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Abstract
Given the increasing size of the older adult population in many countries, there is a pressing need
to identify the nature of aging-related vision impairments, their underlying mechanisms, and how
they impact older adults’ performance of everyday visual tasks. The results of this research can
then be used to develop and evaluate interventions to slow or reverse aging-related declines in
vision, thereby improving quality of life. Here we summarize salient developments in research on
aging and vision over the past 25 years, focusing on spatial contrast sensitivity, vision under low
luminance, temporal sensitivity and motion perception, and visual processing speed.
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1. Introduction
Fifty years ago there was little scientific information available on the effect of aging on
vision except for that summarized in Robert Weale’s now classic book The Aging Eye
(Weale, 1963). Twenty-five years ago scientists were just beginning to embark on
comprehensive programs of research addressing how the aging process impacts various
aspects of visual functioning. With the formation of the National Institute on Aging in 1974
as a separate institute within the National Institutes of Health in the U.S., the scientific
spotlight was focused on vision and the aging process per sé, rather than solely on eye
conditions and diseases prevalent in older adults (e.g., macular degeneration, glaucoma,
cataract). By the late 1970s research increasingly addressed the role of lifespan changes
during adulthood on visual function and task performance and the mechanisms underlying
these aging-related changes. The initial years of this formative period were marked by a
symposium entitled “Aging and Human Visual Function” in 1980 sponsored by the
Committee on Vision of the National Research Council and convened at the National
Academy of Sciences in Washington DC. The symposium, which helped to “jump-start” the
field, was later published in an edited book (Sekuler, Kline & Dismukes, 1982) that served
as one of the first reference volumes for the field. Many other overviews have appeared in
the ensuing 25 years, and the reader is referred to these for additional perspectives on the
field (e.g., Faubert, 2002; Kline & Schieber, 1985; Ordy, Wengenack & Dunlap, 1991;
Owsley & Sloane, 1990; Sekuler & Sekuler, 2000a; Sekuler & Sekuler, 2000b; Spear, 1993;
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Weale, 1982a; Weale, 1986; Werner, Peterzell & Scheetz, 1990; Jackson, Owsley, &
Curcio, 2002; Werner, Schefrin & Bradley, 2010).

Research on vision and aging is essential for several reasons. The percentage of the
population in the U.S. and many other countries over age 60 is increasing, and thus eye
conditions, diseases, and vision impairments associated with aging represent a larger
segment of our societal health challenge on a population basis than in previous decades.
Thus, there is a pressing need to identify the prevalence and incidence of various aging-
related vision impairments in populations, the mechanisms underlying these impairments,
and how they impact older adults’ performance of everyday visual tasks. The results of this
research can then be used to develop and evaluate interventions to slow or reverse aging-
related declines in vision, thereby improving quality of life. Research programs on how
vision changes during the course of adulthood can also provide information about
biomarkers or risk factors for the incident development of serious eye diseases and
conditions common in late adulthood. For example, are there aging-related psychophysical
deficits in certain aspects of visual function that are exacerbated in older adults who
eventually develop serious eye diseases (e.g., age-related macular degeneration (AMD),
glaucoma)? Vulnerabilities in visual function in late life can potentially reveal breakdowns
in the visual system that are early markers or signs that disease development is likely. It is
also important to know what biological (e.g., neural, optical) and environmental (e.g.,
smoking, dietary) characteristics differentiate between those older adults who “age well”
(e.g., lose little to no visual sensitivity as they age) versus those who do not (e.g., experience
substantial threshold elevations). Finally, our understanding of basic visual processes in
general benefits from discoveries on older adults’ visual capabilities in that the most
comprehensive theoretical frameworks and models of vision must account for visual
changes over the lifespan.

A methodological challenge in defining normal aging needs to be mentioned at the outset.
Many structural and physiological changes in the eye during aging often lie on the same
continuum of those changes due to disease. For example, during adulthood the density of the
crystalline lens increases (Xu, Pokorny & Smith, 1997); at what point is it considered
cataract? Along similar lines, drusen appear in many older retinas (Vinding, 1990); what
characteristics of drusen formation lead to a diagnosis of AMD? Because of the continuum
of aging and disease it is important for studies purportedly studying aging to use, whenever
possible, explicit inclusion and exclusion criteria that make reference to scales and/or clearly
defined characteristics. Stating that the eye studied has been designated as “clinically
normal” by an ophthalmologist or optometrist may not be adequate. This is because what
one ophthalmologist or optometrist considers clinically normal can differ from one clinician
to the next. Eligibility criteria based on retinal fundus grading systems (Age-Related Eye
Disease Study Group, 2005) or lens grading systems (Chylack, Wolfe, Singer, Leske,
Bullimore, Bailey, Friend, McCarthy, Wu & Group, 1993), or other more objective or
standardized ways for measuring lens density and scatter are preferred in determining
eligibility for recruitment into a study. Clear delineation of these criteria also facilitates
comparison of results across studies. The good news is that an increasing number of
investigators over the past 25 years are using more objective criteria in defining “normal
aging” especially for retinal health (Dimitrov, Guymer, Zele, Anderson & Vingrys, 2008;
Elliott & Werner, 2010; Owsley, McGwin, Jackson, Heimburger, Piyathilake, Klein, White
& Kallies, 2006a), yet there are still many studies that rely on clinical judgment alone, self-
report and/or a visual acuity cutpoint (e.g., 20/25) to define normal aging. We have already
discussed the potential problem with relying on clinical judgment as a case definition of
normal aging. Self-report is even more problematic since older adults are often unaware of
whether they have early forms of conditions or diseases, which theoretically could be
impacting their visual function. About half of older adults do not seek annual comprehensive
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eye care when conditions might be diagnosed (McGwin, Khoury, Cross & Owsley, 2010),
so many older adults are not in the position to be made aware if they have eye conditions or
diseases. The problem with relying on good visual acuity to define normal retinal aging is
that good spatial resolution does not necessarily mean that the retina is free of disease; for
example, good visual acuity can be retained even though AMD or primary open angle
glaucoma is present. Yet these conditions can impact other aspects of retinal function, and
thus impact higher order visual processing as well. Studies not using more objective and
standardized criteria for normal retinal health must be viewed in light of the potential
confounding effects of disease in interpreting thresholds.

The purpose of this article is not to provide a comprehensive up-to-date overview of the
broad field of vision and aging; the topic is simply too broad for an article of this type. As
mentioned above, there are several summaries of the literature that when taken together
provide a comprehensive overview of our current understanding of vision phenomena in
later adulthood (e.g., Werner, Schefrin & Bradley, 2010; Jackson, Owsley, & Curcio, 2002;
Sekuler & Sekuler, 2000b). Rather, our purpose here is to identify areas rather intensively
studied since 1985, summarize and critically review the current state of knowledge, and
discuss the unresolved or new questions emerging from this body of work. Our focus is on
studies of visual function as psychophysically measured. The reader will no doubt note that
there are many aging and vision phenomena not addressed here, and their omission by no
means signifies that the author believes they are unimportant. The topics below were
selected because from this author’s perspective they seemed the most salient.

2. Spatial Contrast Sensitivity
The processing of spatial contrast is a fundamental building block of pattern vision.
Therefore it is not surprising that one of the first questions tackled by vision researchers
interested in the aging process was how aging impacts spatial contrast sensitivity. As we will
see below, research on this issue has continued into the present. In all the research discussed
here, refractive error (including that from presbyopia) is removed as a potential contributor
to contrast sensitivity loss by ensuring that observers are refracted for the target distance.

By the end of the 1980s several studies established that older adults have impaired contrast
sensitivity under photopic conditions at intermediate and high spatial frequencies, with the
magnitude of deficit increasing with increasing spatial frequency (Derefeldt, Lennerstrand &
Lundh, 1979; Elliott, Whitaker & Mac Veigh, 1990; Kline, Schieber, Abusamra & Coyne,
1983; Owsley, Sekuler & Siemsen, 1983; Tulunay-Keesey, Ver Hoeve & Terkla-McGrane,
1988). Studies differ in the reported magnitude of this deficit undoubtedly stemming from
the variations in lens density and retinal health in the samples used across studies. As
mentioned earlier, cataract and AMD themselves can cause contrast sensitivity deficits even
in their early forms (Elliott, Gilchrist & Whitaker, 1989; Kleiner, Enger, Alexander & Fine,
1988; Rubin, Adamsons & Stark, 1993); the first studies on aging and contrast sensitivity
did not use more objective and standardized criteria for lens and retina in determining
participant eligibility. Thus, for example, some study samples undoubtedly had older adults
with more lens opacity than other studies, which could lead to differences among studies in
the magnitude of psychophysical impairments reported. Thus, efforts to resolve why one
study found a larger young-old difference than the other are bound to be difficult if not
futile.

Older adults’ spatial contrast sensitivity deficits are present even when criterion-free
methods of threshold estimation are used (Elliott et al., 1990; Higgins, Jaffe, Caruso &
deMonasterio, 1988). Impairment in lower spatial frequency sensitivity seems to be spared
under photopic conditions. However, if low spatial frequency targets (e.g., 0.5 cycles/
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degree) are presented with rapid temporal modulation, the sensitivity enhancement
characteristic of younger adults is attenuated in older adults (Elliott et al., 1990; Habak &
Faubert, 2000; Kline, 1987; Owsley et al., 1983; Sloane, Owsley & Jackson, 1988b). This
finding is consistent with the literature on aging and temporal sensitivity showing that older
adults exhibit sensitivity loss for flicker that is accentuated as temporal frequency increases
(Kim & Mayer, 1994; Tyler, 1989).

Retinal illuminance in older eyes is reduced due to pupillary miosis (Loewenfeld, 1979) and
the increased density of the crystalline lens (Pokorny, Smith & Lutze, 1987; Said & Weale,
1959; Weale, 1961). There is also increased intraocular light scatter and increased optical
aberrations in the aging eye (Artal, Guirao, Berrio, Piers & Norrby, 2003; Glasser &
Campbell, 1998) that can reduce image contrast. Research has indicated that optical
characteristics of older eyes are largely responsible for older adults’ spatial contrast
sensitivity deficits at photopic light levels. When the optical performance of the human eye
was compared for younger and older adults using a double-pass apparatus to measure the
modulation transfer function, there were lower values of modulation in the older eyes (Artal,
Ferro, Miranda & Navarro, 1993; Guirao, Gonzalez, Redondo, Geraghty, Norrby & Artal,
1999). This lower modulation difference was similar to the psychophysically measured loss
in spatial contrast sensitivity in older adults as compared to younger adults from previous
work (Owsley et al., 1983). That older adults’ loss in spatial contrast sensitivity under
photopic conditions is largely optical in origin was also established through psychophysical
studies using laser interferometry to bypass the optics of the eye in generating targets on the
retina (see Burton, Owsley & Sloane, 1993 for a critical review of this literature). These
studies found that older adults either exhibited no (Dressler & Rassow, 1981; Kayazawa,
Yamamoto & Itoi, 1981) or a small yet statistically significant loss in contrast sensitivity
(0.1–0.2 log units) (Burton et al., 1993) when the interference fringe targets are utilized.
This 0.1–0.2 loss in “neural” contrast sensitivity accounted for less than half of older adults’
photopic contrast sensitivity loss at higher frequencies when sensitivity was measured using
conventional viewing techniques where the optics are not bypassed (Derefeldt et al., 1979;
Kline et al., 1983; Owsley et al., 1983; Tulunay-Keesey et al., 1988), implying that optical
factors make a major contribution to spatial contrast sensitivity deficits in older adults at
photopic levels (Figure 1).

However, other psychophysical studies, while acknowledging that optical changes in the
aged eye contribute to aging-related contrast sensitivity deficits, stress that neural factors
play a significant role. One study using laser interferometry (Elliott, 1987) reported a neural
contribution to older adults’ spatial contrast sensitivity loss that accounted for about half of
older adults’ impairment But this loss occurred only at the highest spatial frequency tested
(16.5 cycles/degree). In a recent study (Elliott, Choi, Doble, Hardy, Evans & Werner, 2009),
adaptive optics (AO) were used to correct monochromatic higher-order aberrations when
measuring older adults’ spatial contrast sensitivity; the basic experimental logic was that if
older adults’ contrast sensitivity loss disappeared, this would constitute evidence that optical
factors, specifically higher-order aberrations, underlie older adults’ deficit in photopic
spatial vision. Results were that on average older adults’ spatial contrast sensitivity with AO
improved, but not to the level of younger adults’ sensitivity level when they had no AO
compensation. As suggested by the authors, these results might imply neural factors play a
role in older adults’ loss in photopic contrast sensitivity, but they could also indicate that
optical variables other than monochromatic aberrations (e.g., increased lens density and light
scatter) could be playing a larger role once AO corrections are introduced.

Although in our view strong evidence that neural factors have a sizeable influence on older
adults’ photopic contrast sensitivity is lacking, it is important to point that Curcio & Drucker
(1990) have shown that ganglion cell density was reduced by 25% in the central 11° of
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retina in donor eyes from older adults, compared to eyes from young adults; Gao and
Hollyfield (Gao & Hollyfield, 1992) also report aging-related ganglion cell density declines
although less steep than those reported by Drucker & Curcio (1990). However, loss in neural
elements does not necessarily correspond to functional deficits as measured
psychophysically. Furthermore, although Curcio & Drucker (1990) and colleagues reported
decreased aging-related ganglion cell density, Curcio and colleagues found a remarkable
stability throughout adulthood in cone photoreceptor density throughout the retina including
the fovea and the macula (Curcio, Millican, Allen & Kalina, 1993). With respect to aging-
related structural changes later in the visual pathways, research on post-retinal visual
pathways has not been extensive, and what does exist has been in animal models. In old
monkeys decreased neuron density in both the magnocelllular and parvocellular layers of the
lateral geniculate nucleus (LGN) was reported (Ahmad & Spear, 1993), but this was not due
to a loss in neurons. Rather, it stemmed from a minor decrease in the number of neurons
coupled with an increase in LGN volume. Thus, from at least one study, there is no evidence
that LGN deterioration is contributing to spatial vision loss in older adults. Aging effects on
visual cortical cells have been more noteworthy. Single-unit recording studies in V1
performed on old monkeys found that cortical neurons exhibited lower optimal spatial and
temporal frequencies, less sensitivity to contrast, lower spatial resolution, and lower higher
temporal frequency cut-offs as compared to recordings in young monkeys (Yang, Liang,
Liang, Glasser, Wang, Zhou & Leventhal, 2008; Zhang, Wang, Wang, Fu, Liang, Ma &
Leventhal, 2008). In addition, these cells in older monkeys were accompanied by increased
spontaneous, visually-driven activity and decreased signal-to-noise ratio. Many of these
effects were more pronounced in area V2 as compared to V1 (Wang, Zhou, Ma &
Leventhal, 2005). Results from monkey models suggest that it is conceivable that changes in
cortical cells in V1 and V2 could be producing spatial contrast sensitivity deficits observed
in older adult humans, however, these studies do not confirm that this is the case.

To summarize, 25 years of research on spatial contrast sensitivity under photopic conditions
in older adults converges on the following points. For older adults, spatial contrast
sensitivity loss under photopic conditions increases with increasing spatial frequency. Low
spatial frequency sensitivity at photopic levels is not impacted by aging, or only minimally,
when targets are presented at low temporal frequencies. However, sensitivity for low spatial
frequencies is impaired under rapid temporal modulation, which probably stems from the
reduced temporal sensitivity of the aging visual system. Optical characteristics of the aged
eye reduce spatial contrast sensitivity. These factors include reduced retinal illuminance
(either from pupillary miosis, increased lens density, or both), increased intraocular light
scatter, and increased aberrations. (Not discussed above, it must be acknowledged that
pupillary miosis can also have a positive impact on older adults’ spatial vision by reducing
optical aberration.) Although some psychophysical studies provide data implying there is a
neural contribution, these studies do not provide definitive evidence that neural deterioration
in the visual pathways are practically significant contributions to older adults’ loss in spatial
contrast sensitivity. Reduced ganglion cell density in older donor retina from human studies
and deleterious changes in the spatial and temporal response properties of visual cortical
neurons in old monkey models suggest that neural deterioration in the primary visual
pathway could contribute to older adults’ spatial contrast sensitivity loss. However, it
remains to be determined whether these structural changes actually do impact photopic
spatial vision in older humans.

At this juncture it is constructive to take a look at the magnitude of the threshold elevation
effect in older adults for which the field has persistently been searching for a cause for 25
years. Is the young-old difference in contrast sensitivity of such a magnitude that it is
practically or theoretically significant? The difference between contrast sensitivity for 20-
year-olds and 70-year-olds at approximately 8 cycles/degree ranges from 0.2 to 0.57 log
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units, depending on which study is used as a source (Elliott, 1987; Elliott et al., 1990; Elliott
et al., 2009; Kline et al., 1983; Owsley et al., 1983), with the average young vs. old
sensitivity difference across these studies being approximately 0.3 log units. Is the size of
this aging effect sufficient to merit persistent investigation? Granted, it appears to be a
repeatable effect as conveyed by the number of studies that show statistically significant
young-old differences. But does research on the causes of the effect, i.e. mechanisms, have
pressing significance? Maybe not, for the following reasons. First, as just reviewed, optical
mechanisms largely account for the loss. Furthermore, the size of the young versus old
difference itself is small, and in some studies, the methods used for estimating threshold
may have had a test-retest reliability similar in size to, or exceeding, the effect size.
Although an effect of this size can elevate contrast thresholds for real world targets (Akutsu,
Legge, Ross & Schuebel, 1991; Owsley, Sekuler & Boldt, 1981), there are a variety of
compensatory strategies that older adults can use to increase the visibility of targets, such as
moving closer to the target, scanning the target, increasing viewing time, and if illumination
is low, by increasing illumination. Thus, a 0.3 log unit loss in contrast sensitivity is not apt
to be visually disabling although it may be modestly visually impairing. The primary cause
of the optical degradation in the aged eye is likely to be cataractous lens changes. When
visibility problems impinge on quality of life and visual task performance, older adults elect
cataract surgery, which is covered by health insurance or government health programs in
many countries. Therefore, until the time an older adult undergoes cataract surgery, these
aging-related contrast reductions may be operative, but in the longer term, they are largely
reversible.

None of this is meant to be an argument that we should not seek to improve our
understanding of how aging impacts the visual pathways in the brain. The point is that
research over the past 25 years taken as a whole makes a reasonable case that that aging-
related spatial contrast sensitivity deficits under photopic conditions are largely optical in
origin. Ultimately for many older adults this optical deficit is in large part correctable
through cataract surgery and intraocular lens insertion. Therefore, it is reasonable to suggest
that going forward the field move beyond studies searching for a neural basis of a
phenomenon that is largely optical, is small compared to other types of aging-related visual
deficits, and lacks serious detrimental significance to older adults in the longer term.

3. Scotopic Contrast Sensitivity
A common visual complaint described by older adults including those in good eye health is
difficulty seeing under low illumination or at night. Older adults cite these problems in both
surveys and focus groups. For example they report difficulty reading under dim light
(Kosnik, Winslow, Kline, Rasinski & Sekuler, 1988; Mangione, Berry, Spritzer, Janz, Klein,
Owsley & Lee, 1998; Owsley, McGwin Jr, Scilley & Kallies, 2006b) and modify their
behavior by avoiding night driving (Ball, Owsley, Stalvey, Roenker, Sloane & Graves,
1998; Brabyn, Schneck, Lott & Haegerström-Portnoy, 2005). Poor vision under reduced
light levels and at night in the elderly has been linked to their involvement in motor vehicle
collisions and falls (Källstrand-Ericson & Hidingh, 2009; Massie, Campbell & Williams,
1990; McMurdo, 1991; Mortimer & Fell, 1989). Older adults who report visual difficulty
under poor lighting conditions are also those who are more likely to have scotopic
sensitivity impairment as determined psychophysically (Owsley et al., 2006b; Scilley,
Jackson, Cideciyan, Maguire, Jacobson & Owsley, 2002). Over the past 25 years two lines
of research have addressed low luminance vision problems in older adults – one focus is on
diminished spatial contrast sensitivity under low luminance, which will be discussed here,
and the other is slowing in the rate of dark adaptation, which will be discussed in the next
section.
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Older adults’ loss of spatial contrast sensitivity at low luminance levels (scotopic and
mesopic) is accentuated compared to their loss under photopic conditions including a
decline in older adults’ high spatial frequency cut-off as compared to that for young adults
(Schefrin, Tregear, Harvey & Werner, 1999; Sloane, Owsley & Alvarez, 1988a; Sloane et
al., 1988b). To gain an appreciation for the disadvantage older adults face under scotopic
conditions, consider that young and older adults have the same sensitivity for a 0.5 cycles/
degree grating in daylight, whereas under scotopic conditions older adults require on
average three times the contrast of younger adults in order to discern the target (Schefrin et
al., 1999) (Figure 2). There is also evidence that this deficit increases as background
adaptation level decreases in the mesopic and scotopic ranges, and the deficit may be the
most severe at lower spatial frequencies (Schefrin et al., 1999; Clark, Hardy, Volbrecht &
Werner, 2010). Like photopic spatial contrast sensitivity deficits, mesopic and scotopic
deficits have an optical contribution, but unlike photopic sensitivity, neural factors appear to
play a major role in spatial vision loss under mesopic and scotopic conditions. On first
analysis, it would seem that decreased rod photoreceptor density and ganglion cell density
during the aging process (Curcio et al., 1993; Drucker & Curcio, 1990; Gao & Hollyfield,
1992) are logical candidate mechanisms underlying decreased spatial vision under low
luminance in older adults. It could be the case that the loss in density of these neural
elements and/or the enlargement of rod inner segments whereby they occupy the space left
by necrotic rods (Curcio et al., 1993) increase receptive field center size for ganglion cells.
However psychophysical data have not supported this purported mechanism. Schefrin,
Hauser, & Werner (2004) reasoned that if the retinal ganglion cell receptive field centers
that receive rod input are increased in size in the older adult, then Weber-like behavior (e.g.,
contrast sensitivity increases monotonically with mean luminance level for a spatial target)
should theoretically occur at a lower luminance level for older adults as compared to young
adults. Yet younger and older adults displayed similar mean luminance levels corresponding
to Weber-like behavior onset (Schefrin, Hauser & Werner, 2004), implying that ganglion
cell receptive field centers do not get larger during aging.

Other research has demonstrated an enlargement in Ricco’s area under scotopic conditions,
the largest area over which complete spatial summation holds (Schefrin, Bieber, McLean &
Werner, 1998; Schefrin et al., 1999), which cannot be attributed to optical factors. Schefrin
et al. (1998) suggest that this change in spatial summation could be attributable to a change
in the relative sensitivities of spatially selective channels under scotopic conditions or
possibly synaptic re-wiring at either the retinal or cortical levels. It remains to be determined
what retinal and cortical mechanisms underlie older adults’ impairment in scotopic contrast
sensitivity, and to determine whether this scotopic dysfunction is modifiable through
intervention.

4. Dark Adaptation
As far back as the 1940s it has been known that older adults have decreased light sensitivity
in the dark and this deficit is larger than for photopic thresholds (Birren & Shock, 1950;
Gunkel & Gouras, 1963; Jackson & Owsley, 2000; Jackson, Owsley, Cordle & Finley,
1998; McFarland, Domey, Warren & Ward, 1960; Robertson & Yudkin, 1944; Steven,
1946; Sturr, Zhang, Taub, Hannon, Jackowski, 1997; Weale, 1982b). Although increased
optical density of the aged crystalline lens and pupillary miosis contribute to their scotopic
threshold elevation (increasing threshold by about a 0.10–0.15 log units), more recently it
has been established that these factors are not primarily responsible for this sensitivity loss,
with about a half log unit elevation in threshold or more remaining after these factors are
taken into account (Jackson et al., 1998; Sturr et al., 1997). Only in the past decade or so has
research addressed potential neural mechanisms that underlie the loss. By age 60 to 70 years
old, the density of rod photoreceptors decreases dramatically in the peri-macula as indicated
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by studies on donor retinas (Curcio et al., 1993; Gao, Rayborn, Myers & Hollyfield, 1990).
However, scotopic sensitivity loss in older adults occurs in retinal areas where there is
negligible rod loss and is not accentuated in the areas of heightened rod loss (Jackson et al.,
1998), suggesting that rod loss by itself cannot account for older adults’ sensitivity
impairment in the dark. Furthermore, there is little change in the amount of rod
photopigment, rhodopsin, throughout adulthood (Liem, Keunen, van Norren & van de
Kraats, 1991; Plantner, Barbour & Kean, 1988; van Kuijk, Lewis, Buck, Parker & Kliger,
1991).

An alternative explanation for older adults’ scotopic sensitivity loss is that the visual cycle,
the biochemical pathway responsible for rhodopsin regeneration, is perturbed with age. The
visual cycle includes the production of 11-cis-retinal from retinoid and the subsequent
regeneration of rhodopsin. Slowing of the visual cycle results in a prolongation of dark
adaptation kinetics. Psychophysical dark adaptometry techniques can estimate the time
constants associated with the visual cycle by measuring the recovery of light sensitivity after
exposing the photopigment to an intense light that bleaches the photopigment (Alpern, 1971;
Barlow, 1972; Hecht, Haig & Chase, 1937; Lamb & Pugh, 2004; Rushton & Powell, 1972).
Jackson and colleagues (Jackson, Owsley & McGwin, 1999) studied rod-mediated dark
adaptation in older adults overcoming the methodological shortcomings of the earlier work.
They found that older adults experience substantial delays in adapting to darkness (Figure
3). Specifically, they found that older adults exhibited an increase in the time constant for
the second and third components of rod-mediated dark adaptation (Lamb & Pugh, 2004;
Leibrock, Reuter & Lamb, 1998), indicating slowing in rhodopsin degeneration. These
psychophysical results, later replicated (Owsley, McGwin, Jackson, Kallies & Clark, 2007),
are consistent with results obtained by rod densitometry (Liem et al., 1991). From a practical
everyday standpoint, the problems faced by older adults in adjusting to darkness are
nontrivial (e.g., adjusting to dark indoor environment after being outside on sunny day;
searching for object in dark closet or drawer). The time taken for 70-year-olds to reach pre-
bleach light sensitivity is over 10 minutes longer than for those in their 20s.

What might be contributing to slowed rhodopsin regeneration in older adults? Photoreceptor
function and survival are critically dependent on the retinal pigment epithelium (RPE) and
Bruch’s membrane to regulate the transport of nutrients, fluid, ions, and metabolites to and
from the subretinal space (Bok, 1985). During aging there are changes in the RPE-Bruch’s
membrane complex such as progressive thickening of Bruch’s membrane (Bird, 1992;
Feeney-Burns & Ellersieck, 1985; Newsome, Huh & Green, 1987), accumulation of
extracellular material between the RPE and Bruch’s membrane (Curcio, Millican, Bailey &
Kruth, 2001; Pauleikhoff, Harper, Marshall & Bird, 1990), reduced hydraulic conductivity
of Bruch’s membrane (Starita, Hussain, Pagliarini & Marshall, 1996), and changes in the
structure of RPE cells (Kornzweig, 1979). These changes could compromise metabolic
exchange by causing a diffusion barrier between the choroid and photoreceptors, causing a
localized scarcity of vitamin A, critical for rod photoreceptor function (Dowling & Wald,
1958; Kemp, Jacobson & Faulkner, 1988). Psychophysical data are consistent with this
explanation. In a recent study (Owsley et al., 2006a) older adults’ dark adaptation was
measured before and after they received a 30-day, high-dose course of retinol (pre-formed
vitamin A). Older adults receiving the retinol course had rod-mediated sensitivity recovery
that was faster as compared to a placebo-control group. The responsiveness of rod-mediated
dark adaptation to a short course of high-dose retinol is consistent with the hypothesis that
depositions and other structural changes in the RPE/Bruch’s membrane complex in aging
caused a diffusion barrier that disrupts normal metabolic exchange, leading to a local
shortage of vitamin A. Although this study does not provide direct evidence of an in vivo
localized nutritional deficiency, it does highlight a possible pathway by which rod
dysfunction and degeneration could occur during aging, and why dark adaptation is delayed
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in the elderly. These data cannot inform us of the possible site of the dysfunction that limits
the availability of retinoids necessary for visual sensitivity recovery in older adults. As
mentioned above, increased systemic vitamin A concentrations may force additional vitamin
A across Bruch’s membrane into the RPE cells, via mass action, or, alternatively, increased
levels of vitamin A may overcome possible impaired transport between the RPE cells and
rod outer segments.

Slowing in cone-mediated dark adaptation in the fovea has also been reported for persons in
their 60s and 70s (Coile & Baker, 1992). The slowing of sensitivity recovery was closely
related to pigment regeneration rate implying that the latter contributes to older adults’ cone-
mediated delay in sensitivity recovery (see also (Keunen, Norren & Meel, 1987; Kilbride,
Hutman, Fishman & Read, 1986; van Norren & van Meel, 1985)). However, another study
(Eisner, Fleming, Klein & Mauldin, 1987) found that the cone-mediated time constant for
sensitivity recovery was unchanged between the 60s to the 80s, suggesting potential
individual differences among older adults, possibly a leveling off of aging-related changes
after the 70s, or/and methodological differences among studies (e.g., bleach magnitude).

Rod-mediated dark adaptation delays are also a hallmark of early AMD (Haimovici, Owens,
Fitzke & Bird, 2002; Owsley, Jackson, White, Feist & Edwards, 2001a; Owsley et al., 2007;
Steinmetz, Haimovici, Jubb, Fitzke & Bird, 1993). Histopathological studies on human
donor retinas with AMD indicate a predilection for parafoveal loss of rod photoreceptors
over cones in early nonexudative disease, with foveal cone loss not being observed until
later in AMD progression (Curcio, Medeiros & Millican, 1996; Medeiros & Curcio, 2001).
Although both rods and cones in the parafovea degenerate in AMD, rod loss precedes and is
more severe than cone loss in most donor retinas evaluated, and even in the exudative form,
there is greater retention of cones versus rods. These findings have lead to the question as to
whether during the course of aging, accentuated slowing in the recovery during rod-
mediated dark adaptation is a marker for those older adults at high risk for the eventual
development of AMD (Jackson, Curcio, Sloan & Owsley, 2004; Jackson, Owsley & Curcio,
2002). Prospective data are needed to establish whether rod- delays pre-date the emergence
of the disease. If so, this line of research not only sheds light on mechanisms of early AMD
pathogenesis, but is also relevant for clinical research. For example, a psychophysical
biomarker could be used to identify older adults at high-risk for early AMD and thus most
appropriate for enrollment in clinical trials evaluating treatments for early AMD (Jackson &
Edwards, 2008). In addition, a functional test could serve as an outcome measure for
evaluating the impact of treatment interventions, particularly in early AMD where visual
acuity remains good and thus is insensitive indicator of efficacy or proof of concept for early
disease or preventative interventions (Csaky, Richman & Ferris III, 2008). Cone-mediated
dark adaptation delays have also been reported for older adults with early AMD or for those
at high-risk for early AMD because of fundus appearance or exudative disease in the fellow
eye (Binns & Margrain, 2007; Dimitrov et al., 2008; Eisner, Klein, Zilis & Watkins, 1992;
Sunness, Rubin, Applegate, Bressler, Marsh, Hawkins & Haselwood, 1997; Sunness, Rubin,
Broman, Applegate, Bressler & Hawkins, 2008). Thus, prospective work to identify
potential aging-related biomarkers for AMD should also address whether cone dysfunction
in older adults pre-dates the emergence of AMD.

5. Processing of Time-Varying Targets
Many older adults have deficits in visually processing temporal information, which can
hamper the visual performance of everyday tasks. For example, slowed visual processing
speed in older adults increases their risk for motor vehicle collision involvement even in the
absence of impaired visual acuity, contrast sensitivity, and visual field sensitivity (Cross,
McGwin, Rubin, Ball, West, Roenker & Owsley, 2009; Owsley, Ball, McGwin, Sloane,
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Roenker, White & Overly, 1998; Rubin, Ng, Bandeen-Roche, Keyl, Freeman & West,
2007), increases the time it takes them to complete visual tasks of everyday living such as
finding an item on a shelf or reading a prescription bottle (Ball, Berch, Helmers, Jobe,
Leveck, Marsiske, Morris, Rebok, Smith, Tennstedt, Unverzagt, Willis & Group, 2002;
Edwards, Wadley, Myers, Roenker, Cissell & Ball, 2002; Owsley, McGwin, Sloane, Stalvey
& Wells, 2001b), and is associated with problems with ambulatory mobility (Owsley &
McGwin, 2004). Older drivers with elevated thresholds in a coherent motion task had
difficulties with detecting signs and hazards on the road, took longer to drive a route, and
had worse performance evaluations as assessed by raters specialized in on-road assessment
(Wood, 2002; Wood, Anstey, Kerr, Lacherez & Lord, 2008). Those older adults who
reported more difficulty with certain driving maneuvers were also more likely to have
impaired performance on speed discrimination, and estimates of the direction of heading and
time to collision (Raghuram & Lakshminarayanan, 2006). In this section, we review what
we have learned in the past 25 years about how aging impacts temporal sensitivity and
motion perception, and in the next section, we address aging and slowed visual processing
speed.

It has been known for over 50 years that critical flicker fusion (CFF) is decreased in older
adults (Coppinger, 1955; McFarland, Warren & Karis, 1958; Misiak, 1947). But only in the
past 25 years has research comprehensively explored older adults’ problems in processing
time-varying targets. Temporal contrast sensitivity is impaired in older adults, more so at
higher temporal frequencies than at lower. The deficit cannot be wholly accounted for by
optical characteristics of the aged eye (Kim & Mayer, 1994; Mayer, Kim, Svingos & Glucs,
1988; Tyler, 1989; Wright & Drasdo, 1985). Measurements of the impulse response function
(related to the temporal contrast sensitivity function) in older adults using a double-pulse
method showed that the amplitude of both the excitatory and inhibitory responses is reduced
in later adulthood (Shinomori & Werner, 2003). There were also individual differences;
some older adults age ≥ 70 years old showed an inhibitory phase in the response amplitude
while others did not. Although a retinal locus for these changes is likely to be contributory,
post-retinal sites(s) may also play a role (Gerth, Sutter & Werner, 2003).

Ball and Sekuler (1986) were the first to demonstrate impaired motion perception in older
adults that cannot be accounted for by spatial vision or cognitive differences between young
and older observers. Specifically, they found that older adults were less able to discriminate
between two directions of motion as depicted by random dot displays as compared to young
adults. Since this report 25 years ago, many studies have probed motion-processing deficits
in the elderly. For example, elevations in both detection and discrimination thresholds in a
variety of motion tasks have been documented for older adults suggesting a reduced
sensitivity to motion and impaired abilities to identify the direction of movement and
differentiate differences in speed (Anderson & Atchley, 1995; Atchley & Anderson, 1998;
Norman, Ross, Hawkes & Long, 2003; Raghuram, Lakshminarayanan & Khanna, 2005;
Snowden & Kavanagh, 2006; Tran, Silverman, Zimmerman & Feldon, 1998; Trick &
Silverman, 1991). There is preliminary evidence that these deficits do not appear gradually
during the course of adulthood, but rather, may emerge in late adulthood around the 70s
(Bennett, Sekuler & Sekuler, 2007). Furthermore, increasing the duration of the stimulus
allows some older adults to improve their performance to the level of young adults (Bennett
et al., 2007; Raghuram et al., 2005), which suggests that extending viewing time for older
adults in a real-world performance task dependent on motion processing may at least partly
compensate for deficits.

Bennett and colleagues (Bennett et al., 2007) found deficits in both detection sensitivity and
direction discrimination for coherent global flow when measured in the same older adults
(Figure 4). They found that direction judgments were more difficult for older adults than
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mere detection, persisted even after adjustment for aging-related motion sensitivity
differences, and that there was larger divergence between a percept of global flow and
perceiving the actual direction of flow among older adults than among young adults. A
higher level of additive intrinsic noise and a wider bandwidth for directionally tuned cortical
mechanisms was needed to model the older adult data as compared to modeling the young
data. These findings in older adults are consistent with recent neurophysiological studies in
old monkeys finding that, compared to young monkeys, neurons in the primary visual cortex
of old monkeys had increased internal noise and reduced orientation and directional
selectivity (Schmolesky, Wang, Pu & Leventhal, 2000; Wang et al., 2005). The cells’
direction and orientation selectivity could be improved by local administration of GABA
and GABA agonists, with some cells improving to the level of cells from young monkeys
(Leventhal, Wang, Pu, Zhou & Ma, 2003). These intriguing results not only provide
evidence of a decreased inhibition in older visual cortex but that it is also reversible, at least
in an animal model.

Psychophysical measurements of motion perception imply that there is indeed decreased
visual cortical inhibition in older adults. Betts and colleagues (Betts, Taylor, Sekuler &
Bennett, 2005) used a task previously developed (Tadin, Lappin, Gilroy & Blake, 2003) to
study surround inhibition when processing a high-contrast moving pattern. Tadin et al.
(2003) found that young adults needed longer stimulus durations to discriminate the
direction of a moving high-contrast grating, as compared to the shorter durations required
for the task when a low contrast grating was used. This effect was interpreted as evidence of
center-surround spatial suppression whereby a neuron’s response to a high contrast stimulus
is inhibited when the stimulus boundaries extends beyond its receptive field (Angelucci &
Bullier, 2003; Sceniak, Ringach, Hawken & Shapley, 1999). When Betts et al. (2005)
measured the performance of older adults in this task, they found that older adults needed
briefer, not longer, durations to discrimination motion direction for large, high contrast
gratings than did young adults. This pattern of findings suggests the existence of decreased
visual cortical inhibition in the older adult cortex for motion-sensitive neurons. Following
from Leventhal’s work in the senescent monkey model (Leventhal et al., 2003), the
candidate mechanism for this decreased suppression could be reduced GABAergic
functioning in the older brain. Although the Betts et al. study illustrates conditions where
older adults could be characterized as having a superior motion perception ability, there also
could be some adverse perceptual consequences to this phenomenon (Tadin & Blake, 2005).
Older adults displaying this motion perception advantage may have difficulty in ignoring
background motion since it is a large (often high-contrast) stimulus field, while at the same
time having a weaker sensitivity to smaller, moving figures. This is a common stimulus
condition while driving where the “figure” could be an obstacle (e.g., another car or
pedestrian), and the “ground” is the rest of the roadway environment. This perceptual
characteristic in older adults might contribute to driving problems faced by some older
adults (e.g., turning left across oncoming traffic), an issue worthy of further investigation.

Several studies have found an aging-related deficit in the ability to use visual motion to
perceive aspects of a 3-d world and spatial layout. For example, older adults have exhibited
deficits in using motion to extract self-motion information (Warren, Blackwell & Morris,
1989), to perceive shape (Blake, Rizzo & McEvoy, 2008; Norman, Bartholomew & Burton,
2008; Norman, Clayton, Shular & Thompson, 2004; Norman, Dawson & Butler, 2000; Wist,
Schrauf & Ehrenstein, 2000), and to identify collision paths (Andersen, Cisneros, Saidpour
& Atchley, 2000; Anderson & Enriquez, 2006). Under certain stimulus conditions older
adults also show deficits in the perception of biological motion (Billino, Bremmer &
Gegenfurtner, 2008; Norman, Payton, Long & Hawkes, 2004), which may stem from
difficulties in efficiently integrating local motion cues with global motion information (Pilz,
Bennett & Sekuler, 2010). All or some of these deficits could be contributing to older adults’
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difficulties in the performance of everyday tasks such as mobility, driving, visual search,
and objective recognition (Ball et al., 2002; Edwards et al., 2002; Owsley & McGwin, 2004;
Owsley et al., 2001b; Wood et al., 2008). However, research to date has largely ignored an
examination of links between aging-related deficits in motion processing and perceiving and
acting in a 3-d world, with a few noteworthy exceptions on driving and the visibility of
pedestrians in the roadway environment (Raghuram & Lakshminarayanan, 2006; Tyrrell,
Wood, Chaparro, Carberry, Chu & Marszalek, 2009; Wood, 2002; Wood et al., 2008; Wood,
Tyrrell & Carberry, 2005).

6. Visual Processing Speed
Slowing in visual processing speed is a common characteristic of aging, and has been well
established as a phenomenon since the 1970s (Kline & Birren, 1975; Walsh, Williams &
Hertzog, 1979; Walsh, 1976). Many older adults require more time than younger adults to
detect, discriminate, recognize, or identify visual targets, and this slowing contributes to
higher-order processing problems characteristic of cognitive aging (e.g., associative
learning, working memory, inhibition) (Salthouse, 1991; Salthouse, 1993; Salthouse, 1994;
Salthouse & Meinz, 1995). These deficits occur even in older adults who do not have
conditions that cause dementia (e.g., Alzheimer’s disease, cerebrovascular accident). Ball’s
work has demonstrated that aging-related slowing in visual processing speed is exacerbated
by increasing attentional task demands (e.g., divided attention tasks) and by increasing
visual clutter (e.g., distracting stimuli) (Ball, Edwards & Ross, 2007; Ball, Roenker & Bruni,
1990). That is, in performing laboratory tasks, the display duration needed by many older
adults to complete a task under dual task conditions with distracting stimuli is
proportionately greater than what is needed by young adults. Much of the work in this field
has made use of a task originally described by Ball, Sekuler, and others called the useful
field of view task (Ball, Beard, Roenker, Miller & Griggs, 1988; Ball et al., 2007; Ball,
Roenker, Wadley, Edwards, Roth, McGwin, Raleigh, Joyce, Cissell & Dube, 2006; Ball et
al., 1990; Edwards, Ross, Wadley, Clay, Crowe, Roenker & Ball, 2006; Sekuler & Ball,
1986; Sekuler, Bennett, & Mamelak, 2000). The task has been refined over the years. The
essential features of the task are that the observer is asked to identify a central target while
simultaneously determining the location of a peripheral target, which on some trials is
embedded in a field of distractors. Performance is measured by the minimum stimulus
duration needed to perform the task (there is no motor response component).

It is important to emphasize that slowed visual processing speed during later adulthood is
not inevitable in that there are wide individual differences, with some older adults exhibiting
processing speeds like those of young adults, and others having serious slowing (Ball,
Owsley, Sloane, Roenker & Bruni, 1993; Rubin et al., 2007). Unlike other types of visual
psychophysical deficits discussed above, a great deal of research has already demonstrated
that slowed processing speed in older adults has negative implications for their everyday
life. Slowed visual processing in the elderly is associated with increased crash risk (Ball et
al., 2006; Owsley et al., 1998; Rubin et al., 2007; Cross et al., 2009), increased fall risk
(Sims, Owsley, Allman, Ball & Smoot, 1998; Staplin, Gish & Wagner, 2003), mobility
problems such as transitioning from sitting to standing (Owsley & McGwin, 2004; Riolo,
2003), and increased time needed to complete visual tasks typical of everyday life (Owsley
et al., 2001b; Owsley, Sloane, McGwin & Ball, 2002). What is particularly promising is that
for some older adults, processing speed can be improved, i.e. “speeded up”, through practice
(Ball et al., 1988; Ball et al., 2002; Edwards et al., 2002; Roenker, Cissell, Ball, Wadley &
Edwards, 2003; Sekuler & Ball, 1986). This training intervention, described in detail
elsewhere (Ball et al., 2007), basically consists of computer-based nonverbal exercises that
are visually presented very briefly and involve practice in the detection, identification,
discrimination, and localization of visual targets. Speed of processing training focuses on
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improving the speed of visual search and the ability to perform one or more attentional tasks
quickly. During training, the stimulus duration of the visual display in each visual task (e.g.,
discrimination) is systematically reduced and the tasks are made increasingly more difficult
(discrimination task in central vision alone versus discrimination and localization of a
peripheral target).

The speed of processing gains by older adults have been shown in one study to be enduring
up to five years (Willis, Tennstedt, Marsiske, Ball, Elias, Koepke, Morris, Rebok,
Unverzagt, Stoddard, Wright & the ACTIVE Study Group, 2006). Most importantly,
intervention evaluations including multi-site randomized trials have demonstrated that faster
processing speed in older adults, or prevention of further slowing in processing speed as one
ages, enhances several aspects of everyday functioning and health in older adults.
Specifically, visual processing speed training led to more efficient completion of everyday
visual tasks (less time needed) (Edwards et al., 2002; Edwards, Wadley, Vance, Roenker &
Ball, 2005), reduced motor vehicle collision risk (Ball, Edwards, Ross & McGwin, in press),
improved health-related quality of life (Wolinsky, Unverzagt, Smith, Jones, Wright &
Tennstedt, 2006), reduced risk of clinical depression or depressive symptoms (Wolinsky,
Mahncke, Weg, Martin, Unverzagt, Ball, Jones & Tennstedt, 2009; Wolinsky, Vander Weg,
Martin, Unverzagt, Ball, Jones & Tennstedt, 2009), and improvements in self-rated health
(Wolinsky, Mahncke, Vander Weg, Martin, Unverzagt, Ball, Jones & Tennstedt, 2010).

The modifiability of visually processing speed in the context of reading speed in older adults
is relevant for understanding whether it is reasonable to expect that older adults with a
central scotoma due to AMD can be trained to increase their reading speed in the retinal
periphery. The term “visual span” with respect to reading refers to a spatial property of the
visual field defined as the number of characters that can be recognized with no eye
movement (Legge, Ahn, Klitz & Luebker, 1997; O”Regan, 1990). The visual span is smaller
in the retinal periphery and has been shown to limit reading speed (Legge, Mansfield &
Chung, 2001). Perceptual training can enlarge the visual span in young adults with normal
peripheral vision which is accompanied by an increase in reading speed (Chung, Legge &
Cheung, 2004). More recently, this research group (Yu, Cheung, Legge & Chung, 2010) has
extended these findings to older adults with normal vision (Figure 5). The training benefits
were smaller than those observed for young adults, which may be related to older adults’
reduced retention of training gains from session to session (Yu et al., 2010). In light of
robust training gains seen in the visual processing speed training studies described above,
future work should address whether larger reading speed benefits may be possible if a
speed-of-processing training component were incorporated into a perceptual training
program to improve reading speed in the periphery.

7. Other Intriguing Issues in Vision and Aging Research
Older adults’ threshold elevations for visually complex stimuli, i.e., second-order stimuli,
are more accentuated than for simpler stimuli, i.e. first order stimuli (Faubert & Bellefeuille,
2002; Habak & Faubert, 2000; Habak, Wilkinson & Wilson, 2009; Tang & Zhou, 2009). In
vision research, particularly in the study of motion perception, first- and second-order
stimuli have been exploited to improve our understanding of early visual processing, with
first-order stimuli defined by luminance modulation, and second-order by features such as
contrast, texture, or depth. At least partly different mechanisms underlie the processing of
first versus second-order visual stimuli (e.g., (Baker, 1999; Lu & Sperling, 2001)), and the
computational models developed to account for their visual processing are also different
(e.g., Chubb & Sperling, 1989; Wilson, Ferrar & Yo, 1992). Although there are varying
reports in the literature, both types of stimuli appear to be processed within the same
retinotopically-organized areas of cortex (e.g., Nishida, Sadaki, Murakami, Watanabe &

Owsley Page 13

Vision Res. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Tootell, 2003), yet some areas may have cells that prefer second-order stimuli (e.g.,
Dumoulin, Baker, Hess & Evans, 2003). Findings of aging-related visual deficits that are
more severe for second-order stimuli as compared to first-order stimuli have prompted the
proposal (Faubert, 2002; Habak & Faubert, 2000) that older adults’ visual abilities using
second-order stimuli are more vulnerable because larger, more complex, and simultaneously
engaged neural networks are required; in essence, second-order stimulus processing is more
vulnerable than first-order processing because the computational load is increased. Further
research is needed to evaluate the testable implications of this hypothesis for visual tasks
and behaviors in everyday life. More recently, Tang and Zhou (2009) have pointed out,
based on cross-sectional data, that aging-related deficits for second-order stimuli emerge
earlier during the course of adulthood than do deficits to first-order stimuli, although the
time course of decline is slower for first-order stimuli. A question that arises from this body
of work is what sorts of visual tasks or behaviors (e.g., object recognition, face recognition,
reading, route finding, driving) would be hampered at what point during adulthood given
these reported selective vulnerabilities in visual processing, and what tasks are immune to
aging effects. Furthermore, it is possible that the identification of such tasks, their
characteristics, and their neural loci could help uncover the mechanistic underpinnings of
visual processing deficits in the older brain, or at least set the field on a course to uncover
these mechanisms. For example, Habak, Wilkinson & Wilson (2008) showed that older
adults have a processing speed similar to that of young adults when making same-view face
discriminations, yet their processing speed is slowed when the task involves different views
of the face. Their performance does not reach young adult levels even by increasing stimulus
duration. The authors (Habak et al., 2008) point out that cortical activation during same-
view face discrimination involves more extensive regions in older adults than young adults
(Cabeza, Anderson, Locantore & McIntosh, 2002; Grady, 2002; Grady, McIntosh, Horwitz
& Rapoport, 2000). They (Habak et al., 2008) argue, however, that the increase in cortical
activation areas may not be sufficient for visually complex face tasks such as integrating
face information across multiple facial views, or, alternatively, older adults’ broader cortical
activation may commandeer networks that would normally have been used for more
complex face processing.

Research has suggested that there is considerable neural adaptation in the aging visual
system that supports the preservation, or maintenance, of certain aspects of visual perception
during the adult life-course. As the discussion above implies, the field has largely been
focused on how visual function is impaired as we grow older. But equally interesting is what
aspects of visual processing and visual behavior are preserved and how does the brain
“accomplish” this. Studying the instances of stability of visual function during aging could
provide clues as to mechanisms of neural adaptation and plasticity in the central nervous
system that mitigate the negative ramifications of aging-related structural and physiological
changes in the brain. Examples of the preservation of function are thus quite interesting, and
suggest that if the mechanisms supporting maintenance of function are identified, this
potentially could inform the development of interventions to preserve visual functions that
normally succumb to aging-associated degeneration. McIntosh and colleagues (McIntosh,
Sekuler, Penpeci, Rahah, Grady, Sekuler & Bennett, 1999) showed that both young and
older adults were equally adept at a visual short-term memory task requiring the
discrimination of two sine wave gratings. Yet positron emission tomography (PET)
suggested that the neural systems used by young versus old adults were different in some
respects. Occipital, temporal and inferior cortices and caudate were involved regardless of
age. But for older adults, the functional interconnections between these regions were much
weaker and the older adults recruited areas not used by younger adults to perform the task,
namely medial temporal and dorsolateral prefrontal cortices (see also Bennett, Sekuler,
McIntosh & Della-Maggiore, 2001; Della-Maggiore, Sekuler, Grady & Bennett, 2000).

Owsley Page 14

Vision Res. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Along similar lines, there are a number of examples in the vision and aging literature where
a key aspect of visual perception remains constant throughout adulthood even though related
aspects of the visual function are impaired -- for example orientation tuning as estimated
psychophysically, even though older adults require more contrast to discriminate the
orientation of gratings (Delahunt, Hardy & Werner, 2008). Other examples include the
renormalization of chromatic mechanisms after cataract surgery (Hardy, Frederick, Kay &
Werner, 2005; Delahunt, Webster, & Ma, & Werner, 2004), perceived contrast at
suprathreshold levels (Beard, Yager & Neufeld, 1994), and blur perception (Elliott, Hardy,
Webster & Werner, 2007; Jung & Kline, 2010) (see also Enoch, Werner, Haegerstrom-
Portnoy, Lakshminarayanan & Rynders, 1999; Werner, 1996 for a discussion of these
issues). These phenomena highlight a potentially remarkable tendency of the aging nervous
system, at least under some circumstances, to reorganize or adapt itself to preserve visual
perception and the visual behaviors it supports; these examples also highlight the possibility
that deteriorating functions not spontaneously re-calibrated by the aging brain could be
modified by perceptual learning through training or practice regimens. As discussed earlier,
visual processing speed has already been shown to be amenable to improvement in older
adults through practice (Ball et al., 2007; Yu et al., 2010), and thus, there may be reason for
optimism that other aspects of visual processing can also be enhanced in older adults.

8. Conclusion
The motivation for research on vision and aging should spring from significance. Research
on vision and aging over the next 25 years would best serve science and society if motivated
by a theoretical framework or a practical need. It is not enough to describe and catalog all
the various ways that older adults compares or fails to compare to younger adult’s vision,
and unfortunately there have been some instances of this approach to research in the past 25
years. Of course there is always the possibility of a serendipitous discovery when engaged in
description, but it can be argued that the most exciting and efficient scientific efforts will be
those that programmatically build a basic evidence-base that also has the potential to address
public health priorities. Significance in aging and vision research can assume a few different
forms, and when we plan future scientific endeavors on this topic, it is useful to ask
ourselves the following questions. First, how does the research contribute to our
understanding of the fundamental processes involved in visual perception? Not just about
aging per se, but theories and models about how we see. Just as human development is part
of a comprehensive understanding of a visual phenomenon, so is aging. Second, is the
research directed at a fundamental visual process that is critical in performing a task or
behavior important in everyday life? Here it is important to keep in mind that just because
one can demonstrate an aging-related deficit or difference in some task in the psychophysics
laboratory, this does not necessarily mean that this deficit is relevant to understanding older
adults’ everyday visual performance or behavior difficulties. Whether a deficit negatively
impacts everyday function and well-being is actually an empirical question in that everyday
ramifications of the deficit must be established. Third, does an aging-associated deficit,
particularly if it is accentuated in some individuals, serve as an advance “warning sign” of a
degenerative condition of aging (e.g., AMD, glaucomatous optic neuropathy)? How could
knowledge of this putative signal and its underlying causes be exploited to help understand
the pathogenesis of the condition and ultimately to prevent or arrest the development of the
disease? By this third point, we are not arguing that all aging and vision research has to have
clinical significance. Yet researchers in aging and vision should always be mindful that
degenerative conditions of the eye and brain are prevalent in later adulthood, and discoveries
in aging and vision process can be relevant to these pathogenetic processes.

In general, there is an under-appreciation of individual differences in the aging of visual
function. The most popular study design in the field to date involves the comparison of
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young versus old group differences. While there are undoubtedly “general principles” in the
aging of visual function (some of which are discussed in this article), older adults are
individuals with varying lifestyle, genetic, and environmental exposures during the life-
course that can theoretically impact ocular and brain structure and function in later life in
different ways. For this reason, there is little theoretical basis for assuming that a visual
processing deficit demonstrated in a handful of older adults is in fact universal. Differences
in genetic, environmental and lifestyle factors in older adults could increase or reduce the
risk of certain types of aging-associated visual deficits, an issue that has received scant
attention in previous research. By methodological necessity such studies typically require
large sample sizes, yet some of the most exciting discoveries in vision and aging research
from an etiologic perspective may be those that identify the characteristics of those who
visually age well versus those who exhibit more serious visual losses that interfere with
visual performance and quality of life. Once those markers, causes, and/or risks are
identified, research can focus on using this information to develop interventions to prevent,
reduce, or side-step their impact, the ultimate goal being to preserve a high-level of visual
function into the advanced years of adulthood.
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Figure 1.
Adapted from Burton et al. (1993). Comparison of older adults’ loss in photopic spatial
contrast sensitivity using interference fringes (labeled “Neural” Contrast Sensivity) and
older adults’ vision loss in a direct viewing spatial contrast sensitivity task from Owsley et
al. (1983) where the optics were not bypassed (“Neural + Optical” Contrast Sensitivity). The
contrast sensitivity loss for interference fringes accounts for less than half of the contrast
sensitivity loss at higher spatial frequencies in the direct view task. This suggests that older
adults’ spatial contrast sensitivity loss under photopic conditions is largely optical in origin.

Owsley Page 27

Vision Res. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
From Schefrin et al. (1999). Average scotopic spatial contrast sensitivity for three age
groups. Squares signify 20 to 40-year-olds, circles 41 to 60 –year-olds, and triangles 61 to
88-year-olds. Note that these losses are sizeable at low spatial frequencies and cannot be
attributed to optical factors, suggesting a neural origin.
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Figure 3.
From Jackson et al. (1999). Dark adaptation as a function of decade. Arrows label the
portion of the function representing the rod-cone break and the second and third components
of rod-mediated dark adaptation. Note that the funcs shift to the right with increasing
decade, indicating a slowing in the rate of dark adaptation during aging.
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Figure 4.
From Bennett et al. (2007). Panel A shows sensitivity to motion for various age groups as a
function of stimulus duration. The inset shows the data after an arcsine transformation. Note
that adults ≥ 70 years old how impaired motion sensitivity. Panel B shows error magnitude
in judging direction of motion (on trials for which motion was detected) for various age
groups as a function of stimulus duration. Note that adults ≥ 70 years old exhibited larger
direction judgment errors.
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Figure 5.
From Yu et al. (2010). Scatterplot showing relationship between pre-training reading speed
and post-training reading speed for older adults with normal vision. The reading task was
performed at 10° in the periphery. Those undergoing training are solid symbols, controls are
open symbols. U and L stand for upper and lower visual field, respectively, for location of
the test. 2.5° and 3.5° refer to print size. Note that most filled symbols from the training
group are above the diagonal indicating improved reading speeds in older adults following
training.
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