use of the SPECT/CT offers the possibility of
calculating patient-specific radiation dose estimates using anatomical information from CT
[27,113], rather than relying on generalized anatomic models (such as those used in the
Medical Internal Radionuclide Dosimetry (MIRD) formalism).

Myocardial perfusion imaging is a particularly important clinical application of SPECT and
therefore is a special focus for SPECT/CT, where a correlated CT-derived map of patient-
specific linear attenuation coefficients used to correct the SPECT data for attenuation can
potentially introduce false positive defects into the perfusion data. Figure 7 shows an
example in which a patient with chest pain was referred for myocardial perfusion SPECT.
SPECT data obtained without attenuation correction demonstrated an inferior-wall defect
suggestive of right coronary artery disease and the patient was referred to coronary
angiography. The SPECT data then were reconstructed with attenuation correction using a
CT-derived patient-specific attenuation map obtained from SPECT/CT and were correctly
interpreted as normal, as confirmed by the normal coronary angiographic results. A multi-
center trial evaluating myocardial perfusion SPECT with 99mTc-sestamibi or 99mTc-
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tetrofosmin stress imaging in 118 patients found that x-ray-derived attenuation correction
obtained with SPECT/CT improved diagnostic interpretation, particularly in normal subjects
using coronary angiography as the “gold standard” [114]. Beyond these capabilities for
attenuation correction, SPECT/CT with high-performance CT offers the potential for CT
coronary angiography that be fused with myocardial imaging performed with SPECT/CT
[115-117] or with CT-derived measurements of ventricular function [118,119] as well as the
potential to correlate results of radionuclide myocardial perfusion imaging correlated with
CT coronary calcium scoring [120]. The latter has been shown to increase the sensitivity of
SPECT for detection of coronary artery disease without any significant decrease in
specificity. Eventually, it may be possible to use these capabilities to quantify regional
myocardial radionuclide uptake and regional myocardial perfusion noninvasively with
SPECT/CT [29].

While SPECT with CT-derived attenuation correction can improve the sensitivity,
specificity, and diagnostic accuracy of myocardial perfusion imaging [121,122] versus
conventional techniques, the accuracy of the results can be affected by registration errors,
which are reduced but not eliminated with dual-modality imaging. Specifically, patient
motion, including that from respiration and cardiac contraction, during image acquisition
can spatially offset the emission and transmission data (Figure 8) and lead to false-positive
perfusion defects and other artifacts in the reconstructed SPECT images [67,123]. For
example, Tonge et al [63] reconstructed 99mTc-tetrofosmin SPECT data with x-ray derived
attenuation correction. They found that the SPECT data reconstructed from attenuation maps
taken directly from the SPECT/CT study contained perfusion defects in the apex and
anterior wall, which subsequently were reduced when corrected for registration errors.
Furthermore, attenuation corrections reduced the presence of defects in the inferior wall, but
were not significantly improved by application of registration correction.

Both phantom and patient studies have shown that spatial displacements between the
emission and transmission data of more than 1 pixel (measured in the SPECT image) can
compromise the quality of the emission data reconstructed with attenuation correction
[60,124]. In one study, Fricke et al [62] found that 27 of 140 patients undergoing 99mTc-
sestamibi SPECT demonstrated pronounced defects in the apical or anterior wall following
CT-based attenuation correction. Of the original 27 studies with artifacts, improved co-
registration produced normal perfusion patterns in 6 and reduced the presence and severity
of defects in 15. No improvement was seen in only 4 of 27 patients; in these studies, the
mismatch was less than 1 pixel (7 mm) in the ventro-dorsal direction along which co-
registration correction was applied, but had spatial mismatches in the craniocaudal direction
which were not corrected [62]. In a separate study with 60 consecutive patients, Goetze et al,
found that 42% of the CT attenuation-corrected images had moderate to severe
misregistration errors in the SPECT/CT data when evaluated qualitatively [61]. Goetze et al
[60] also quantified the spatial mismatch of emission-transmission data from 105
consecutive patients acquired with SPECT/CT and found that 64% of studies exhibited
spatial misregistration of 1 pixel or greater. Furthermore, they found significant differences
in the segmental distribution of radiotracer distribution between the SPECT images
reconstructed prior to and following spatial registration. Software-based methods also have
been used to improve anatomical registration of SPECT/CT data and to thereby improve
diagnostic evaluation of attenuation-corrected myocardial perfusion SPECT [125] as well as
SPECT correlation with CT coronary angiography [116,126]. These techniques have been
reported to be feasible and reproducible in demonstrating improved diagnostic evaluation of
myocardial perfusion imaging with SPECT/CT and for confirming as well as excluding the
functional significance of lesions found with CT coronary angiography [116,126]. While the
results to date are preliminary, they point to the need to verify and correct, if possible, the
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spatial misregistration of the SPECT image and the CT-based attenuation map and other
anatomical information obtained from a SPECT/CT system.

Current SPECT/CT Technologies
The clinical use of dual-modality imaging began with in the commercial introduction of
SPECT/CT in 1999 and of PET/CT in 2000, and is continuing to advance rapidly, with
approximately 2000 PET/CT systems and almost 1000 SPECT/CT systems currently in use
worldwide. An annotated list of clinically approved SPECT/CT systems, as of May 2006, is
available on-line1. The first commercial SPECT/CT system, the GE Discovery VG
Hawkeye, was introduced in 1999 and was based on a GE Discovery VG SPECT system,
(designed and introduced originally as the Elscint Varicam), a dual-head variable-geometry
SPECT system capable of performing planar scintigraphy, SPECT, and 18F-
fluorodeoxyglucose (FDG) coincidence imaging. The x-ray sub-system originally was
planned by Elscint but was not released until integrated with the GE Discovery VG with the
“Hawkeye option”, an x-ray source operated at 140 kV and 2.5 mA and an x-ray detector
operated with a slip ring for continuous-rotation CT acquisition. The Hawkeye sub-system
acquires x-ray transmission data with a rotation time of 20 seconds with 2.5 mm in-plane
resolution and a slice width of 1-cm or 2.5-mm for one- or four-slice configuration,
respectively. The current SPECT/CT system from General Electric Healthcare now has been
upgraded as the GE Infinia Hawkeye (Figure 9a). Like the Discovery VG Hawkeye, the
Infinia Hawkeye SPECT/CT system incorporates an x-ray source with significantly lower
power than a conventional diagnostic CT scanners (which operate at 120-140 kV, 500 mA,
and 0.4-s (or faster) rotation speed). Although these first-generation SPECT/CT systems are
relatively limited in their spatial resolution, scan speed, and signal-to-noise performance of
their CT sub-systems, overall they are well-suited in terms of cost and performance to
addressing the needs of attenuation correction and low-resolution anatomical localization
and provide useful information that improves diagnostic accuracy compared to SPECT scans
alone.

SPECT/CT systems with advanced CT capabilities were introduced in 2004 and now are
being adopted in clinical practice. These systems, such as the Siemens Symbia [127] (Figure
9b) and the Philips Precedence (Figure 9c), typically match a dual-head SPECT system with
a multi-slice CT scanner having performance similar to that obtained with conventional
diagnostic CT (Table 2). The Siemens Symbia is also available with a single-slice low-
resolution CT scan for attenuation correction and anatomical mapping or with a diagnostic
2-, 6-, or 16-slice CT. Similarly, the Precedence SPECT/CT system from Philips is available
with a 6- or 16 slice CT capability. Both the low- and high-power CT systems available
from the commercial vendors can be used to perform attenuation correction and anatomical
localization of the radionuclide data suitable for myocardial perfusion measurements, tumor
imaging (Figure 10), and other radionuclide studies. However, the improved signal-to-noise
characteristics and multi-slice capability of the higher-power CT systems offer detailed
anatomical information with improved spatial resolution, excellent soft-tissue contrast
resolution, and sufficiently fast scan speed for applications with intravenous iodine contrast
enhancement [128]. These characteristics are especially suitable for oncology [14,104-108]
where detailed anatomical localization is needed. Other investigators have reported using the
higher-performance SPECT/CT systems for applications in orthopedics [129-132], infection
and inflammation [133-138], pulmonary function [139,140], and endocrinology[141], where
the improved anatomical localization helps identify areas of disease that can be difficult to
discriminate with SPECT alone. As previously mentioned, high-resolution CT performance

1http://www.advanceforioa.com/sharedresources/advanceforioa/resources/DownloadableResources/AR50106_p58ChartSmart.pdf
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also can be used to define target anatomy to improve the quantitation of absolute
radionuclide uptake in small lesions such as tumors or in the myocardium.

Finally, a SPECT/CT system with cardiac and coronary CT capability is likely to be well-
matched to myocardial perfusion radionuclide measurements, which still account for almost
50% of SPECT imaging. SPECT/CT systems are now available with 64-slice CT subs-
systems, capable of ultra-short scan times which “freeze” cardiac motion as required for CT
coronary angiography [115,116,126] and calcium scoring [142] (Figure 11). The high-
performance SPECT/CT systems also have the potential for absolute quantitation of
radionuclide content [29] with corrections for photon attenuation, scatter radiation, and
partial-volume errors in a way that could offer accurate non-invasive assessment of regional
myocardial blood flow and coronary flow reserve. These capabilities are just beginning to
emerge, but are likely to be developed and tested as the capabilities and performance of
SPECT/CT mature.

Future Developments in SPECT/CT
The scintillation camera technology currently in use for clinical studies still relies on the
technology invented by Hal Anger in 1957 [143]. Nevertheless, SPECT and SPECT/CT is
continuing to evolve with the introduction of new technologies that have the potential to
improve performance beyond that possible with Anger's pioneering approach. Recent
advances in detector technology that incorporate silicon photodiode or solid-state materials
offer the potential for improved spatial resolution and energy resolution, with greater
stability and more compact size [144-148], compared to conventional camera designs based
on photomultiplier tube technology. At this early stage in their development, the use of
solid-state and semiconductor detectors has focused on imaging of the heart [145,148],
breast [149], and other small organs [150]. Nevertheless, it is likely that as these newer
detector technologies will mature, they will become more robust in performance and cost-
effectiveness and therefore eventually replace the photomultiplier tube in radionuclide
imaging detectors.

Innovative SPECT/CT Designs for Cardiac Imaging
A SPECT protocol for myocardial perfusion imaging can consumes 2.5 hours or more in
procedure time, including 40-50 minutes of camera time, (longer if soft-tissue attenuation is
suspected and the patient is imaged with prone positioning) [151-153]. Recently, myocardial
perfusion cameras have been developed with novel detector and collimator geometries that
significantly improve detection efficiency while maintaining or improving spatial resolution
for myocardial perfusion imaging in comparison to conventional scintillation camera
designs. For example, dedicated nuclear cardiology cameras have been developed by
Spectrum Dynamics, Ltd.2 (Caesarea, Israel) and by Cardiarc, Inc.3 (Canton, MI) and are
designed to acquire myocardial perfusion images in only 2 to 3 minutes (Figure 12) versus
the 10 to 15 minutes needed with conventional dual-head SPECT systems. Similar
performance now is being reported as a works-in-progress (as of 2007) with a new
myocardial SPECT camera developed by GE Healthcare. These new instruments offer
significant advantages over conventional SPECT/CT systems in which an-expensive CT
scanner remains idle while the slow SPECT scan is completed. The inclusion of a highly
efficient SPECT system can decrease the scan time of the SPECT study, and in doing so also
increases the utilization of CT and patient throughput compared to conventional SPECT/CT
systems. The clinical procedure includes 5-6 minutes needed to acquire the correlated

2http://www.spectrum-dynamics.com/
3http://www.cardiarc.com/
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radionuclide and x-ray data with an efficient SPECT camera plus a modern multi-slice CT
system versus the 20-25 minutes required with conventional SPECT technology. The total
procedure will be lengthened for acquiring both rest and stress myocardial perfusion data,
between which the patient typically leaves the imaging system for administration of the
radiopharmaceutical for the second perfusion scan. However, significant reductions in scan
time would be obtained if the rest/stress images were obtained with simultaneous dual-
isotope imaging in which, for example, the patient first was administered 201Tl at rest
followed immediately by exercise or pharmacological stress after which the patient would
be injected with the 99mTc perfusion agent for the stress perfusion study. If the imaging
system included a high-performance CT scanner, the radionuclide imaging studies could be
followed immediately by CT coronary angiography [115,116,126] and assessment of
coronary calcification [142]. It is conceivable that the volumetric CT data also could
quantify myocardial thickness to improve the measurement of radionuclide uptake in the
myocardium [29]. Both CT coronary angiography and quantitation of myocardial perfusion
are illustrative the potential for a high-performance myocardial SPECT/CT with a fast and
cost-effective acquisition protocol.

Innovative Breast Imaging with SPECT/CT
Tornai et al [154-157] at Duke University are developing a compact dual-modality SPECT/
CT system for dedicated tomographic imaging of the pendant, uncompressed female breast.
A prototype system is designed to perform SPECT with a 1.620-cm2 CZT-based compact
gamma camera having 2.5-mm pixels that allow flexible angular positioning with a
goniometer. This dual-modality breast imager also includes a flat-panel digital detector
coupled to a CsI(Tl) phosphor to perform CT with a quasi-monoenergetic x-ray cone-beam
produced with a heavily-filtered tungsten anode. The CT system has a stationary polar
orientation and is laterally offset from the center of rotation for imaging pendant,
uncompressed breasts that are larger than the detector's field of view. Both the x-ray and
radionuclide sub-systems are coupled to a common rotation stage and have a common field
of view. As independent systems, both dedicated SPECT and CT have yielded visualization
of small lesions in the breast, including those located close to the chest wall [154,158-160].
Results from the combined system show that emission projection images can be
contaminated by x-ray scatter photons that artifactually increase the apparent signal in
reconstructed emission images. Emission contamination also can increase noise in the
transmission image resulting in reduced signal-to-noise ratios in reconstructed CT images.
Nevertheless, measurements with the combined system components show that optimal
placement of the SPECT and CT sub-systems is limited by physical constraints rather than
signal cross-contamination that can occur with a SPECT/CT system that shares a common
field of view. Overall, integrating both modalities on a single gantry is designed to simplify
data acquisition, SPECT-CT image registration, and necessary image corrections with the
goals of correlating radionuclide uptake with anatomical structure, improving detection and
staging of cancer, monitoring treatment response, and improving selection of surgical biopsy
sites.

Concluding Remarks
As we emerge from the first decade of the clinical use of SPECT/CT, several challenges still
remain. First, unlike PET/CT, which has essentially replaced PET-only systems
commercially, SPECT/CT has not achieved comparable commercial dominance over
conventional SPECT. This likely is due in part to the clinical flexibility of SPECT, which is
used for a wide spectrum of clinical applications with different radiopharmaceuticals. This is
a decidedly different situation than that with PET and PET/CT, which are used
predominantly for tumor imaging with 18F-fluorodeoxyglucose. Secondly, as noted above,
SPECT/CT suffers an imbalance in cost-effectiveness due to the differences in acquisition
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time between SPECT and modern CT. However, as also noted above, advances in SPECT
instrumentation, CT technology, and radiopharmaceutical development have the potential to
advance SPECT/CT beyond its current level of performance. Potential clinical applications
of SPECT/CT are numerous and include more efficient studies of myocardial perfusion
imaging with the potential for correlation with CT coronary angiography. CT also has the
potential to provide anatomically guided partial-volume correction for absolute quantitation
of tumor uptake and dosimetry of tumor-specific agents with an accuracy not achievable
using SPECT alone. SPECT/CT also has the potential to advance imaging application in
infectious diseases, orthopedics, neurology, and breast cancer. Finally, on the horizon, is the
potential for SPECT imaging with new tumor-specific agents now entering clinical trials.
Given these characteristics and potential applications, it is likely that the clinical use of
SPECT/CT will expand, becoming an increasingly important tool in diagnostic imaging for
a wide spectrum of disease.
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Figure 1.
Schematic of transmission-emission computer tomography system proposed by Mirshanov
for simultaneous SPECT/CT with tandem semiconductor and scintillation strip detectors.
(Figure from reference [227]).

Seo et al. Page 27

Semin Nucl Med. Author manuscript; available in PMC 2011 March 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Schematic of “Transmission/Emission Registered Imaging (TERI) Computed Tomography
Scanner” proposed by Kaplan for simultaneous SPECT/CT imaging. (Figure from reference
[44]).
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Figure 3.
(left) Schematic of data acquisition system for UCSF Emission-Transmission CT (ETCT)
System. (Top right) Photograph of prototype ETCT system. (Bottom right) Transaxial image
showing myocardial uptake of 99mTc-sestamibi SPECT image (red) superimposed on a
gray-scale CT image of a porcine model of myocardial perfusion. (Figure on left, upper
right, and bottom right reproduced with permission from references [46], [228], and [50],
respectively.)
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Figure 4.
Prototype SPECT/CT system configured at UCSF from GE 9800 Quick CT system and
single-detector GE XR/T SPECT system. Extended table and external table support allows
both SPECT and CT imaging without removing patient from system. (Reproduced with
permission from reference [229]).
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Figure 5.
Calibration of CT for x-ray derived attenuation coefficients performed with cylindrical
phantom (left) containing different tissue equivalent materials. CT values (ie Hounsfield
units) are correlated with values of linear attenuation coefficients (ie cm-1) calculated from
known composition of tissue equivalent materials calculated at energy of radionuclide used
for emission imaging. Calibration curve (right) used to convert values in CT image to form
patient-specific map of attenuation coefficients for attenuation correction of emission image
(Reproduced with permission from reference [21]).
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Figure 6.
Images of 131I-metaiodobenzylguanidine (MIBG) of 7 year-old female with neuroblastoma
with conventional SPECT (left) and CT (top right). SPECT image (middle right) and fused
SPECT/CT image (bottom right) following compensation for photon attenuation and the
geometrical response of the collimator (middle right). (Adapted and reproduced with
permission from reference [32]).
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Figure 7.
99mTc-sestamibi SPECT scan of 66 year old male with atypical chest pain reconstructed
using conventional filtered backprojection without attenuation correction (top) and using
iterative reconstruction with x-ray based attenuation correction (bottom). Conventional
perfusion SPECT showed defect in the inferior wall. Iterative reconstruction with
attenuation correction produced a perfusion image which was read as being normal as was
confirmed with coronary angiography. (Courtesy of General Electric Healthcare, Inc.)
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Figure 8.
(A) Co-registered CT (top), SPECT (middle), and fused SPECT/CT (bottom) myocardial
perfusion images with 99mTc-sestamibi. Top row shows images with misalignment of
SPECT/CT images. Bottom row show SPECT/CT images following registration using
vendor-supplied software. (b) Vertical long-axis slices of 99mTc-sestamibi images without
attenuation correction (IRNC), with attenuation correction of original data (IRAC), and with
attenuation correction following correction for spatial misalignment (IRAC-MC). Defects in
apical anterior wall of original attenuation-corrected SPECT images are not apparent in
uncorrected SPECT images and in attenuation corrected SPECT images following
correction for misalignment. (Reproduced with permission from reference [62]).
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Figure 9.
Clinical SPECT/CT systems in 2007. (Top) GE Infinia Hawkeye; (Bottom left) Siemens
Symbia; (Bottom right) Philips Precedence (Courtesy of GE Healthcare, Inc., Siemens
Medical Solutions, Inc., Philips Medical Systems, Inc.)
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Figure 10.
Lymphoscintigraphy for sentinel node detection of patient with primary breast carcinoma.
SPECT/CT study demonstrates two sentinel lymph nodes in the axilla adjacent to the
trapezius and pectoralis major muscles. Volume rendering of fused datasets from thin slice
spiral CT and SPECT demonstrate positions of the sentinel nodes in preparation of surgical
planning for node removal. (Courtesy of Siemens Medical Solutions, Inc.)
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Figure 11.
CT coronary angiography (CTCA) and 99mTc-sestamibi stress/201Tl rest SPECT images
with x-ray based attenuation correction. Study performed with 16-slice CT scanner and dual-
head variable-angle SPECT system with shared patient table to spatially register images
from patient with coronary artery bypass graft. (Top left) Curved multiplanar re-formats of
CTCA data shows severe irregular stenosis (solid white arrow), patient stent (black arrow),
and patent diagonal artery distal to anastomosis with saphenous vein graft (dotted white
arrow). (Top right) Cardiac perfusion SPECT study at stress (first and third rows) and rest
(second and forth rows) shows reversible perfusion defect in the anterolateral wall (arrows)
consistent with myocardial ischemia. (Bottom) Surface rendered image showing myocardial
perfusion from SPECT study fused on left ventricular surface with native left coronary tree.
At bottom left, decreased perfusion in the anterolateral wall (blue region, arrow)
corresponds to region of first diagonal artery (arrow head). Fused data (bottom right) shows
normal perfusion at rest in the same area (dotted arrow). The fused SPECT/CTCA image is
consistent with myocardial ischemia related to a tight, irregular stenosis of the proximal
saphenous vein graft to the first diagonal artery. LAD indicates left anterior descending
coronary; D1, first diagonal branch; R, ramus intermedius coronary; and LCX, left
circumflex coronary. (Adapted and reproduced permission of reference [115].)

Seo et al. Page 37

Semin Nucl Med. Author manuscript; available in PMC 2011 March 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
99mTc-sestamibi myocardial perfusion images obtained with conventional SPECT (top) and
with novel high-efficiency “D-SPECT” system (bottom) using 99mTc-sestamibi stress/rest
gated protocol. High-dose (first row) and low-dose (second row) images acquired with 28
mCi and 10 mCi respectively of 99mTc-sestamibi, and required 16 min and 20 min with
conventional SPECT versus 4 min and 2 min with D-SPECT. Conventional SPECT
interpreted as having reversible inferior wall defect. D-SPECT interpreted as normal and
was confirmed by coronary angiography. (Courtesy of Spectrum Dynamics, Ltd.)
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Table 1

Clinical Applications of SPECT/CT Cited

Anatomical/Disease Site Radiopharmaceutical SPECT/CT Application

Adrenal masses 123I-metaiodobenzylguanidine, 75Se-cholesterol Anatomical localization [161]

Biliary leak 99mTc-diisopropyl iminodiacetic acid Anatomical localization [141]

Bone scintigraphy
99mTc-methylene diphosphonate, 99mTc-dicarboxypropane

diphosphonate
Anatomical localization, attenuation

correction [162-169]

Brain cancer 99mTc-tetrofosmin Anatomical localization [170]

Breast cancer 99mTc-sestamibi Anatomical localization [171]

Colorectal cancer 99mTc-labelled macroaggregated albumin Hepatic artery infusion of
chemotherapy [172]

Coronary artery calcification 99mTc-tetrofosmin
Coronary artery calcification

correlated with myocardial perfusion
imaging [120,142]

Coronary artery disease Thallium-201, 99mTc-sestamibi, 99mTc-tetrofosmin
CT coronary artery calcification

correlated with myocardial perfusion
imaging [116,117,126]

Coronary artery disease,
myocardial perfusion imaging Thallium-201, 99mTc-sestamibi, 99mTc-tetrofosmin Attenuation correction

[29,60-64,114,121-124,153,173]

Coronary bypass graft Thallium-201, 99mTc-sestamibi Bypass grant definition and
localization [115]

Crohn's disease 99mTc-HMPAO-labeled leukocytes Anatomical localization [137]

Esophogeal cancer,
adenocarcinoma of gastric

cardia
99mTc-nanocolloid or 99mTc-sulfur colloid Anatomical localization, surgical

planning [174]

Head/neck cancer L-3-123I-iodine-alpha-methyl-tyrosine, 123I-labeled L19(scFv)2
antibody Anatomical localization [175-177]

Hepatic haemangioma 99mTc-labelled red blood cells Anatomical localization [178,179]

Hepatic carcinoma 99mTc-macroaggregated albumin Anatomical localization [180]

Human immunodeficiency virus
(HIV)

99mTc-sulfur colloid Anatomical localization of
microbicide surrogate [138]

Infection Gallium-67, 111In-labeled leukocytes Anatomical localization [133-136]

Left ventricular function 99mTc-tetrofosmin
Regional wall motion evaluation,
myocardial muscle mass, ejection
fraction, cardiac volumes [118]

Lung (ventilation/perfusion) 99mTc-Technegas, 99mTc-macroaggregated albumin
Anatomical localization and

registration of ventilation-perfusion
patterns [139,140]

Lung cancer 99mTc-sestamibi, 99mTc-depreotide Anatomical localization [181-183]

Lymphoma Gallium-67 Anatomical localization [184-186]

Myocardium 111In-oxime-labeled mesenchymal stem cells Stem cell imaging [187]

Neuroendocrine tumor 111In-octreotide, 123I-metaiodobenzylguanidine, 99mTc-depreotide

Attenuation correction, depth-
dependent compensation for

collimator response
[32,59,75,103-105,161,188-190]

Non-Hodgkin's lymphoma 131I-anti-CD20 rituximab Radioimmunotherapy dosimetry [112]

Osteomyelitis
99mTc-labelled antigranulocyte antibodies, 99mTc-

dicarboxypropane diphosphonate, 99mTc-hexamethylpropylene
amine oxime (HMPAO)

Anatomical localization [129-131]
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Anatomical/Disease Site Radiopharmaceutical SPECT/CT Application

Pancreatic carcinoma 99mTc-macroaggregated albumin
Anatomic localization, evaluation of
therapeutic efficacy for pancreatic

chemotherapy [180,191-193]

Parathyroid gland 99mTc-sestamibi Anatomical localization
[161,194-198]

Pheochromocytoma 123I-metaiodobenzylguanidine Anatomical localization [189]

Prostate cancer 111In-capromab pendetide
Attenuation correction, anatomical

localization, monitoring
brachytherapy [12,26,199-204]

Sentinel lymph node biopsy
(bladder cancer, head/neck

carcinoma, lung cancer,
melanoma, oral cavity prostate

cancer, squamous cell
carcinoma)

Thallium-201, 99mTc-albumin colloid (albures), 99mTc-sulfur
colloid, 99mTc-tin colloid, 99mTc-colloidal human serum

albumin, 99mTc-antimony sulphide colloid

Anatomical localization, attenuation
correction, surgical planning

[183,205-217]

Sentinel lymph node biopsy
(breast cancer)

99mTc-rhenium colloid Attenuation correction, anatomical
localization [218,219]

Splenosis
99mTc-labelled colloids, 99mTc-labelled heat-damaged red blood

cells Anatomical localization [220,221]

Sympathetic nervous system
tumors

123I-labeled metaiodobenzylguanidine Anatomical localization, attenuation
correction [222]

Temporomandibular joint (TMJ) 99mTc-methylene diphosphonate Anatomical localization, TMJ
dysfunction [132]

Thyroid carcinoma Iodine-131 Anatomical localization, therapeutic
monitoring [161,223-225]

Whole body (phantom study) Technetium-99m Attenuation correction,
radioimmunotherapy dosimetry [226]
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