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Abstract
In Part I, a novel hypoelastic framework for soft-tissues was presented. One of the hallmarks of
this new theory is that the well-known exponential behavior of soft-tissues arises consistently and
spontaneously from the integration of a rate based formulation. In Part II, we examine the
application of this framework to the problem of biaxial kinematics, which are common in
experimental soft-tissue characterization. We confine our attention to an isotropic formulation in
order to highlight the distinction between non-linearity and anisotropy. In order to provide a sound
foundation for the membrane extension of our earlier hypoelastic framework, the kinematics and
kinetics of in-plane biaxial extension are revisited, and some enhancements are provided.
Specifically, the conventional stress-to-traction mapping for this boundary value problem is shown
to violate the conservation of angular momentum. In response, we provide a corrected mapping. In
addition, a novel means for applying loads to in-plane biaxial experiments is proposed. An
isotropic, isochoric, hypoelastic, constitutive model is applied to an in-plane biaxial experiment
done on glutaraldehyde treated bovine pericardium. The experiment is comprised of eight
protocols that radially probe the biaxial plane. Considering its simplicity (two adjustable
parameters) the model does a reasonably good job of describing the non-linear normal responses
observed in these experimental data, which are more prevalent than are the anisotropic responses
exhibited by this tissue.
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1 Introduction
In-plane biaxial experiments constitute an important class of experiment used to study the
mechanical response of soft biological tissues. In this paper, we re-examine this boundary
value problem (BVP), bringing to it new insight. In particular, attention is given to the polar

NIH Public Access
Author Manuscript
Acta Mech. Author manuscript; available in PMC 2011 August 1.

Published in final edited form as:
Acta Mech. 2010 August ; 213(1-2): 205–222. doi:10.1007/s00707-010-0357-y.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



decomposition of the deformation gradient, the construction of kinematic rates from
experimental data, and the mapping between stress and traction.

The isotropic hypoelastic model derived in part I [1] of this paper is modified for in-plane
biaxial extension, and is then applied to experimental data obtained from the author’s (MSS)
laboratory for glutaraldehyde treated bovine pericardium—a tissue commonly used in
bioprosthetic heart valves [2,3]. This chemical treatment cross-links the tissue, making it
stiffer, a by-product of reducing its immugenicity so as to mitigate a patient’s need for
anticoagulation therapy. Our objective is to explore what this simple model is, and is not,
capable of achieving. Application of the anisotropic composite model (also derived in part I)
to this experimental data set will be the topic of a future paper.

It is a well established fact that pericardium is a membranous tissue strengthened with an
anisotropic distribution of collagen fibers [4,5]. So why try to fit an isotropic model to an
otherwise anisotropic material? The answer is two fold. First, as an aid to distinguish
between whether a particular effect is non-linear in origin, or anisotropic in origin. And
second, to get an order-of-magnitude sense as to the error that one would likely be making if
one were to use the simpler isotropic model, especially in preliminary analyses where
parameters are likely to be assigned via engineering judgment. It turns out that this simple
two-parameter model does remarkably well at describing the general stress/strain response
of pericardium, but there is room for improvement, especially in correctly predicting the
shear response.

The paper is organized as follows. The next section reviews the kinematics of in-plane
biaxial extension, with new expressions given for the stretch and rotation tensors. Section 3
investigates the stress-to-traction map for this BVP. It is shown that the classic map violates
the conservation of angular momentum—a flaw that is corrected. Also presented is a novel
idea for loading an in-plane specimen to achieve a larger region of nearly uniform stress at
its center. Section 4 configures the isotropic, hypoelastic, constitutive model for membrane
analysis. Section 5 applies this model to glutaraldehyde treated bovine pericardium. Section
6 provides a discussion of results, with Sec. 7 summarizing the paper. An Appendix
describes a likelihood objective function that was used for parameter estimation, and the
integration algorithm used herein.

2 Kinematics of In-Plane Biaxial Extension
Sacks [6] and Sacks & Sun [5] have written review articles on in-plane, biaxial, test methods
used by experimentalists in the field of soft-tissue mechanics, and Humphrey [7] has
dedicated a chapter to it in his book (Chp. 5). The discussion presented here provides a
somewhat more detailed analysis of the polar decomposition of this deformation, and it
addresses those rate related fields that are of interest when hypoelastic or viscoelastic
constructions are to be employed.

Holzapfel & Ogden [8] have analyzed the in-plane biaxial BVP from the viewpoint of
hyperelas-ticity. They have shown that this experiment, by itself, is insufficient to
completely characterize a three-dimensional (3D), anisotropic, isochoric, hyperelastic solid;
it is only sufficient to characterize an isotropic, isochoric, hyperelastic solid in 3-space.
Additional experiments are needed for a complete 3D characterization of anisotropic
materials; in particular, ones with a through-thickness shear component are suggested, like
cross-plane simple shear. This does not diminish the importance of planar experiments to the
overall process of parameter estimation; rather, they point out the need for experimentalists
to develop complementary, novel, experimental capabilities, like those of Dokos et al. [9],
so that complete 3D soft-tissue characterizations can become possible in the future.
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In-plane biaxial experiments are, however, sufficient to completely characterize two-
dimensional (2D) material models for membranes, and it is in this capacity that this BVP is
utilized here.

2.1 Deformation
Consider a homogeneous deformation described by the BVP

(1)

where coordinates (X1,X2,X3) locate the initial position of a mass point, while the coordinate
functions (x1,x2,x3) locate its current position. Parameters λi and γi represent the stretch and
shear components, respectively, of the planar deformation shown in Fig. 1. Shears arise
naturally when testing soft tissues as their fibers attempt to align themselves with the
principle loading directions by a shearing the softer matrix material betwixt them [10]. The
kinematic parameters λi and γi are usually acquired via finite-element technology through an
image tracking of markers fixed to the specimen [7,11,12].

The deformation gradient F=∂ xi/∂Xj ei ⊗ ej is the fundamental descriptor of deformation in
hyperelastic material models, whose components for this deformation are

(2)

where the stated expression for λ3 follows from the isochoric constraint, detF = 1, which is a
reasonable assumption to impose on most soft tissues [13]. Variable Λ denotes the areal
stretch; it being the surface area in the current state divided by the surface area in the
reference state.

By adopting the isochoric constraint, the spatial dimension of F, as it pertains to deformation
(2), can be reduced from three dimensions down to two, allowing it and its inverse to be
represented by

(3)

where now the detF associates with a change in area, not a change in volume, i.e., detF =
λ1λ2 − γ1γ2 = Λ.

2.2 Polar Decomposition
Added insight can be gained by considering a polar decomposition F = RU of the
deformation (3). Let the rotation R take on a classic form of

(4)
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so that the sign of θ will be positive during counterclockwise rotations. This mandates that
the right-stretch tensor U has components

(5)

From the symmetry of stretch (that is, U12 = U21) one determines that

(6)

This allows the rotation to be re-expressed in terms of its primitive variables λ1, λ2, γ1 and
γ2, i.e.,

(7)

where Ξ is the hypotenuse, λ1 + λ2 is the abscissa, and γ2 − γ1 is the ordinate of the triangle
that tracks rigid-body rotation. This expression for the rotation R allows the right-stretch
tensor to be rewritten as

(8)

Components of the left-stretch tensor V = RURT = FRT, and the two inverses U−1 = F−1R
and V−1 = RF−1, can be gotten easily from above matrix formulæ.

2.3 Rates from Smoothing Splines
There are two kinematic rates from which all other kinematic rates can be derived; they are
the velocity gradient L = ḞF−1 and the rate of rotation Ω = ṘR−1 = ṘRT. As F is the
fundamental descriptor for hyperelastic material models; likewise, L is the fundamental
descriptor for hypoelastic and viscoelastic material models. Furthermore, as R is needed to
account for rigid-body rotation in hyperelastic models, so too is Ω needed to account for the
rate of rigid-body rotation in hypoelastic and viscoelastic models.

The four planar components of the deformation gradient F are the measured kinematic
quantities in an in-plane biaxial experiment. Rates Ḟ and Ṙ must be derived from these four
data streams. Because methods for the numeric differentiation of experimental data magnify
noise within a data stream, and because these data streams tend to be noisy to begin with, it
is vital in this application that one smooth the raw Fi j data streams in order to get
meaningful estimates for the Ḟi j. These rates are gotten by differentiating the smoothing
function, not the data themselves. A cubic B-spline built into the generalized cross-
validatory (GCV) method of Woltring [14] was used to smooth our raw Fi j data.1
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From the smoothed data streams that now describe F and Ḟ, one can quantify the velocity
gradient according to its definition, viz.,

(9)

recalling that Λ = λ1λ2 − γ1γ2. Furthermore, upon differentiating the rotation described in
either Eq. (4 or 7), while utilizing the definition for the rate of rotation Ω = ṘRT, one is lead
to a simple result describing rate of rotation, i.e.,

(10)

where θ ̇ = ((λ1 + λ2)(γ ̇2 − γ ̇1) − (γ2 − γ1)(λ ̇1 + λ ̇2)/((λ1 + λ2)2 + (γ2 − γ1)2) is the time rate-of-
change of the angular rotation θ defined in Eq. (6).

3 Kinetics of In-Plane Biaxial Extension
To compare predictions/correlations of a constitutive model with experimental data, it is not
only necessary to be able to convert the displacements of an experiment into states of strain,
it is also desirable to convert the tractions of an experiment into states of stress, when
permissible. In this section, we first present the historical approach used to obtain stresses
from tractions in a planar biaxial setting and show, in the presence of nonnegligible shears,
that this mapping is in error. We then present a new map that obeys the conservation of
angular momentum, and finish with a note on boundary conditions.

3.1 Historical Approach
The force df acting on an infinitesimal area dA0 of surface with normal n0 in the reference
configuration obeys the mapping df = P · n0 dA0, where tensor P = Pi j ei ⊗ ej = JτF−T is the
first Piola-Kirchhoff stress, which is not symmetric; tensor τ is the Cauchy stress, which
must be symmetric so as to conserve angular momentum; tensor T = Jτ is the symmetric
Kirchhoff stress2; and scalar J = det F quantifies the change in volume taking place between
the reference and current states, which is constrained to be one because of the isochoric
assumption [16,17]. Consequently, there is no numeric difference between the stress
measures of Cauchy and Kirchhoff in soft-tissue mechanics whenever the isochoric
assumption is imposed.

The current stress-to-traction map used for in-plane biaxial extension has an assumed form
of [5,7,18]

(11)

1The software package GCV used to smooth F can be downloaded from the International Society of Biomechanics web site
http://isbweb.org/software/sigproc.html. Cf. Silverman [15] for a detailed discussion of the GCV method.
2The symmetric Kirchhoff stress T should not be confused with the commonly presented, symmetric, second, Piola-Kirchhoff stress S
= F−1TF−T, which is the Kirchhoff stress of the Eulerian frame pulled back to the Lagrangian frame.
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where the engineering stresses σi are physical fields defined by

(12)

with each fi denoting an applied force acting in the ith direction, and each ℓi specifying a
gage length measured along the ith direction, with ℓ3 quantifying the initial thickness of the
test sample. Consequently, P11 = σ1 and P22 = σ2, provided that this assumed mapping is
correct.

The Kirchhoff stress associated with this mapping has components

(13)

This tensor must be symmetric because of the physical law that conserves angular
momentum [16,17], consequently

(14)

As a result, the two shears γ1 and γ2 cannot act independently whenever stresses relate to
tractions according to the presumed mappings given in Eq. (11).

3.2 Experimental Assessment of Stress Constraint (14)
The Billiar-Sacks [19], in-plane, biaxial experiments done on aortic heart valves were run in
load control at constant rates to targeted values of (protocol; σ1: σ2) 1;100:4, 2;100:50,
3;100:75, 4;100:100, 5;75:100, 6;50:100 and 7;17:100, with stresses being listed in kPa.
These seven protocols were applied sequentially to a single specimen so that the fiber
alignment would be the same for all protocols within a given data set. The 1-direction in
their specimens aligned roughly with the mean fiber direction associated with the
circumference of a leaflet, while the 2-direction was radial in orientation, normal to the
mean fiber reinforcement. Their membrane tractions (forces per unit length) have been
converted into stresses (forces per unit area) here by assigning a nominal tissue thickness ℓ3
of 0.6 mm.

An examination of their experimental data for fresh leaflets excised from porcine, aortic,
heart valves permits an experimental assessment of the angular momentum constraint
specified in Eq. (14). The outcome of our assessment, using their data, is presented in Fig. 2.
The shear components of the Kirchhoff stress, so defined, are on the order of 10% of their
normal values. Such differences are significant. Obviously, T12 ≠ T21 throughout the entire
loading history. They are not even remotely close. These data clearly demonstrate that the
resulting constraint equation (14) for the conservation of angular momentum is violated, and
therefore, the assumption that the stress-to-traction map stated in Eq. (11) is valid must be
dismissed.
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3.3 Tractions Revisited
The data presented in Fig. 2 provide experimental evidence that the hypothesis that “The
map given in Eq. (11) is physical.” must be rejected, being replaced by the more general
map

(15)

as illustrated in Fig. 3. Here the experimentally applied tractions f1 and f2 have constituents

(16)

where the ith index of fi j indicates the direction of the normal upon whose surface the
traction is applied, while the jth index indicates the direction that the force is applied.

It follows from Eq. (15) that the first Piola-Kirchhoff stress will now have components

(17)

allowing the Kirchhoff stress to be quantified according to

(18)

In simpler experiments, the independent fi j forces might be known experimentally, but for
the general deformation drawn in Fig. 1, this is not possible. One does not know a priori
how the applied forces of traction fj are to be split between their constituents fi j. Additional
information is needed.

Four equations are required to solve for the four unknown forces of traction that define
stress in either Eq. (17 or 18). The first two equations are listed in Eq. (16), which relate the
unknown internal forces fi j with the experimentally applied tractions f j. The third equation
arises from the fact that pressure is defined by

(19)

The fourth and final equation comes from the conservation of angular momentum, requiring
that T12 = T21, as put forth in Eq. (18). These four formulæ describe the following linear
system of equations
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(20)

with solution

(21)

(22)

(23)

(24)

which enable the components of stress, either the first Piola-Kirchhoff stress via Eq. (17) or
the Kirchhoff stress via Eq. (18), to be experimentally quantified.

Many experimental load frames do not permit material rotation, constraining γ1 = γ2 = 0, in
which case Eqs. (21–24) simplify to f11 = f1, f12 = f21 = 0 and f22 = f2, which in turn lead to

(25)

These are the historic descriptions for stress for in-plane biaxial experiments that one finds
in text books.

3.4 Comment on Boundary Conditions
From finite-element technology, we know that if a uniform pressure imposed along the face
of an element is to be transformed into a uniform state of stress within the element via
discrete tractions applied at the nodes of the element (to create a consistent, work-
equivalent, loading scheme for the element), then the forces applied at these nodes will not
be weighted evenly whenever they number more than two [20]. The specifics of these load
ratios will depend upon the number and location of the nodes.

For example, elements with three evenly spaced nodes placed along the face of an element
will require loading ratios of ⅙ at the corner nodes and ⅔ at the midpoint node in order to
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produce a state of uniform stress within the element. Elements with four evenly spaced
nodes will require loading ratios of ⅛ at the two corner nodes and ⅜ at the two interior
nodes, as illustrated in the right schematic of Fig. 4. These ratios follow from the Lagrange
interpolation polynomials used internally by finite elements. They also associate with the
weights and quadratures of two well-known integration schemes: Simpson’s rule and
Kutta’s ⅜ths rule, which the author (ADF) has combined into a single, embedded, 4(3)
Runge-Kutta method for the numerical integration of non-stiff, ordinary, differential
equations (ODEs) [21].

Current, in-plane, biaxial, load frames used to test tissues seek to apply equal tractions at all
node-like attachment points along the edges of a specimen [6,7,18], counter to finite-element
theory [20]. Theory suggests that the edge loads in the left-hand schematic of Fig. 4 will be
too large, and are likely to produce a non-homogeneous state of stress within. Theory also
suggests that the loading conditions in the right-hand schematic ought to provide a more
homogeneous state of biaxial stress within a test sample.

To test this hypothesis, we simulated an equi-force biaxial test of a nearly incompressible
neo-Hookean membrane.3 Loads of 180 mN were distributed on a 10 mm × 10 mm, nearly-
incompressible membrane 0.5 mm in thickness, having a shear modulus of 50 kPa. The
geometry was discretized using an element grid of 25 × 25, linear, plane-stress, membrane
elements. Load distributions were those depicted in Fig. 4: uniform tractions, and consistent
work-equivalent tractions. Figure 5 plots the Cauchy stress as a function of the horizontal, or
X-coordinate. Solid lines correspond to work-equivalent tractions, while dotted lines
correspond to uniform tractions. Notably—confirming our hypothesis—the work-equivalent
tractions produce a substantially larger region of near-uniform stress, evidenced by the
plateau in both the x and y stress components. This difference becomes more marked with
increased strain. For a 10 × 10 sample, uniform tractions lead to a ‘sweet area’ for making
strain measurements in the middle of the sample of about 2 × 2; whereas, consistent work-
equivalent tractions lead to a ‘sweet area’ of about 5 × 5.

The subject of sample conformation and loading has been the topic of previous studies. For
example, the idea of using a cruciform as opposed to square samples has been investigated
[22]. Our proposition, which holds from first principles, aims to similarly increase the
uniformity of stress over an extended area. Furthermore, our approach has the added
advantages of being both easier to implement experimentally, and of remaining practical for
the smaller samples that are so commonly encountered in biological tissues.

4 Hypoelastic Models
Three, isochoric, hypoelastic, constitutive models were constructed in part I of this paper
[1]. The isotropic model is summarized below. Application of the anisotropic and composite
models to these data will be the topic of a future paper.

A new, symmetric, strain measure E was also derived in that manuscript. It is described by
the ODE

(26)

3Though this manuscript is focused on hypoelasticity, we chose to perform this test with a common hyperelastic material in order to
make the point that the effect is independent of the specific constitutive framework.
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where DE = Ė + ∇E · v is the material derivative of strain that, for the BVP of interest,
becomes DE ≃ Ė because, at the center of the tissue being tested, ∇E ≃ 0 over some finite
range. The symmetric part of the velocity gradient L is the rate of deformation ,
while the skew-symmetric part  is the spin with WT = −W [17]. The
convected term LE + ELT, in the sense of Oldroyd, is required in order for E to be a viable
tensor field, as established in part I [1]. Alternatively, Eq. (26) can be rewritten as either

(27)

where ∂E = DE − LE − ELT defines Oldroyd’s [23] upper-convected, objective, differential
operator, and where E˚ = DE − WE + EW defines Jaumann’s [24] objective, differential
operator. These are identical descriptions for strain rate, as defined by the author in part I. It
was also shown therein that the shear response arising from this differential equation does
not oscillate in simple-shear deformations; in fact,  exactly, with no assumptions or
restrictions.

The isotropic, isochoric, hypoelastic model derived from a potential function in part I [1]
produced the following ODE in Kirchhoff stress

(28)

where T̂ = DT − ΩT + TΩ defines the polar rate of stress; it is the objective rate of Green &
Naghdi [25]. This rate arises from taking the material derivative DT̄ of stress T̄ residing in a
stretched but unrotated frame κ̄ that is then mapped into the spatial frame κ according to the
map T̂ = RDT̄RT [26,27]. In the formula above, D℘ is a Lagrange multiplier forcing an
isochoric constraint, tr L = 0. Parameter μ is the small-strain shear modulus, while
parameters α and β are analogous to Fung’s coefficient, now expressed in a 3D setting. The
polar rate of strain can be written in several forms, depending on how it is to be used, viz.,

(29)

where W − Ω is a difference between deformable-body and rigid-body rotation rates [28].

An objective numerical integrator is needed to solve the ODEs given in Eqs. (26 & 28) that
characterize this constitutive equation. One such method, a predictor/corrector, is presented
in the Appendix.

4.1 Membrane Formulation
The mathematical structure of the evolution (26) and constitutive (28) equations remains
unchanged for membranes, except that their tensor fields are now characterized by 2 × 2
matrices, instead of 3 × 3 matrices. What membrane BVPs bring to bear in this construction
is a means to solve for the Lagrange multiplier. From the 33-component of this constitutive
equation, noting that Ti3 = T3j = 0 ∀ i, j, because of the plane-stress assumption, one
determines that
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(30)

which when combined with Eq. (28) produces

(31)

as the constitutive equation governing an isotropic, isochoric, hypoelastic membrane of
tissue.

To demonstrate that the two equations in expression (30) are equivalent, it suffices to prove
that Ê33 = −Λ−2 trD for the deformation given in Eq. (1). First, from the fact that L33 = D33
= λ ̇3/λ3, which results from the isochoric constraint put forth in Eq. (2), one can separate
variables in the 33-component of Eq. (26), viz., Ė33 = (1 + 2E33)λ ̇3/λ3, and get its solution

. Furthermore, from Eq. (29) and the fact that Ωi3 = Ω3j = 0 ∀ i, j, one
determines that Ê33 = Ė33 which, using the above result for E33, simplifies to Ė33 = Ê33 =
λ3λ ̇3. The remaining identity λ ̇3/λ3 = −tr D needed to secure this proof follows from

. To show this, recall that Λ = detF, where F
is now given by Eq. (3), not Eq. (2), while noting that detF = det(RU) = det(R) det(U) =
detU, recalling that detR = 1, and by making use of the identity d(detU)/dt = det(U)tr(U ̇U−1)
= det(U)tr[RT (ḞF−1 − Ω)R] = det(U)tr(ḞF−1) = det(U)tr(L) = det(U)tr(D), and therefore,
tr(D) = (detU)−1 d(detU)/dt = Λ ̇/Λ = −λ ̇3/λ3, recalling that Λ = 1/λ3.

5 Modeling Pericardium
The procedure used to secure the experimental data presented below has been documented
in Sun et al. [29]. Small-angle light scattering (SALS) was used to locate a region
homogeneous in fiber orientation within a pericardium tissue to be tested, and to determine
its dominant fiber direction, which was then aligned with the 1-direction in the author’s
(MSS) biaxial test system. The experiments were run in load control at constant rates over
like time intervals to targeted values of (protocol; σ1: σ2) 1;1:0.1, 2;1:0.3, 3;1:0.5, 4;1:0.75,
5;1:1, 6;0.75:1, 7;0.5:1 and 8;0.1:1, with the listed engineering stresses being in MPa. Only
the equi-biaxial experiment (protocol 5 in this test suite) has been published elsewhere [30].
Results from a finite-element analysis done on an existing bioprosthetic heart-valve design
was cited by Sellaro et al. [30] as justification for the 10-fold increase in stress imposed
upon the specimen in this experiment over the physiologic stresses that were utilized in the
earlier study of Billiar & Sacks [19]. Results from that finite-element study found there to be
regions near the stent where stresses were an order in magnitude greater than otherwise exist
over the belly region.

The raw kinematic data were smoothed using the GCV algorithm and software of Woltring
[14], with a cubic B-spline being used to fit the data. An algorithmic regularization
parameter that minimizes unbiased estimates of the mean-squared error was selected for
filtering and, after a parametric study, was set at 0.0025 for all eight experimental protocols.

5.1 Graphically Obtained Parameter Estimates
It has been the authors’ experience that whenever material parameters can be estimated with
reasonable certainty via graphical methods, then they should be so assigned. This helps
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reduce problems that arise through covariance between parameters during parameter
estimation via optimization.

As discussed by the author (ADF) in Ref. [21], isotropic hypoelastic models can discern
pressure effects, independent of the Lagrange multiplier, even though the deformation is
constrained to be isochoric. Protocols 1, 5 and 8 have loading ratios of 1:0.1, 1:1 and 0.1:1,
respectively, and can therefore be used to investigate this pressure effect.

The isotropic hypoelastic solid of Eq. (31) can be solved analytically for the special cases of
uniaxial and equi-biaxial extensions. For uniaxial extension, ,
T11 = τ, and T22 = 0 with stress evolving as

(32)

whereas, for equi-biaxial extension, , and T11 = T22 = τ with stress
evolving as

(33)

where λ is the stretch, and τ = λσ is the true stress, with these approximations holding in a
neighborhood around λ = 1. Although these formulæ do not account for the shear
components observed in our experiments, and certain liberties have been imposed regarding
the influence of λ, much can still be learned by applying these approximate formulæ to the
experimental data of protocols 1, 5 and 8, which is done in Fig. 6. The curves in this figure
are analogous to the one originally drawn by Fung [13] for rabbit mesentery, from which he
derived the material law that now bears his name.

The approximate formulæ in Eqs. (32 & 33) are equations for straight lines in a graph of τ
vs. λ−1 dτ/dλ. They have different intercepts: 3μ for the uniaxial case, and 6μ for the equi-
biaxial case, in accordance with rubber elasticity [31]. They also have different slopes: 3α +
2β for the uniaxial case, and 12α + 2β for the equi-biaxial case. There is minimal scatter in
the data up to stresses of about ½ MPa, which is well past the toe/heel region of their stress/
strain curves (cf. Figs. 7 & 8). The response is the same for all four curves over this region:
linear, except for a small dip near the origin, and they have the same slope. It is in this
region that the error of approximation present in Eqs. (32 & 33) is at a minimum, so the
conclusions drawn from these data are justified. Based on these data, α ≈ 0 and β ≈ 30, but
there is insufficient resolution to estimate μ graphically; however, μ > 0 in order for the
stress to integrate away from zero, a typical initial condition. Therefore, Eq. (31) simplifies
to

(34)

as the isotropic hypoelastic model appropriate for modeling pericardium.

Noise becomes a factor at stresses beyond about ½ MPa. This is in the so-called linear
region of the stress/strain response. These data actually suggest that growth remains
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exponential to stresses exceeding 1 MPa, in an average sense, thereby corroborating Fung’s
law, except for protocol 8 which flattens out for stresses in excess of about 0.6 MPa. This
appears to be an experimental artifact associated only with protocol 8, based upon a visual
inspection of all eight pairs of stress/strain curves presented in Figs. 7(a) and 8(a). Whether
this is an experimental anomaly or, for example, a consequence of material anisotropy, is
presently unknown.

5.2 Numerically Obtained Parameter Estimates
A genetic algorithm [32,33] was written to maximize a log-likelihood fitness function [34]
to estimate parameters μ and β in accordance with the methodology put forward in the
Appendix. Only the equi-biaxial experiment, protocol five, was used in the fitting process.
The engineering stresses σ1 and σ2 were chosen to be the dependent variables of
optimization. The 95% confidence intervals for these parameters were determined to be 22.0
< 27.0 < 34.7 for μ (units in kPa) and 18.7 < 19.2 < 19.6 for β, with an R2 statistic of 0.909
when derived according to Buse’s [35] formula.

From Fig. 6, Fung’s β parameter was found to be about 30, but from the parameter
estimation process, a value of 19.2 was determined as being its most likely value. This
disparity is thought to be a byproduct of the over simplified form of the model used. With
pericardium being a multi-phased anisotropic tissue, assuming it to be an isotropic
continuum requires that its parameters account for more than what they ideally represent. It
is expected that the composite model currently under development by the authors will
correct this discrepancy.

6 Discussion
Figure 7 contrasts the experimental 7(a) and theoretical 7(b) stress/strain responses in the 1-
direction for the eight protocols investigated, which is the dominant fiber direction. The
ordering sequence between protocols is correctly predicted by the theory, with the heel
spacing being accurately captured, where the heel region is the non-linear part of the stress/
strain response separating the fairly linear responses at the two extremes. Actually, the
stress/strain response is largely exponential, which is the point of Fig. 6. The theory goes
non-linear slightly before what is experimentally observed, which is really its only
discernible flaw in this direction. In other words, non-linearity, not anisotropy, is the cause
for the translation of the heel region along the strain axis. The modeled response needs
improvement in following the stress/strain transition from toe to heel more faithfully. This
model is not capable of making that extra improvement. A composite model, with different
shear moduli for its matrix and fiber constituents, and the capability of introducing residual
stresses, should be able to address this deficiency in a straightforward manner.

Figure 8 contrasts the experimental 8(a) and theoretical 8(b) stress/strain responses in the 2-
direction for the eight protocols investigated, which is normal to the fiber dominant
direction. A possible influence of anisotropy is manifest in these experimental curves as a
retrograde in the sequencing of curves associated with protocols 5 and 6. Then again, this
may be due to experimental variability, too. The isotropic model is not capable of describing
this experimental observation. However, in the overall scheme of things, this effect is much
smaller than that which is due to kinematic non-linearity, which the model seems to capture
quite nicely. As in the 1-direction, here too the model goes non-linear at strains earlier than
the experiments do. Again, the experimental curve for protocol 8 has a different character
about it, whose origin is unknown, and which now becomes more plain when contrasted
with its theoretical curve.
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Figure 9 compares the experimental and theoretical stress/strain responses for in-plane
shear. Here lies the real Achilles’ heel of this isotropic continuum model. The predicted
shear stresses are about two orders in magnitude greater than what are observed
experimentally. Least grievous are the uniaxial cases. This is actually not too surprising, as
tissue is largely fibrous in composition, and fibers are poorly equipped to handle shears,
especially transverse shears. This isotropic model has no machinery in it to allow it to
address either transverse shear across the fibers, or longitudinal shear at the fiber/matrix
interface, nor can it introduce a softer modulus that controls the shear response of the matrix
material binding the fibers together. This model does many things very well, but it is not
perfect. Further research is needed to better understand its deficiencies, their physical
causes, and how they ought to be accounted for in theory.

It is truly remarkable that any model with only two adjustable parameters can do as-well-as
this model has done in describing the very complex, 2D, experimental data considered
herein. This lends credence to the conjecture that hypoelasticity is a valid theory for tissues,
as speculated by the author (ADF) in Refs. [1,21,26].

7 Summary
The paper began with a re-examination of the kinematics of planar biaxial extensions done
on membranes. A polar decomposition of the deformation gradient F ensued, leading to
stretch and rotation tensors whose components are expressed solely in terms of those
belonging to F. When quantifying the kinematic rates, it became necessary to use a
smoothing spline to be able to extract meaningful values, as the noise in the data gotten from
standard differencing techniques often exceeded the measured signal when estimating the
shear components of Ḟ.

For the kinetics of in-plane biaxial experiments containing shear deformations, it has been
shown unequivocally that the first Piola-Kirchhoff stress must contain non-zero shear
components in order to comply with the conservation of angular momentum. A corrected
stress-to-traction mapping has been derived.

A novel scheme for applying tractions to planar specimens has been proposed that should
lead to more uniform states of stress within the specimen. This loading mechanism can be
applied to small test samples that commonly arise when testing soft tissues.

The isotropic hypoelastic model derived in part I of this manuscript [1] has been altered here
for use in membrane analysis. This resulted in a slight restructuring of its constitutive
expression in order to account for the influence of the Lagrange multiplier that handles the
isochoric constraint.

Non-linear effects are first-order effects in soft tissues that, at least for pericardium,
overwhelm the effects caused by strength of anisotropy. Hypoelasticity captures these
kinematic non-linearities. Consequently, the simple, isotropic, hypoelastic model, Eq. (34),
has a role to play, especially in preliminary analyses. The physical causes behind these non-
linearities are varied and many, and whose proper discussion lies well beyond the scope of
this paper. It is worthy of note that what one’s eye might associate with as being an
anisotropic effect, when viewing an experimental data set for soft tissue, is likely to be a
non-linear effect due to kinematics that is in disguise, especially if one’s eye has been
trained in the field of small-strain analysis.
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Appendix

A Parameter Estimation
Let there be N, experimental, data vectors yn, n = 1,2,…,N, with components yn = y(tn) =
{yn1,yn2,…,ynR}T evaluated at instances tn, where R is the number of responses or dependent
variables that have been measured. From these data, we seek an estimate for K parameters θ
= {θ1,θ2,…,θK}T that belong to some model  (t,θ ) by first creating N residual vectors xn
with components

(35)

that are normalized by their sample standard deviates s ̄r obtained from
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(36)

In the statistical method that follows, xn are the data, not yn.

Next, assume that all N data points xn distribute in accordance with the normal probability
density function

(37)

where vector μ is its mean, and matrix V is its covariance. Finally, assume that these N data
points are independent of one another, in which case the likelihood function ℒ becomes the
product of its N, probability, density functions

(38)

Taking the logarithm of both sides gives the well-known result [36]

(39)

where μ → 0 and  in the asymptotic limit where θ
goes to its maximum likelihood estimate (MLE) of ϑ. In a neighborhood of this limit, the
second term, , drives the estimator, and is the cornerstone for classic MLE
algorithms [36]. It has been our experience that replacing the third term in (39) with its
asymptotic limit can remove valuable information from the optimizer in its search for a
MLE.

Instead of replacing the third term in (39) with its asymptotic limit NR/2 and maximizing
that expression, maximums for a more complete log-likelihood function are sought; in
particular,

(40)

where the third term adds a generalized least squares component to the otherwise classical
likelihood method. Having two competing kernels like this in an objective function does not
present a problem when used as a fitness function for a genetic algorithm, as we have done
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here. In (39), the statistical mean μ has been set to its asymptotic limit of 0, while the
variance V has been replaced with its sample variance V ̄ whose components are

(41)

By retaining the sample mean x̄ in the calculation for sample variance V ̄, the last term in
(40) helps to drive the optimizer towards a solution where the model (tn,ϑ) becomes a
mean to the experimentally measured data yn, because this term reaches its upper bound of
−NR/2 as the model becomes the mean to the data.

B Numerical Integration Method
The ordinary differential equations that present themselves in this theory have the general
form

(42)

where Y is the tensor field to be solved for,  is some tensor function (it is typically a
constitutive equation), and Q is a skew-symmetric operator whose overall effect is to ensure
that  is an objective differential operator. In our theory, the strain rate employs W for Q
(W is the skew-symmetric part of L, with the symmetric part due to D being absorbed into

); whereas, the hypoelastic model employs Ω for Q. There are many other objective rates
in use in the literature [37,38] that utilize other definitions for Q.

To establish a numerical scheme for integrating (42), it is insightful to first rewrite this
differential equation as an equivalent integral equation, and to express it at two sequential
instances, say at n and n + 1, such that

(43)

(44)

wherein

(45)
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is a push-forward operator that maps tensor fields from configuration κn into κn+1, and  is
some function of .

To be able to solve the integral in the second line of (44), some integrators may require one
to evaluate Ẏn in κn+1, which we denote as (Ẏn)n+1, while Ẏn+1 in κn+1 is gotten straightaway
from (42). To determine (Ẏn)n+1, operate on both sides of Eq. (44) with the derivative ∂/∂tn,
such that after rearranging and gathering terms, one gets

(46)

This rate resides in κn+1, because the equation from which it was derived, Eq. (44), resides
within κn+1. To arrive at the convective terms in the above equation requires one know ∂G/
∂tn. From the identity , one determines that , so that

. This result generalizes for other objective rates where Ln
can be replaced by an admissible Qn in the last two terms.

A second-order, predictor/corrector, integration algorithm developed for the above integral
equation follows.

Interface

Input: h, Fn−1, Fn, Fn+1, Ln, Ln+1, Qn, Qn+1, Yn−1, Yn and function  and for
heterogeneous BVPs: vn, vn+1 and ∇Yn

Output: Yn+1

Map

Predictor: midpoint integration in κn, where h = tn+1 −tn ∀ n, n = 0,1,…,N − 1

Push the required tensors forward from κn into κn+1

Corrector: trapezoidal integration in κn+1
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These formulæ simplify for homogeneous deformation histories, like occur in most
experimental BVPs done on solids, in that the spatial gradients ∇Y · v are zero valued there,
or at least negligible. One can use forward Euler integration, viz., (Yp)0 = Y0 + hẎ0, to start
this integrator.

At each summation configuration along the solution path, all sums of integration are done
within that configuration, in accordance with our prior discussion [1]. The solution
progresses along a path of configurations with a ratcheting motion of push-forward/
summing operations that progresses over the entire loading history.

We have taken liberties here by replacing ∇Yp · vn+1 with
 in the second line of the corrector in order to keep this

a one-pass procedure. The first operator Gn pushes the left component of Yn into κn+1. The
second operator  maps the right component of Yn. While the third operator  converts
∇n into ∇n+1. In other words, we have pushed the gradient ∇Yn forward into configuration
κn+1 in place of using ∇Yp, whose use would otherwise require that the algorithm become
implicit in its spatial variables.
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Fig. 1.
Schematic of a biaxial extension with in-plane shear. A dotted square is deformed into a
solid quadrilateral.
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Fig. 2.
An assessment of constraint equation (14)—the solid line—for conserving angular
momentum, as it applies to the experimental data of Billiar & Sacks [19] using the stress-to-
traction mapping in Eq. (11). The solid line ought to be the experimental mean; obviously, it
is not for these data. The magnitudes of these shear-stress components are about 10% of
their associated normal-stress counterparts.
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Fig. 3.
An illustration showing how the forces and gage lengths relate to the components of the first
Piola-Kirchhoff stress. Notice that the corresponding shear indices are switched. For them to
be the same, one would be relating the nominal stress components to the forces of traction
instead of those belonging to the first Piola-Kirchhoff stress (cf. Ogden [16, pg. 153]).
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Fig. 4.
The state-of-the-art experimental loading scheme (uniform tractions—the left schematic)
versus the proposed loading scheme (consistent work-equivalent tractions from finite-
element technology—the right schematic) for inducing a more uniform state of stress within
a specimen when subjected to four, discrete, point loads along each edge.

Freed et al. Page 24

Acta Mech. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
A finite-element comparison of the loading configurations illustrated in Fig. 4.
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Fig. 6.
These data are from a glutaraldehyde treated bovine pericardium. Protocols 1 and 8 are
approximately uniaxial, while protocol 5 is equi-biaxial. Hypoelasticity predicts that their
responses should be straight lines. If there is a pressure effect, accounted for by α, then the
uniaxial and equi-biaxial lines will have different slopes; they have the same slope, so α ≈ 0.
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Fig. 7.
Stress/strain curves in the 1-direction for protocols 1 to 8 imposed on glutaraldehyde treated
bovine pericardium. Experimental data are the left figure. Predictions of these data with the
isotropic hypoelastic model of Eq. (34) are presented in the right figure. The scales of both
figures are the same. Parameters are: μ = 27 kPa and β = 19.2.
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Fig. 8.
Stress/strain curves in the 2-direction for protocols 1 to 8 imposed on glutaraldehyde treated
bovine pericardium. Experimental data are the left figure. Predictions of these data with the
isotropic hypoelastic model of Eq. (34) are presented in the right figure. The scales of both
figures are the same. Parameters are: μ = 27 kPa and β = 19.2.
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Fig. 9.
Shear stress/strain plots for protocols 1 to 8 for glutaraldehyde treated bovine pericardium.
Both experimental and theoretical data are plotted, with the experimental data hovering
around the zero stress axis. Parameters are: μ =27 kPa and β = 19.2.
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