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Despite having been formally described almost 150 years ago (Charcot and Joffroy, 1869),
the causes of Amyotrophic Lateral Sclerosis (ALS) remain a mystery. ALS is one of the
most common neuromuscular diseases worldwide, and is characterized by the degeneration
of both upper and lower motoneurons. Most of the cases are sporadic (i.e. affecting
individuals seemingly randomly), and only about 10% of cases can be traced to a family
history. Even in sporadic cases, a (spontaneous) genetic cause cannot be ruled out, but most
experts would argue today that the disease is probably caused by a combination of genetic
predispositions and environmental factors. Indeed, it has been hypothesized that toxins,
pollutants or even diet could induce ALS in some populations. For example, an indigenous
population on the island of Guam, in the Pacific, was found to have an unusually high
incidence of ALS (at one time almost 100 times higher than the general population, although
it has been declining in the past decades) (Reed et al., 1987, Steele and McGeer, 2008).
Several hypotheses have been proposed to explain this high risk, including trace amounts of
rare minerals in their environment (Purdey, 2004), or more recently their diet enriched in a
special type of non-protein amino acid, beta-methylamino-L-alanine, found in the seeds of
an indigenous tree (Bradley and Mash, 2009, Cox and Sacks, 2002).

In this issue of Experimental Neurology, Carunchio et al. explore the possible role in ALS of
another type of amino acid, the branched-chain amino acids (BCAAs), which are amino
acids with an aliphatic side chain, and are commonly used as dietary supplements by athletes
to stimulate muscle growth and recovery after intense exercise (Ohtani et al., 2006). BCAAs
have been suggested to be the cause of a high incidence of ALS among professional
American football players (Abel, 2007) and Italian soccer players (Armon, 2007, Belli and
Vanacore, 2005, Beretta et al., 2003, Vanacore et al., 2006). Carunchio et al. compared the
effect of a diet enriched in BCAAs on mouse cortical motoneurons (the population of
cortical neurons that command the spinal motoneurons, and which are specifically affected
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along with spinal motoneurons, in ALS) to the effect of a genetic mutation causing ALS (the
substitution of a glycine for an alanine in position 93 of the human SOD1 gene, a.k.a.
“G93A”) in mice. This group has previously shown that, in the cortical motoneurons of the
G93A mouse model, the persistent sodium current (INaP, a subtype of sodium current that
inactivates very slowly) is upregulated compared to control mice. This leads to a
hyperexcitability of the cells: they fire more action potentials than control cells for the same
amount of excitation (Pieri et al., 2009). In the present work, Carunchio et al. show that a
diet enriched in BCAAs also induced a hyperexcitability of the cortical motoneurons. This
effect was dose dependent and specific to BCAAs, as diet enriched with non-branched-
chained amino acids such as alanine or phenylalanine did not alter the excitability of the
cells. They go on to show that the hyperexcitability is probably mediated by an up-
regulation of INaP. An especially important result was the demonstration that rapamycin, an
inhibitor of the mTOR pathway, can revert hyperexcitability in animals fed with a BCAA
enriched diet as well as in G93A animals. mTOR is a protein kinase that controls protein
synthesis, cell growth and proliferation (Sandsmark et al., 2007, Sarbassov et al., 2005), and
its activity is regulated by nutrients, such as BCAAs (Avruch et al., 2001). The fact that
rapamycin can lower the excitability of G93A cells but not control cells suggests that the
hyperexcitability described in cortical motoneurons of G93A mice could be a consequence
of the activation of the mTOR pathway.

Upregulation of INaP and neuronal hyperexcitability appear to be hallmarks of ALS. Signs of
hyperexcitability in ALS have been described throughout the CNS (e.g. in the motor cortex
(Pieri et al., 2009), the hypoglossal nucleus (van Zundert et al., 2008) and the spinal cord
(Jiang et al., 2009, Kuo et al., 2004, Pambo-Pambo et al., 2009, Quinlan et al., 2009)), and
these signs appear very early in the disease progression, as early as 5–10 days of birth in
mouse models (Pambo-Pambo et al., 2009, Quinlan et al., 2009, van Zundert et al., 2008).
Changes in excitability were also observed in human patients before symptom onset (Vucic
et al., 2008). Overall, these observations tend to support the “excitotoxicity” hypothesis
proposed as a mechanism of cell death in ALS (reviewed, for example, in Grosskreutz et al.,
2010, Kiernan, 2009). Excitotoxicity refers to a pathological state in which a cell
experiences an overload of intracellular calcium, which triggers apoptotic pathways. In a
hyperexcitable environment, more calcium enters the cells: firstly, cells fire at higher
frequency, which leads to an over-activation of their voltage-sensitive calcium channels, and
thus a strong entry of calcium. Secondly, hyperexcitable presynaptic cells release more
glutamate, which in turn over-activates glutamate receptors on both sides of the synaptic
cleft, some of which are calcium permeable. Motoneurons are especially vulnerable to
excitotoxicity as they have low calcium buffering capabilities (Lips et al., 2000, Palecek et
al., 1999, Vanselow and Keller, 2000), they express calcium permeable isoforms of the
AMPA receptors (Greig et al., 2000, Van Damme et al., 2002, Van den Bosch et al., 2002,
Van den Bosch et al., 2000), and they possess strong low-voltage activated (L-type) calcium
currents (Carlin et al., 2000a, Carlin et al., 2000b, Li et al., 2004). Furthermore, the only
FDA approved drug currently used for the treatment of ALS is riluzole, which lowers the
excitability of the cells through various pathways (see Cheah et al., 2010 for a review).
Riluzole was shown to be an antagonist of NMDA receptors (Debono et al., 1993, Estevez et
al., 1995, Malgouris et al., 1994), an antagonist of AMPA/kainate receptors (Albo et al.,
2004, Debono et al., 1993), a blocker of voltage activated calcium channels (Siniscalchi et
al., 1997, Stevenson et al., 2009), and a blocker of voltage activated sodium channels.
However, at concentrations achieved by oral administration (1–2 μM, Le Liboux et al.,
1997), riluzole is considered to be a fairly specific blocker of INaP, with less effect on the
transient sodium current (Urbani and Belluzzi, 2000), and an inhibitor of vesicular release of
glutamate (Cheramy et al., 1992, Doble, 1996, Martin et al., 1993). However, riluzole has
only a modest effect on the survivability of patients with ALS (9% in the probability of
surviving one year, i.e. an increase of survival by two to three months) (Miller et al., 2007).
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Carunchio et al. propose a new therapeutic approach using rapamycin. Inhibitors of mTOR,
such as rapamycin (which are currently used to prevent organ transplant rejections), have
been shown to prolong the lifespan of mice (Harrison et al., 2009), and might have
therapeutic effects in the treatment of cancers (Faivre et al., 2006), autism (Ehninger et al.,
2008), and Alzheimer’s (Spilman et al., 2010). Carunchio et al. show that rapamycin might
be able, not only to reduce the excitability of motoneurons, but also to alter the activity of at
least one transcription factor. They show that the level of phosphorylation of p70S6, a
protein known to regulate cell growth and protein synthesis, was increased in animals fed
with BCAAs and in G93A mice, and that this increased phosphorylation was reverted by
rapamycin in both populations. As such, it appears that rapamycin could act at several levels
in the cascade of events leading to the neuronal hyperexcitability, and thus could provide
better outcome for the patients.

The similar increase in excitability in G93A and BCAA-treated neurons is striking and
might reflect a common mechanism. However, the link between hyperexcitability and
disease remains to be established. Whether the increased excitability is responsible for the
degeneration or a non-specific consequence of cell damage is still heavily debated. This
point is especially important considering that ALS is a non-cell-autonomous disease, that is
to say that the toxic property leading to the disease must be present in multiple cell types,
besides motoneurons, to reach the pathological state (for reviews, see Boillée et al., 2006a,
Ilieva et al., 2009). Evidence supporting this hypothesis was initially produced by the
selective expression of the mutant SOD1 gene only in motoneurons (Lino et al., 2002,
Pramatarova et al., 2001), or only in astrocytes (Gong et al., 2000). Neither of these
constructs led to motoneuron degeneration or death. Further evidence has been provided by
the use of a genetic construct in which the mutant SOD1 gene could be selectively excised
in various cell types (Boillée et al., 2006b). Specific excision of the mutant SOD1 gene in
motoneurons delayed the onset of the disease and slowed the early stages of the disease,
while excision of the same gene specifically in microglia slowed the later stages of the
disease. The role of the muscles in the disease is still unclear, but it is well documented that
one of the earliest events in ALS is the withdrawal of the motor axons from the
neuromuscular junction (NMJ) (Balice-Gordon et al., 2000, Fischer et al., 2004, Frey et al.,
2000, Hegedus et al., 2007, Hegedus et al., 2008, Parkhouse et al., 2008, Pun et al., 2006).
The hyperexcitability seen in the disease could thus be a direct effect on the neurons, or an
indirect consequence of damages to neighboring cell types. Although single cell
electrophysiology experiments (as used in the present article by Carunchio et al.) are
essential for the study of the physiopathology of ALS, it is of critical importance to couple
them with studies conducted in vivo, using behavioral and electrophysiological tools and
techniques. Indeed, the potential neuroprotective impact of reverting the hyperexcitability
remains to be established, especially considering that riluzole has such a modest effect on
the survivability of patients.

The recent development of an in vivo adult mouse preparation by our group (Manuel et al.,
2009) opens up the possibility of studying the role of the NMJ in ALS by testing the
behavior of motoneurons and muscles fibers (both independently and together) during the
progression of the disease. Such studies are necessary given the debate in the literature
regarding whether ALS progresses in a retrograde fashion (“dying back”, i.e. from the
periphery to the CNS, and from lower motoneurons to upper motoneurons) or in an
anterograde fashion (“dying forward”, i.e. from cortex to spinal cord, to periphery). The
dying back hypothesis rests on the observations that, in ALS mice models, as mentioned
above, NMJs disconnect at an early stage of the disease, well before the spinal motoneurons
start to degenerate, and that changes in the biochemistry of hind limb muscles might happen
before the retraction of the NMJs (Park and Vincent, 2008). Furthermore, neuroimaging
experiments conducted in human patients revealed morphological alteration in the distal
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portions of the cortico-spinal tracts (Ellis et al., 2001, Karlsborg et al., 2004, Nair et al.,
2010). On the other hand, the fact that cortical motoneurons are hyperexcitable in
presymptomatic stages of the disease (Mills and Nithi, 1997, Pieri et al., 2009, Vucic et al.,
Zanette et al., 2002), and the observation of early morphological perturbations in the cortex
of ALS patients (Ince, 2000, Sasaki and Iwata, 1999) might indicate a dying forward
mechanism (see Eisen and Weber, 2001 for a review).

Whichever the case, dying back or dying forward, the impact of environmental factors on
ALS needs to be carefully studied. The work by Carunchio et al. in this issue of
Experimental Neurology provides a significant breakthrough for the potential role of such a
toxin (BCAAs in this case) in sporadic ALS, as well as a promising new therapeutic target,
the mTOR pathway. Yet the link between BCAAs and ALS remains to be fully established.
The present work shows that BCAAs can induce a hyperexcitability similar to the one
observed in G93A mice (Pieri et al., 2009), but they did not show if a BCAA-enriched diet,
given to mice over a prolonged period, induces ALS-like symptoms. More experiments are
needed to establish if the hyperexcitability of upper and lower motoneurons is a direct
consequence of the disease, or a compensatory mechanism of the CNS. These experiments
must combine electrophysiology at the cellular level with behavioral studies to assess how
drugs that can alter the excitability of the motoneurons to modify the course of the disease.
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