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Abstract
We conducted a two-stage genome-wide association study of renal cell carcinoma (RCC) in 3,772
cases and 8,505 controls of European background from 11 studies, and followed up 6 SNPs in
three replication studies of 2,198 cases and 4,918 controls. Two loci on the regions of 2p21 and
11q13.3 were associated with RCC susceptibility below genome-wide significance. Two
correlated variants (r2 = 0.99 in controls), rs11894252 (P = 1.8×10−8) and rs7579899 (P =
2.3×10−9), map to EPAS1 on 2p21, which encodes hypoxia-inducible- factor-2 alpha, a
transcription factor previously implicated in RCC. The second locus, rs7105934, at 11q13,
contains no characterized genes (P = 7.8×10−14). In addition, we observed a promising association
on 12q24.31 for rs4765623 which maps to the scavenger receptor class B, member 1 (SCARB1)
gene (P = 2.6×10−8). Our study reports novel genomic regions associated with RCC risk that may
lead to new etiological insights.

Kidney cancer accounts for approximately 2% of new cancer diagnoses worldwide1 and is
the deadliest urologic malignancy with an estimated 5-year survival rate between 50% and
60%2. Approximately 80–90% of kidney cancers develop in the renal parenchyma, and are
known as renal cell carcinoma (RCC). Epidemiological studies have conclusively identified
three risk factors, all modifiable: hypertension, obesity and smoking2, 3. Furthermore, there
is evidence that genetic factors influence susceptibility to RCC; for instance, the life-time
risk increases approximately twofold for those with a first-degree relative with RCC4–7.
The tumor is also commonly observed in pedigrees with von Hippel-Lindau (VHL)
syndrome as well as other genetic disorders, such as hereditary papillary renal cell
carcinoma, Birt-Hogg-Dubé syndrome, and hereditary leiomyomatosis and renal cell cancer
(HLRCC)2, 8. However, familial RCC cases represent less than 5% of RCC overall9. To
date, candidate gene studies have not yielded genetic variants that conclusively replicate. In
search of common genetic variants with moderate effect sizes, we have therefore conducted
a genome-wide association study (GWAS) of RCC.

We report the findings of a two-stage GWAS of RCC, based on two parallel scans followed
by replication of six notable SNPs in three studies. The two scans were coordinated by (i),
the International Agency for Research on Cancer (IARC) and the Centre National de
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Génotypage (CNG), based on 2,639 RCC cases and 5,392 controls of European background
drawn from 7 studies conducted in Europe with the Illumina Infinium HumanHap 300 and
610 Bead Chips; and (ii), the U.S. National Cancer Institute (NCI) scan, based on 1,453
RCC cases and 3,531 controls of European background from 4 studies with the Illumina
Infinium HumanHap 500 and 610 chips (Supplementary Table 1, Online Methods and
Supplementary note). All subjects from the IARC/CNG study were genotyped at the CNG
with the exception of 305 cases and 323 controls from Russia that were genotyped at the
Center “Bioengineering” and at the “Kurchatov Institute” in Moscow. All subjects from the
NCI study were scanned at the NCI Core Genotyping Facility. In addition, 1,438 controls
from the Wellcome Trust Case-Control Consortium were genotyped at the Sanger Institute,
UK10. All RCC cases were defined on the basis of the International Classification of
Diseases for Oncology, Second Edition (ICD-O-2), and included all cancers that were coded
as C64.

Comparable quality control metrics were applied to the two scanned data sets and following
sample and SNP exclusions, genotype data for up to 577,547 SNPs were available for 2,461
cases and 5,081 controls in the IARC/CNG scan, while data for 585,576 SNPs were
available for 1,311 cases and 3,424 controls in the NCI scan (Online Methods). Primary
analyses were conducted using unconditional logistic regression models for genotype trend
effects (1 degree of freedom) and adjusted for sex, country, eigenvectors, and study for the
USA (Online Methods). In order to compute summary findings across both scans, a meta-
analysis was performed using a fixed effects model with inverse variance weighting
followed by a pooled analysis with individual level data. Quantile-quantile plots of the
combined results showed little evidence for inflation of the test statistics compared to the
expected distribution (λ = 1.018, overall, Supplementary Fig. 1). Genomic control was
subsequently applied, and all reported p-values and confidence intervals were corrected for
the observed inflation. A Manhattan plot summarizing the combined results of 586,069
SNPs is shown in Supplementary Figure 2.

Based on the meta-analysis using SNPs genotyped in both centers, six SNPs associated with
RCC at a significance level approaching or surpassing genome-wide statistical significance
(P < 5×10−7 in two-tailed tests)10 were selected for replication in three additional case-
control series from Europe and the US (2,198 RCC cases, 4,918 controls) (Supplementary
Table 1). Performing genomic control showed that hidden population substructures or
differential genotype calling between cases and controls did not substantively influence
these results (Online methods). Three SNPs on 2p21 (rs11894252, rs7579899 and
rs6758592) were selected as well as single SNPs on 3q26.31 (rs9839909), 11q13.2
(rs7105934), and 12q24.31 (rs4765623). For the replication study, rs11894252 could not be
optimized; thus a highly correlated SNP, rs1867785 (r2 = 1.0 in HapMap CEU11), was
genotyped (Online Methods). For the other five SNPs, there was a high concordance
between genotype calls on the Illumina bead chip and optimized TaqMan assays in both
centers (100% for IARC/CNG and 98.9–100% for NCI)12. Because rs9839909 (3q26.31)
and rs7105934 (11q13.2) were not included on the Illumina HumanHap 300 bead chip,
subjects genotyped with this chip in the GWAS (908 cases and 2,415 controls) were also
genotyped by TaqMan and included in the replication phase. In a meta-analysis of the
pooled GWAS and replication results, SNPs in three of the four regions achieved genome-
wide significance and mapped to 2p21, 11q13.3 and 12q24.31 (Table 1 and Fig. 1).
Imputing SNPs in the implicated regions 2p21, 11q13.3 and 12q24.31, using the 1000
Genomes data13 as scaffold did not reveal additional SNPs with stronger, independent
associations to those genotyped directly (Supplementary Table 2).

In the combined analysis14, two SNPs on 2p21 achieved genome-wide significance,
rs7579899 (P = 2.3×10−9; per allele odds ratio (OR) = 1.15, 95% confidence interval (CI):
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1.10–1.21) and rs11894252 (P = 1.8×10−8; OR = 1.14, 95% CI: 1.09–1.20). Further,
rs7579899 was significant in the independent replication analysis (P = 0.008; OR = 1.11,
95% CI: 1.03–1.20) whereas rs1867785, a highly correlated surrogate for rs11894252,
suggested a comparable effect that did not achieve independent significance (P = 0.06; OR =
1.08, 95% CI: 1.00–1.16) (Table 1). When stratified by either SNP marker, the signal of the
second was extinguished (data not shown). Together with the high correlation between the
two markers (r2 = 0.99 in controls), these results point towards a single common
susceptibility locus. An additional SNP rs4952818 achieved genome-wide significance in
the combined scan (P = 1×10−7, Figure 1), but its association was accounted for by
rs11894252 and rs7579899 (Padjusted = 0.45 and Padjusted = 0.36, respectively) and was
therefore not selected for replication. The third SNP selected for replication, rs6758592, was
minimally correlated with the previous two (r2 = 0.12 and 0.11 with rs11894252 and
rs7579899, respectively), and only showed an association in the NCI data (PNCI = 1.8×10−7,
PIARC = 0.16, Pheterogeneity = 0.0004, Supplementary Table 3) not accounted for by
rs11894252 and rs7579899 (Padjusted = 1x10−5 for both). While rs6758592 did not replicate,
the combined analysis yielded P= 4.0×10−5, suggesting that in the NCI scan data there could
be evidence for a more complex genomic architecture underlying the association of this
locus with RCC.

Our finding on 2p21 is notable because the candidate gene, EPAS1, has already been
implicated in RCC15–19. The two SNPs, rs11894252 and rs7579899, are distributed across a
4.2 kb region of intron 1 in the EPAS1 gene, which encodes the hypoxia-inducible factor 2α
(HIF-2α), a key gene in the VHL-HIF pathway. The VHL complex targets HIF subunits for
ubiquitin-mediated degradation20. Accumulation of HIF-2α leads to up-regulation of
vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR).
The inactivation of VHL in renal carcinoma cell lines leads to unchecked HIF-2α mediated
expression of HIF-responsive tumorigenic factors, most notably VEGF16, 17. Further,
tumor formation in VHL-deficient renal carcinoma cells has been found to be suppressed by
inhibition of HIF-2α18,19. The findings from our GWAS provide further evidence that
EPAS1 is a key gene in RCC development, but additional studies are needed to identify the
functionally relevant common variants associated with increased risk.

A variant, rs7105934, on 11q13 was associated with RCC in the combined analysis (P =
7.8×10−14, OR = 0.69, 95% CI: 0.62–0.76). The SNP was independently replicated with a
comparable risk estimate to the initial GWAS results (P = 6.8×10−7; OR = 0.71, 95% CI:
0.62–0.81). Overall, the magnitude of the association with this relatively uncommon SNP
(minor allele frequency = 0.08 in controls) is comparatively large compared to risk markers
previously identified in the GWAS of other cancers21. This SNP maps to a 350 kb region of
11q13 containing no characterized genes; flanking genes are Homo sapiens myeloma over-
expressed (in a subset of t(11;14) positive multiple myelomas) (MYEOV) and cyclin D1
(CCND1), situated approximately 140 kb centromeric and 220kb telomeric, respectively,
from rs7105934. In the control samples, there is little evidence for linkage disequilibrium
with markers in these genes (r2 < 0.01 in scanned controls). Similarly, we did not observe
LD with a complex susceptibility locus for prostate cancer also identified within 11q1322,
23, nor with a SNP marker, rs614367, 89kb telomeric to rs7105934 recently associated with
breast cancer risk24.

A third locus, marked by rs4765623 on 12q24, also achieved genome-wide significance
overall (P = 2.6×10−8; OR = 1.15, 95% CI: 1.09–1.20), although it did not independently
replicate using a two-tailed significance test (P = 0.09; OR = 1.07, 95% CI: 0.99–1.16). The
SNP maps to intron 1 of the scavenger receptor class B, member 1 (SCARB1) gene, a cell
surface receptor that binds to high-density lipoprotein cholesterol (HDL-C) and mediates
HDL-C uptake25–27. Its role in cancer biology is not as well established, and the signal was
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stronger in the European studies (scan and replication studies) than in the US studies
(Supplementary Table 3 and Fig. 2). While this SNP marks a promising association, further
confirmatory work is required to establish its association with RCC risk.

For each of the three regions associated with RCC risk, we conducted further pooled
analyses stratified by study, age, gender and established modifiable risk factors: body mass
index, smoking status and history of diagnosed hypertension. The associations with
rs11894252 and rs7579899 were notable in former and current smokers but not in never-
smokers, suggesting an interaction with smoking (P heterogeneity = 0.003) (Fig. 2). This
observation raises the possibility that the effect of EPAS1 could be dependent on tobacco
smoking, but further studies are needed to explore this promising finding. The associations
with the two 2p21 (EPAS1) SNPs were stronger among men than women, possibly a result
of the different risks by smoking status. The stratified analyses suggested no other evidence
of interaction.

This study was well powered to detect common alleles with large effect sizes (greater than
90% power to detect a per-allele OR of 1.5 for a variant of allele frequency of 20% at an
alpha of 5×10−7), but the statistical power was limited for detecting effects of weaker size or
those due to uncommon SNPs. Additional studies are needed to identify susceptibility
markers of weaker effects or lower allele frequency.

Our study has identified novel regions of the genome associated with risk of RCC. Two
regions on 2p21 and 12q24 map to candidate genes EPAS1 and SCARB1, respectively, while
one maps to a region of 11q13 with no characterized genes. Further fine-mapping of these
regions is required prior to investigating the optimal variants for studies into the biological
underpinnings of the observed associations. Moreover, these loci should be pursued in
follow-up studies in distinct populations, such as African Americans who have an increased
risk of RCC2, 3. Similarly, it will be important to evaluate these regions in studies that
address clinical endpoints such as response to therapy and survival. The discovery of
additional susceptibility loci should lead to further advances in understanding the etiology of
RCC as well its risk prediction and early detection.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association results, recombination and linkage disequilibrium plots for three regions
achieving genome-wide significance in RCC GWAS
Results of pooled IARC/CNG and NCI GWAS data (GWAS), and for SNPs selected for
replication in replication studies combined by meta-analysis (replication), and of all studies
combined by meta-analysis (all combined). P-values for log-additive association results
(negative base 10 logarithm) are shown with recombination rates (cm/Mb) based on
HapMap phase II data, and pairwise r2 and superimposed D' values are displayed at the
bottom for all SNPs included in the GWAS analysis. Coordinates refer to genome build
36.1. Panel A depicts the region of 2p21 including the EPAS1 gene region (46,353,240 –
46,498,984). Panel B depicts the region of 11q13 (68,852,465 – 69,037,945). Panel C
depicts the region of 12q24.31 including the SCARB1 gene region (123,800,267 –
124,008,657).
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Figure 2. Forest plots for three SNPs achieving genome-wide significance in RCC GWAS
Forest plots show stratified odds ratios (OR) for SNPs selected for replication and achieving
genome-wide significance. The two highly correlated SNPs located at 2p21, rs7579899 and
rs11894252, gave very similar results in stratified analysis, and only the results of one of the
SNPs (rs11894252) are shown in the figure. Apart from the odds ratios for heterozygous and
homozygous, odds ratios and 95% confidence intervals were estimated by the per rare allele
log-additive trend model. All models were adjusted for sex, study and country. The overall
log-additive OR is shown by the broken vertical line. P-values indicate heterogeneity for OR
within each group.
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