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Multivariate image analysis has shown potential for classification between Alzheimer’s disease (AD)
patients and healthy controls with a high-diagnostic performance. As image analysis of positron
emission tomography (PET) and single photon emission computed tomography (SPECT) data
critically depends on appropriate data preprocessing, the focus of this work is to investigate the
impact of data preprocessing on the outcome of the analysis, and to identify an optimal data
preprocessing method. In this work, technetium-99methylcysteinatedimer (99mTc-ECD) SPECT data
sets of 28 AD patients and 28 asymptomatic controls were used for the analysis. For a series of
different data preprocessing methods, which includes methods for spatial normalization, smooth-
ing, and intensity normalization, multivariate image analysis based on principal component analysis
(PCA) and Fisher discriminant analysis (FDA) was applied. Bootstrap resampling was used to
investigate the robustness of the analysis and the classification accuracy, depending on the data
preprocessing method. Depending on the combination of preprocessing methods, significant
differences regarding the classification accuracy were observed. For 99mTc-ECD SPECT data, the
optimal data preprocessing method in terms of robustness and classification accuracy is based on
affine registration, smoothing with a Gaussian of 12 mm full width half maximum, and intensity
normalization based on the 25% brightest voxels within the whole-brain region.
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Introduction

With increasing life expectancy in developed coun-
tries, there is a corresponding increase in the
frequency of diseases typically associated with old
age, in particular dementia. Alzheimer’s disease (AD)
is the most prevalent type of dementia, followed
by vascular or multiinfarct dementia. The socio-
economic impact of dementia is extraordinarily
large, with considerable effort being made to under-
stand the pathophysiologic mechanisms of AD

to further the development of effective treatment
strategies for the disease.

Pathologic studies show that neurodegeneration in
AD begins in the entorhinal cortex, progressing to the
hippocampus, the limbic system, and neocortical
regions (Braak and Braak, 1991; Hyman et al, 1984).
The AD is characterized by accumulations of amyloid
plaques and neurofibrillary tangles (Dickson, 2003;
Taylor et al, 2002), which promote oxidative stress
and inammation (Pratico et al, 2002) and thus exert
direct and indirect neurotoxic effects.

Neuroimaging has identified a wide range of
biomarkers that can differentiate AD patients from
asymptomatic controls, such as reduced cerebral
blood flow (Johnson et al, 1987; Holman et al, 1992;
Powers et al, 1992), reduced glucose metabolism
(Mielke et al, 1996; Burdette et al, 1996; Herholz et al,
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2002), and deposition of amyloid plaques and
neurofibrillary tangles (Selkoe, 2001; Petrella et al,
2003; Engler et al, 2006). Imaging agents frequently
used in the analysis of dementia are 18F-2-fluoro-2-
deoxy-D-glucose to assess metabolic changes, and
technetium-99methylcysteinatedimer (99mTc-ECD) or
technetium-99m-hexamethyl-propyleneamine oxime
for analyzing the perfusion pattern in the brain.

In recent research, multivariate image analysis
techniques have received increasing attention (Fripp
et al, 2008; Habeck et al, 2008; Markiewicz et al,
2009). As opposed to univariate analysis, multi-
variate analysis takes into account statistical rela-
tionships between all voxels simultaneously. It has a
potentially greater statistical power compared with
univariate techniques, which are forced to use very
strict and often too conservative corrections for
voxel-wise multiple comparisons. Multivariate ana-
lysis is therefore much better suited for prospective
application of results obtained from the analysis of
a group of data sets to entirely new images, and
provides superior diagnostic performance (Habeck
et al, 2008).

In this work, multivariate analysis of single photon
emission computed tomography (SPECT) data sets
of AD patients and asymptomatic controls is per-
formed. As previous comparisons of positron emis-
sion tomography (PET) with SPECT showed only
a modest advantage of PET (Mielke et al, 1994),
optimizing the analysis of SPECT for broader clinical
use is worthwhile to bring it close to 18F-2-fluoro-2-
deoxy-D-glucose PET at a substantially less cost.
Whereas previous work focuses on the methodology
of multivariate analysis for detecting dementia
(Fripp et al, 2008; Habeck et al, 2008; Markiewicz
et al, 2009), this work primarily investigates different
data preprocessing methods to obtain optimal per-
formance of the classification. Data preprocessing
comprising registration, smoothing, and intensity
normalization has an important function in most
applications involving PET or SPECT data:

� Registration is required to align the data sets,
which is an important step for any kind of voxel-
by-voxel-based image analysis.

� Smoothing effectively reduces differences in the
data, which cannot be compensated for by regis-
tration alone, such as intrapatient variations in
gyri and pathology, and the resolution of the
reconstruction of scans. Another reason for
smoothing is the reduction of noise.

� Intensity values of the data sets may vary sig-
nificantly, depending on the individual physiology
of the patient (e.g., injected dose, body mass,
washout rate, metabolic rate). These factors are not
relevant in the study of the disease, and need to be
eliminated using intensity normalization, to obtain
meaningful statistical comparisons during multi-
variate analysis.

The choice of preprocessing methods potentially
has a crucial impact on the classification accuracy

and robustness, and therefore on the interpretation of
the results. For this reason, different data preproces-
sing methods commonly used for processing PET and
SPECT data sets are investigated in detail in this
work, and the robustness and accuracy of multi-
variate analysis, depending on the data preproces-
sing method, is investigated. Although the analysis
presented in this work is based on 99mTc-ECD SPECT
data, the same methodology could be applied to
technetium-99m-hexamethyl-propyleneamine oxime
SPECT and 18F-2-fluoro-2-deoxy-D-glucose PET
data sets.

Materials and methods

Image Data

Patient population: The 99mTc-ECD SPECT data sets used
in this work comprise 28 patients with mild-to-medium
AD (17 females, 11 males), with an age group between
52 and 81 years (mean±s.d.: 67.4±7.5), as well as 28
asymptomatic controls (21 females, 7 males) with an age
group between 50 and 78 years (mean±s.d.: 61.6±8.0).
The data sets were acquired between 2003 and 2008 at
the Clinic of Nuclear Medicine, University of Erlangen-
Nuremberg, Erlangen, Germany.

Acquisition parameters: Injection of 20 mCi (740 MBq) of
99mTc-labeled ECD was performed on subjects under resting
conditions. The patients were lying with eyes closed in
a quiet, dark, or dimly lit environment from at least
10 minutes prior until 5 minutes after injection. For image
acquisition, the patients were positioned supine in the
scanner, with their arms down. The head was placed
naturally so that the patients felt comfortable and motion
could be minimized during the acquisition. The image data
were acquired on a Siemens MultiSPECT3 scanner 30 min-
utes after injection of the tracer, with a scan duration of
30 minutes at most. The field of view of the image
contained the entire brain and the cerebellum. The
projection data were processed with filtered back projec-
tion, and Chang attenuation correction was applied.

Criteria for asymptomatic controls and Alzheimer’s
disease patients: The asymptomatic data sets originate
from patients who were referred to the Clinic of Nuclear
Medicine for brain perfusion SPECT for diagnostic pur-
poses, but the results of the scans were normal. Further
clinical investigations showed no evidence of any diseases,
which would lead to an altered brain perfusion pattern.
Computed tomography or magnetic resonance was per-
formed between 4 weeks before and 4 weeks after the
SPECT examination and there were no clinical events
between magnetic resonance/computed tomography and
SPECT.

The AD data sets originate from daily clinical routine
and were not collected as part of a prospective dementia
study. For this reason, no neuropsychologic measure is
available for these patients. All dementia patients were
referred to the Clinic of Nuclear Medicine with questions
related to diagnostic findings. The data sets underwent a
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semiquantitative analysis based on Neurological Statistical
Image Analysis Software (NEUROSTAT) (Minoshima et al,
1994, 1995c), and reading by a nuclear medicine physician
with expert knowledge in dementia diagnosis. The patients
included in the AD population comprise mild and medium
AD cases with uptake patterns typical of dementia of
AD type.

Image Preprocessing

In this section, the registration, smoothing, and intensity
normalization methods that are used in this work are
presented. For data preprocessing, any combination of
preprocessing methods listed below was investigated.

Registration reference: One of the conditions for a voxel-
based analysis is that a one-to-one correspondence for each
brain voxel must be obtained for all data sets, that is, all
brains can be represented in a common coordinate system.
For this reason, the brain scans are transformed into
a reference coordinate system, which is based on the
Montreal Neurological Institute single subject brain. This
reference coordinate system is widely used, for example, as
the standard coordinate system for the templates used in
the SPM package (Friston et al, 2007).

Because of the absence of anatomical data, a registration
reference is needed, which makes it possible to directly
register the SPECT data sets to the reference coordinate
system. The registration reference is constructed using the
average of a number of functional scans, which have
previously been transformed into the Montreal Neurologi-
cal Institute coordinate system. The reason for using
functional scans rather than anatomical scans is that
registration performance is generally better when both
scans are of the same modality and tracer (Meyer et al,
1999). As there is no clear anatomical definition in the
functional scan, variations will be better captured using a
structural rather than an anatomical registration reference.
For deformable registration in particular, there may be
more local bias in the normalization if anatomical scans are
used as reference, which would result in a local bias in the
normalization.

Registration: To register the SPECT scan of a subject to the
registration reference, a rigid registration is performed first
(translation and rotation only).

In a second step, either an affine or deformable
registration is performed: affine registration allows transla-
tion, rotation, scaling, and shearing of the data set with
respect to the registration reference, and compensates for
most of the differences in size and shapes between brains.
Several large-scale studies have shown the value of affine
registration for the purposes of AD assessment, both in PET
and SPECT (Herholz et al, 2002; Bradley et al, 2002).

Alternatively, a fully automated deformable registration
is used in the second step. The deformable fine alignment
is based on Gaussian radial basis functions (Arad et al,
1994), and uses mutual information (Wells et al, 1996) as a
similarity measure and a classic gradient descent as an
optimization scheme (Rueckert et al, 1998). The control

points for the transformation (which are the centers of the
Gaussian radial basis functions) are placed on a regular
grid, which covers the brain volume, three along the
inferior–superior direction, three left–right, and four
anterior–posterior, with a sigma for the Gaussian of
30 mm. Deformable registration offers more degrees of
freedom thus providing more flexibility. However, deform-
able warping may also overfit the data, introducing errors
that may impact the principal component analysis (PCA)
analysis.

Typically, the registration method would be accurate
down to the resolution of the image itself (i.e., about 1 cm
for SPECT images). To compensate for a potential mis-
alignment, an equivalent amount of smoothing needs to be
applied in the next step.

Smoothing: Individual voxels in the reconstructed data
usually represent very few counts that have actually been
measured. Consequently, intensity values of individual
voxels are subject to exceedingly large noise. To normalize
the cross-correlation between voxels, equalize resolution
differences among scanners, compensate for inaccuracies
of registration, and compensate for anatomical differences,
substantial smoothing before statistical analysis is re-
quired. Although smoothing leads to loss of spatial
information, this step is necessary to compute meaningful
statistics (Worsley et al, 1998).

Once registration is complete, smoothing is applied to
the voxel intensity values before intensity normalization.
Smoothing is commonly based on a Gaussian filter with
typical filter widths between 6 and 12 mm. In this work, a
standard isotropic Gaussian filter is used with full width
half maximum (FWHM) of either 8 or 12 mm. The latter
value is widely accepted to provide adequate performance
from an experimental point of view (Herholz et al, 2002;
Ishii et al, 2001; Matsuda et al, 2002).

Intensity normalization: Intensity values of the data sets
may vary arbitrarily, depending on factors such as injected
dose and systemic tracer elimination. These factors are
not relevant in the study of the disease and would only
introduce unnecessary variance, which is not desirable.
For this reason, the images need to be intensity normal-
ized, to obtain meaningful statistical comparisons during
PCA and Fisher discriminant analysis (FDA) analysis.

The normalization of intensity values is achieved by
globally scaling the entire scan to a new reference range
using a linear transformation. However, the choice of a
proper reference region to scale each SPECT data set is not
straightforward: results obtained from an intensity normal-
ized scan may be misleading if there is a physiologically
relevant or disease-related change in the reference region.
Therefore, the reference region has to be chosen carefully,
either on the assumption that a particular region is not
affected by the disease, or that a combination of regions
provides sufficiently low bias in the normalization.

A number of strategies for intensity normalization
have been reported in the literature. Various studies have
chosen the pons (Minoshima et al, 1995a), the thalamus
(Bartenstein et al, 1997; Minoshima et al, 1995b), the
cerebellum (Ishii et al, 1997, 2001; Soonawala et al, 2002),
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or the whole brain (Herholz et al, 2002) as reference region.
However, some of these regions are small, which makes
them very sensitive to noise and registration errors. This
problem becomes even more evident in ageing brains and
in brains where dementia is present, because of the
ventricular enlargement observed in these cases. A small
translation or scaling of the reference region may greatly
affect the intensity normalization. For these reasons, there
is no consensus in the literature as to which anatomical
region is an appropriate choice.

Even though the pons alone seems to be too small to be
identified reliably by automated spatial registration, its use
as reference region is desirable because of the relative
sparing in AD. For this reason, one of the regions
considered for intensity normalization in this work is the
brainstem, which consists of the midbrain, the pons, and
the medulla oblongata. The second region being consid-
ered is the cerebellum, which is often used as a reference
in studies of AD, assuming that it is spared by any major
pathological involvement. A very popular region for
intensity normalization is the ‘whole-brain’ area, which
is the third method investigated in this work. The whole-
brain region is based on the automated anatomical labeling
segmentation (Tzourio-Mazoyer et al, 2002) of the Montreal
Neurological Institute single subject brain. It comprises the
cerebrum as well as the cerebellum and was generated by
fusing all automated anatomical labeling label regions and
filling remaining gaps. The fourth and fifth regions
considered for intensity normalization are the pons and
the thalamus.

The respective regions used for intensity normalization
are predefined on the registration reference and are
transferred to an individual SPECT data set after registra-
tion. To compensate for any residual registration errors and
minor abnormalities within the respective reference region,
the mean value of the 25% brightest voxels within the
region is computed and used as the constant in the
intensity normalization step. For the whole-brain area,
the voxels effectively used for intensity normalization are
shown in Figure 1.

Computational framework for data preprocessing: The
framework for data preprocessing and analysis was
implemented in MATLAB, Version 7.5.0.342 (The Math-
Works Inc., Natick, MA, USA; http://www.mathworks.com).
It automatically applies different preprocessing methods
(i.e., any combination of registration, smoothing, and
intensity normalization approaches) on the initial set of
data. For each preprocessing method, the analysis described
in the following sections is performed.

Principal Component Analysis

The PCA (Pearson, 1901) is a multivariate analysis method
that aims at revealing the trends in the data by representing
the data in a dimensionally lower space. The first PC
accounts for as much of the variability in the data as
possible by a single component, and each succeeding
component accounts for as much as possible of the
remaining variability. The PCA thus projects high-

dimensional data onto a lower dimensional space repre-
sented by a subset of PCs, which can be more easily
explored to analyze the underlying structure of the data.
Even though each data set can exactly be represented as a
linear combination of all principal components, data
analysis usually only retains a few principal components
to focus on the main variations of the data and to take
advantage of the dimensionality reduction effect obtained
by PCA, considering the remaining PCs as noise or atypical
variations.

The PCs are computed as follows (Markiewicz et al,
2009): the n�m data matrix X comprises all m data sets,
whereas each column of X represents one data set (i.e.,
contains the n voxels of the whole-brain region of this
particular data set). The PCs are computed as the
eigenvectors of the covariance matrix XXT using singular
value decomposition. However, as an individual data set
may be used multiple times in a bootstrap sample (see
section ‘Bootstrap Resampling’), the singular value decom-
position may become numerically unstable. In these cases,
a more stable but slightly slower method for calculating the
PCs called nonlinear iterative partial least squares (Wold,
1966, 1975) is used.

Fisher Discriminant Analysis

Although PCA allows the identification of components,
which are suited for representing the whole population

Figure 1 Base image (grayscale colormap): registration refer-
ence. Overlay image (colormap ranging from red to white): voxels
with top 25% intensities within the whole-brain region. The
color indicates how often a voxel is used across all data sets.
Voxels in the occipital lobe and the cerebellum are most
frequently among the voxels used for intensity normalization
(upper row: all Alzheimer’s disease (AD) data sets; middle row:
all asymptomatic control data sets; and lower row: both AD
and control data sets). The color reproduction of this figure is
available on the html full text version of the manuscript.
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(i.e., asymptomatic controls and AD patients), there is no
reason to assume that each component on its own should
be useful for discriminating between both groups. As PCA
seeks for directions that are efficient for representing the
data, a discriminant analysis is needed in a second step,
which seeks directions that are efficient for differentiating
between groups.

The goal of FDA is to identify a discrimination vector w
such that projecting each data set onto this vector provides
the best possible separation between both groups. To
obtain a good separation of the projected data, it is
desirable that the difference between the means of each
class is large relative to some measure of the variation in
each class. For this reason, the criterion function J that is
maximized in FDA (Duda et al, 2001)

JðwÞ ¼ wtSBw

wtSww
ð1Þ

is based on the between-class scatter matrix SB and the
within-class scatter matrix Sw

SB ¼
X

c

ðmc � �xÞðmc � �xÞT ;

Sw ¼
X

c

X

i2c

ðxi �mcÞðxi �mcÞT ; ð2Þ

where x̄ is the mean image vector across subjects, c
represents the classes to be separated, and mc are the class
means.

In mathematical physics, equation (1) is well known as
the generalized Rayleigh quotient. It can be shown that the
solution w that optimizes J is (Duda et al, 2001)

w ¼ S�1
w ðm1 �m2Þ; ð3Þ

whereas m1 and m2 indicate the n-dimensional sample
means of the two populations. However, because of the
small number of data sets compared with the dimension-
ality of the images, an FDA analysis directly on the
original data would result in a singular within-class
scatter matrix, which cannot be inverted as required in
equation (3). Therefore, the FDA is applied to the PC
scores resulting from projecting the original data onto the
PCs of the PCA subspace used for the analysis (Swets and
Weng, 1996; Markiewicz et al, 2009), rather than the
original data.

Bootstrap Resampling

In statistics, resampling techniques are used to validate
models and to assess their statistical accuracy by using
random subsets (bootstrapping, cross-validation) (Efron
and Tibshirani, 1993). Following the analysis used in
Markiewicz et al (2009), 0.632 bootstrap resampling with
stratification is applied to evaluate the robustness and the
predictive accuracy of the PCA and FDA approach, given
different methods of data preprocessing. For a total number
of 500 replications, 28 asymptomatic controls and 28 AD
patients are randomly drawn from each group, resulting in
a new bootstrap sample per replication. For each bootstrap
sample, PCA is performed, as well as FDA for different
numbers of PCs. Bootstrap resampling followed by PCA

and FDA is performed for each individual data preproces-
sing method, and statistical results are calculated (see
section ‘Measures for Evaluation’) to evaluate the different
data preprocessing methods.

Measures for Evaluation

The following statistical measures are calculated for each
preprocessing method to assess the accuracy and robust-
ness of classification (more details are provided in
Markiewicz et al (2009)).

Classification accuracy: The accuracy of classifying AD
and controls correctly in the context of 0.632 bootstrap
sampling is estimated as follows: for both the data sets,
which are not part of the bootstrap sample as well as for the
full set of data (i.e., the training set), the classification
accuracy is calculated. The accuracy of individual boot-
strap samples is typically based on fewer training instances
(on average 63.2% of the bootstrap subjects are from the
original training set, whereas the remaining 36.8% are used
for testing), and is therefore lower. For this reason, a trade-
off between the accuracy of the training set and the
accuracy of individual bootstrap samples is provided by
combining both constituent parts, to obtain the 0.632
bootstrap classification accuracy:

accboot ¼
1

b

Xb

i¼1

ð0:632 � acci þ 0:368 � acctrainingÞ; ð4Þ

where b is the number of bootstrap replications, acci is the
accuracy of the individual bootstrap sample that corre-
sponds to replication i, and acctraining is the accuracy of the
training set (Efron and Tibshirani, 1993). To provide a more
accurate estimate of acctraining, again bootstrap resampling
based on 200 iterations is applied, whereas the same
instances used in the bootstrap sample are also used for
calculating the accuracy, which is averaged across all
samples.

Angle between principal component analysis subspaces:
For each bootstrap replication, the angle between the PCA
subspace based on the whole sample, and the PCA
subspace based on the bootstrap sample is computed. For
this purpose, pairs of vectors from both subspaces and
corresponding angles are identified as follows (Golub and
Van Loan, 1996): the first principal angle is the smallest
angle between any pair of vectors originating from both
PCA subspaces. To identify the second principal angle,
only vectors in each subspace are considered, which are
orthogonal to the vector that was used to define the first
principal angle, and so forth. The angle between both PCA
subspaces is then defined as the largest principal angle of
all computed principal angles (Golub and Van Loan, 1996).
The smaller the largest principal angle between two PCA
subspaces, the closer and more similar are the PCA sub-
spaces, which can be considered as a sign of robustness.

Angle between Fisher discriminant analysis vectors : For
each bootstrap replication, the angle between the FDA
vector based on the whole sample and the FDA vector
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based on the bootstrap sample is calculated for different
numbers of PCs. For an increasing number of PCs, the angle
is expected to increase, as the PCA and FDA analysis
adapts to features specific of the sample, rather than
features that differentiate between both classes, which
indicates a decrease of robustness.

Results

To address the question whether data preprocessing
methods impact the classification accuracy and
robustness of PCA/FDA analysis, and to compare
the performance of different preprocessing methods,
a comprehensive results analysis is provided in this
section.

Classification Accuracy

The predicted classification accuracy provides in-
sight into the future performance of different data
preprocessing methods. In Figure 2, the classifica-
tion accuracy of different data preprocessing meth-
ods depending on the number of PCs used for the
analysis is shown. The red (dashed) curve indicates
the classification accuracy obtained for 500 bootstrap
iterations, with the chosen instances in the bootstrap
sample being used for training and testing, providing
the training accuracy used in the 0.632 bootstrap
predictive accuracy estimation. The green (dotted)
curve represents the accuracy achieved on average
for all the samples generated in 500 bootstrap
replications (chosen instances in a bootstrap sample
are used for training with the remaining instances
being used for estimating the accuracy). The blue
(solid with crosses) curve represents the final
accuracy for the bootstrap 0.632 estimator (with the
correction in equation (4) applied). Table 1 sum-
marizes the classification accuracy results for three
PCs across different data preprocessing methods.

The accuracy curves in each plot follow a
characteristic scheme: with increasing number of
PCs incorporated into the analysis, the accuracy
increases as well, as discriminative features for
separating both classes are better captured. However,
from a certain number of PCs onwards, the accuracy
drops again, as PCs are included into the analysis,
which represent individual bootstrap samples only
(with repeated instances in the bootstrap sample),
rather than the whole data set.

Angles Between Principal Component Analysis
Subspaces and Fisher Discriminant Analysis Vectors

The robustness of a PCA subspace is indicated by
the sampling distribution of the angle between PCA
subspaces, a small angle and a narrow distribution
being a sign of robustness. Figure 3 shows for each
data preprocessing method, the sampling distribu-
tion of the angle between PCA subspaces for 500

bootstrap replications, depending on the number of
PCs. In general, with the increasing number of PCs
spanning the PCA subspace, the robustness of the
subspace decreases for any preprocessing method.

A similar behavior can be observed for the angle
between FDA vectors, as outlined in Figure 4. Again,
robustness is indicated by a small angle between
FDA vectors, and a comparatively narrow distribu-
tion. For an increasing number of PCs, the angle
between FDA vectors deteriorates, indicating a
decrease of robustness of the analysis.

Interestingly, distinct differences of robustness can
be observed between different preprocessing meth-
ods (both for the angle between PCA subspaces as
well as the angle between FDA vectors). According to
Figure 4, intensity normalization according to the
cerebellum results in very unrobust results, with
large angles and high variability already for low
numbers of PCs. The results for the pons seem to
suggest a lack of robustness when 12 mm smoothing
is used, but notably better with 8 mm smoothing. The
registration methods, affine and deformable, result in
very similar distributions with no clear preference
for either method. Affine registration with a Gaus-
sian filter of 12 mm FWHM and intensity normal-
ization based on the whole-brain region, which
provides the best classification accuracy (see section
‘Classification Accuracy’), also provides noticeably
good results for both robustness analyses.

By combining these results with the accuracy
analysis in section ‘Classification Accuracy,’ it can
be observed that the increase of accuracy for an
increasing number of PCs occurs at the cost of
robustness as indicated by the analysis of angles
between FDA vectors and PCA subspaces. This is
also illustrated in Figure 5, which provides a direct
comparison between accuracy and robustness (as
parameterized by the angle between the FDA
vectors), and shows the inverse relationship between
both. These results show that a small number of PCs
provides a good trade-off between robust analysis
and high accuracy, given an optimized preprocessing
method. Tables 2 and 3 summarize the results for the
angle between PCA subspaces (Table 2) and the angle
between FDA vectors (Table 3) for the first three PCs
across different data preprocessing methods.

Visualization of Principal Components and
Discriminant Vector

The PCs as well as the discrimination image can be
regarded as three-dimensional data sets and can be
visualized accordingly. Axial slices of the first three
PCs are shown in Figure 6, for data preprocessing
based on affine registration, Gaussian smoothing
with an FWHM of 12 mm, and intensity normal-
ization based on the whole-brain region. The dis-
criminant image for this particular preprocessing
method and FDA based on three PCs is provided in
Figure 7.
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Figure 2 Classification accuracy of the training set (red, dashed), for individual bootstrap samples (averaged) (green, dotted), and for
the bootstrap 0.632 estimator (corrected, averaged) (blue, solid with crosses), depending on the number of principal components
(PCs) included into the analysis. In each plot, the horizontal axis denotes the number of PCs included into the analysis, and the
vertical axis denotes the respective classification accuracy. The color reproduction of this figure is available on the html full text
version of the manuscript.

Table 1 Accuracy for different preprocessing methods

Affine, Gauss08 Affine, Gauss12 Deformable, Gauss08 Deformable, Gauss12

Brainstem 0.81 0.86 0.83 0.79
Cerebellum 0.85 0.82 0.85 0.84
Whole brain 0.86 0.89 0.86 0.84
Pons 0.81 0.77 0.84 0.81
Thalamus 0.84 0.80 0.84 0.79

The accuracy is estimated using 500 bootstrap replications and the first three principal components included in the discrimination analysis.
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The first PC image shows patterns, which are
typical for dementia of AD type, with more intense
colors (blue, red), indicating a higher contribution to
the discrimination. Areas of high hypo-metabolism
(red) are to be found in the temporal, parietal, and
frontal lobes, as expected in AD patients. The second
PC image shows areas of high discrimination (blue)
in the vicinity of the ventricles, which could be

attributed to the widening of ventricles in dementia,
a shape variation not corrected by registration.

The discriminant image shows areas of high hypo-
metabolism (red) in the temporal, parietal, and
frontal lobes. The central region and the occipital
lobes are not affected and only show very small
values (white, light blue, and red), which are
patterns typically seen in real AD patient images.

Figure 3 For different data preprocessing methods: sampling distribution of the angle between principal component analysis (PCA)
subspaces for 500 bootstrap replications, depending on the number of PCs. Robustness is indicated by a small angle between PCA
subspaces, and a comparatively narrow distribution. In each boxplot, the horizontal axis denotes the number of PCs included into the
analysis, and the vertical axis denotes the angle between PCA subspaces.

Optimized data preprocessing for multivariate analysis
D Merhof et al

378

Journal of Cerebral Blood Flow & Metabolism (2011) 31, 371–383



The dark blue regions particularly in the cerebellum
are due to the use of global normalization where
relatively preserved areas once intensity normalized
can increase in AD patients.

Discussion

In this work, the impact of data preprocessing
methods on the robustness and accuracy of multi-

variate image analysis of 99mTc-ECD SPECT data in
AD patients and asymptomatic controls is investi-
gated. To provide more reliable results, bootstrap
resampling is applied to assess the robustness of
classification.

A limitation that needs to be acknowledged is the
fact that no neuropsychologic measure is available as
the data sets originate from daily clinical routine and
were not collected as part of a prospective dementia
study. For this reason, the accuracy and robustness

Figure 4 For different data preprocessing methods: sampling distribution of the angle between Fisher discriminant analysis (FDA)
vectors for 500 bootstrap replications, depending on the number of principal components (PCs). Robustness is indicated by a small
angle between FDA vectors, and a comparatively narrow distribution. In each boxplot, the horizontal axis denotes the number of PCs
included into the analysis, and the vertical axis denotes the angle between FDA vectors.
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measures reported in this work are based on visual
reading by an expert nuclear medicine physician as
ground truth, that is, the system has been optimized
to achieve classification results that are comparable
to visual reading by a medical expert.

The data preprocessing methods for registration,
smoothing, and intensity normalization investigated
in this work are commonly used in the literature. The
classification accuracy given by bootstrap 0.632
provides evidence with respect to the best perform-
ing set of preprocessing methods, with a clear
preference for affine registration, Gaussian smooth-
ing with an FWHM of 12 mm, and intensity normal-
ization according to the whole-brain region. This
particular combination of methods seems to harmo-
nize very well and provides excellent classification
accuracy, already for low numbers of PCs. The
robustness of PCA/FDA analysis assessed by the
angle between PCA subspaces and between FDA

Figure 5 Direct comparison of the classification accuracy (upper
image) and the angle between Fisher discriminant analysis
(FDA) vectors (lower image) clearly shows the trade-off relation-
ship between both (exemplarily, data preprocessing using whole-
brain intensity normalization, affine registration, and Gaussian
smoothing, with a full width half maximum (FWHM) of 12 mm
was used). In both plots, the horizontal axis denotes the number
of principal components (PCs) included into the analysis, and
the vertical axis denotes the respective classification accuracy
(upper plot) and the angle between FDA vectors (lower plot),
respectively.

Table 2 Median angle between PCA subspaces for different data
preprocessing methods

Affine,
Gauss08

Affine,
Gauss12

Deformable,
Gauss08

Deformable,
Gauss12

Brainstem 461 431 421 431
Cerebellum 551 441 541 381
Whole
brain

551 451 551 351

Pons 441 451 401 431
Thalamus 661 431 501 431

PCA, principal component analysis.
The angle is estimated using 500 bootstrap replications and the first three
PCs included in the discrimination analysis.

Table 3 Median angle for different data preprocessing methods

Affine,
Gauss08

Affine,
Gauss12

Deformable,
Gauss08

Deformable,
Gauss12

Brainstem 351 281 321 341
Cerebellum 411 381 391 341
Whole
brain

311 261 361 301

Pons 451 321 321 341
Thalamus 351 311 321 321

The angle is estimated using 500 bootstrap replications and the first three
principal components included in the discrimination analysis.

Figure 6 Axial slices (every fourth slice from slice 72 to 16) of
first, second, and third principal component (PC), for data
preprocessing based on affine registration, Gaussian smoothing
with a full width half maximum (FWHM) of 12 mm, and
intensity normalization according to the whole-brain region.
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vectors generally decreases with increasing number
of PCs spanning the subspace.

By adding more PCs into the discriminative model,
the loadings of the resulting discriminative pattern
become significantly more variable, although the
classification accuracy is to some degree insensitive
to this unrobustness of the pattern and maintains
high levels. This can be explained by the fact that
bootstrap resampling assumes that the given sample
size is well representative of the populations (ADs
and healthy controls). However, this is not applic-
able to most studies where only a limited number of
recruited and scanned subjects is available. When
using a discriminative pattern trained on a small
sample, and validated on a larger and independent
sample (i.e., from different medical centers), the
robustness of the pattern will have a significant role
resulting in lower actual accuracy compared with the
accuracy predicted based on the smaller sample. For
this reason, the analysis of robustness gives better
insight into the future performance of a given
discriminant analysis, especially if it is based on a
small sample size. Therefore, a small number of PCs
providing a higher robustness is preferable for the
analysis, which is in accordance with results for PET
data published previously (Markiewicz et al, 2009).
A more detailed analysis of the robustness results
shows that intensity normalization according to the
cerebellum is relatively unrobust, compared with the
other intensity normalization methods. The brain-
stem and the whole-brain reference region, however,
perform similarly well in terms of robustness, with
no clear preference for either region. However, to
achieve an equivalent accuracy of classification
using brainstem intensity normalization, more PCs
need to be included into the analysis, which in turn
results in less robustness, that is, the robustness
of brainstem is worse than whole-brain intensity

normalization if classification accuracy is approxi-
mately equivalent. Affine registration with a Gaussian
filter of 12 mm FWHM and intensity normalization
based on the whole-brain region, which provides the
best classification accuracy, also provides noticeably
good results for both robustness analyses, and seems
to be a preferred combination of methods.

In general, the performance of a reference region
used for intensity normalization not only depends on
the uniformity of tracer uptake in this specific
region, but also on the quality of registration. If the
registration does not provide sufficient alignment
between the patient data set and the registration
template, the reference region defined on the
template does not appropriately match the patient
data set, resulting in a poor intensity normalization.
This effect is one possible explanation for the poor
accuracy values obtained for the pons and the
thalamus (especially for a low number of PCs).

The method of using the mean value of only the
brightest 25% of voxels of the reference region
provides reliable intensity normalization, and allows
for correct intensity normalization even if a slight
misregistration between patient data set and registra-
tion reference is present. If the whole-brain region is
used as reference region, this approach ensures that
the regions affected by AD (consequently showing
decreased uptake) do not compromise the intensity
normalization. However, it should be noted that for
patients with grossly abnormal uptake within the
whole-brain region (for instance as a result of stroke,
or in patients with very severe dementia), this
approach may not be able to entirely compensate
abnormalities, hence resulting in an error introduced
into the scaling factor applied to the voxel intensi-
ties. However, such cases will appear as clearly
abnormal by inspection of the uptake image, and are
not the cases that are targeted with the multivariate
analysis applied in this work.

The visualization of slice images of the discrimi-
nant image for the best performing preprocessing
method shows patterns typically expected in de-
mentia of AD type, with high values in the temporal,
parietal, and frontal lobes, indicating a higher
contribution to the discrimination. The slice images
of the first two PCs can also be interpreted in terms of
contribution to dementia, with the first PC showing
patterns of AD, and the second PC showing changes,
which could be due to the widening of the ventricles
in AD patients. However, these interpretations
should be regarded with caution. The PCA seeks
the directions of greatest variation in the data, which
could just as well represent anatomical variability
within the population, rather than changes that can
be attributed to dementia.

Conclusion

The results presented in this work illustrate
that different data preprocessing methods have a

Figure 7 Axial slices (every fourth slice from slice 72 to 16) of
discriminant image based on three principal components (PCs),
for data preprocessing based on affine registration, Gaussian
smoothing with a full width half maximum (FWHM) of 12 mm,
and intensity normalization according to the whole-brain region.
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significant impact on the accuracy and robustness of
multivariate image analysis in 99mTc-ECD SPECT
data. Among the preprocessing methods investigated
in this work, the best performing method could be
identified, which is based on affine registration,
Gaussian smoothing with an FWHM of 12 mm, and
intensity normalization according to the 25% bright-
est voxels within the whole-brain region. In current
literature, the effect of data preprocessing on the
outcome of image analysis and adjustments for
optimizing the results are often not investigated
in detail. However, this aspect greatly affects the
analysis and becomes even more important if very
slight deviations from normal need to be detected, as
in early AD cases. Overall, this work contributes to a
more robust and accurate classification of AD
patients and asymptotic controls based on multi-
variate image analysis.
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