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We examined the mechanisms underlying the abrupt onset of the focal infarction in disseminated
selective neuronal necrosis (DSNN) after temporary ischemia. Stroke-positive animals were selected
according to their stroke-index score during the first 10 minutes after left carotid occlusion
performed twice at a 5-hour interval. The animals were euthanized at various times after the second
ischemia. Light- and electron-microscopical studies were performed chronologically on the coronal-
cut surface of the cerebral cortex at the chiasmatic level, where focal infarction evolved in
the maturing DSNN. We counted the number of neurons, astrocytes, and astrocytic processes
(APs); measured the areas of end-feet and astrocytes; and counted the numbers of obstructed
microvessels and carbon-black-suspension-perfused microvessels (CBSPm). Between 0.5 and
5 hours after ischemia, DSNN matured, with the numbers of degenerated and dead neurons
increasing, and those of APs cut-ends decreasing; whereas the area of the end-feet and the numbers
of obstructed microvessels increased and those of CBSPm decreased. At 12 and 24 hours after
ischemia, the infarction evolved, with the area of end-feet and astrocytic number decreased;
whereas the numbers of obstructed microvessels decreased and the CBSPm number increased. The
focal infarction evolved by temporary microvascular obstruction because of compression by
swollen end-feet.
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Abbreviations and Specific words: APs, astrocytic processes; CBSPm, carbon-black-suspension-perfused
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mass but in a disseminated manner among the surviving neurons); EM, electron microscopy; Face-A, coronal-cut
surface at the chaismatic level of the gerbil brain; Face-B, coronal-cut surface at infundibular level of the gerbil
brain; HE, hematoxylin-eosin; IF, interhemispheric fissure of the gerbil brain; LMS, light microscopy; PAS, periodic
acid-fuchsin-Schiff; rCBF, regional cerebral blood flow; RF, rhinal fissure of the gerbil brain; RPI, region peripheral
to infarction of the gerbil brain; SDH, succinic dehydrogenase; TB, Toluidine blue.

Introduction

The maturation phenomenon of ischemic injury (Ito
et al, 1975, 1979) or delayed neuronal death (Kirino,
1982) has been investigated with the main focus on
neurons. However, astrocytes are known to support

neuronal functions by regulating extracellular ion-
homeostasis and neurotransmitters, as well as by
providing energy substrates, for example, lactate to
the neurons through their astrocytic processes (APs;
Auer and Sutherland, 2002; Bambrick et al, 2004;
Chen and Swanson, 2003). An ischemic insult also
injures astrocytes; however, no precise analysis of
the APs had been reported before our earlier study
(Ito et al, 2009). In that study of the region peripheral
to the cerebral cortical infarction (region peripheral
to the infarction, RPI) or penumbra in Face-B (the
coronal-cut surface of the gerbil brain at the level of
the chiasma was termed as Face-A and that at the
level of the infundibulum as Face-B), we found that
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the heterogeneous degeneration of APs of the
normal-appearing astrocytes was tightly associated
with the appearance of disseminated selective
neuronal necrosis (DSNN) and its maturation after
temporary ischemia.

Two types of morphological injury, DSNN and
infarction, have been demonstrated in response to
various temporary ischemic insults (Ito et al, 1975;
Marcoux et al, 1982; DeGirolami et al, 1984). In
temporary ischemia, brief moderate ischemia in-
duces DSNN, whereas longer and severer ischemia
produces an infarction (Ito et al, 1975; Marcoux et al,
1982; DeGirolami et al, 1984; Smith et al, 1984).
Excitatory amino acids are thought to lead to DSNN;
and tissue acidosis, to an infarction. However, the
pathologic relationships between the two may not
always be straightforward (Auer and Sutherland,
2002).

Infarction is defined as a pan-necrosis of both glial
and neuronal elements and is different from DSNN
in that astrocytes also die during the evolution of
an infarction. Impairment of energy metabolism, as
evidenced by reduced glucose utilization, progres-
sive acidosis, and ATP depletion, has a pivotal
function in the formation of an infarction. However,
little is known about the mechanisms underlying the
abrupt onset of astrocytic death and pan-necrosis
in the DSNN (Auer and Sutherland, 2002; Swanson
et al, 1997).

For thrombolytic therapy in acute stroke, preven-
tion of the evolution of a focal infarction after
restoration of blood flow is of paramount importance
for a better recovery. Elucidation of the mechanisms
and identification of targets for prevention of the
abrupt onset of the focal infarction, and as well as the
development of novel preventive measures, will
have tremendous clinical implications for the treat-
ment of acute stroke.

Because of the difficulty involved in reproducibly
producing either DSNN or an infarction in the
cerebral cortex of experimental animals by imposing
a single ischemic insult (Crowell and Olsson, 1972;
Weinstein et al, 1984), we earlier devised a model
that uses a modified, unilateral temporary carotid
occlusion in Mongolian gerbils obtained by applying
twice a 10-minute unilateral carotid occlusion with
a 5-hour interval between them. This procedure
afforded a threshold amount of ischemia needed to
induce a unilateral cerebral cortical focal infarction
in Face-A, around which DSNN slowly matured in a
large RPI/or penumbra. The infarct size became
uniform so that a focal infarction evolved in the
DSNN of the coronal face sectioned at the chiasmatic
level (Face-A; Figure 1A), and only DSNN matured
in the coronal face sectioned at the infundibular
level (Face-B; Figure 1A; Hanyu et al, 1997). In this
model, by dividing the ischemic insult into two
parts, the mortality rate of the animals caused by
epileptic seizure is drastically decreased.

In our earlier studies, we found that the threshold
from DSNN to focal infarction after temporary

ischemic insult was very narrow and that a small
increase in the ischemic insult induced an infarction
once a critical threshold of the intensity had been
met (Hanyu et al, 1995, 1997). However, the temporal
profile and mechanisms of transition from the
maturing DSNN to evolution of the focal infarction
still remained obscure. Our earlier study using the
same gerbil model also revealed that, around
12 hours after ischemia, an abrupt drop in ATP
content, SDH activity, and pH occurred in the
cerebral cortex of gerbils at the chiasmatic level
(Face-A) corresponding to the focal infarction,
suggesting that some additional event had occurred
in the cortical tissue (Kuroiwa et al, 2000).

Using this model, we presently investigated this
transition, focusing on the ultrastructural temporal
profiles of the astrocytic end-feet and patency of
the microvessels during the appearance of a focal
infarction in the maturing DSNN in Face-A, to
elucidate the additional event that was required to
induce the abrupt onset of the infarction.

Materials and methods

The animals used here were handled in accordance with
the ‘Guidelines for the Experimental Use of Animals of
Tokyo Metropolitan Institute for Neuroscience.’ Animals
were numbered and grouped by using a table of random
numbers. Also using this table, an outsider numbered each
specimen for light microscopy (LMS) and electron micro-
scopic (EM) photographs in each of the settings, with
measurements performed starting with the smallest num-
ber. Under anesthesia with 3% isoflurane, 70% nitrous
oxide, and 30% oxygen, the left carotid artery of adult male
Mongolian gerbils (60 to 80 g) was exposed by making a
midline cervical incision. The carotid artery was occluded
twice with a Heifetz aneurismal clip for 10 minutes each
time, with a 5-hour interval between the two occlusions.

Anesthesia was discontinued immediately after each
cervical surgery, and the behavior of conscious animals
was observed for 10 minutes during the carotid occlusion.
Ischemia-positive animals were selected based on having a
stroke-index score of over 13 points (Ohno et al, 1984).
These animals were killed at 0 (sham operated), 0.5, 3, 5,
12, 24, and 72 hours after the second ischemic insult, by
transcardiac perfusion. The animals were perfused with
diluted fixative (1% paraformaldehyde, 1.25% glutaralde-
hyde in 0.1 mol/L cacodylate buffer) for 5 minutes, followed
by perfusion with concentrated fixative (4% paraformalde-
hyde, 5% glutaraldehyde in 0.1 mol/L cacodylate buffer) for
20 minutes for EM (three animals for each time group) or
with 10% phosphate-buffered formaldehyde fixative for
30 minutes for LMS (four animals for each time group).

For the EM study, we obtained cortical blocks including
all cortical layers along a 2-mm-wide path from a point
medial to one-half of the distance between the rhinal and
interhemispheric fissures of the left cerebral cortex on
Face-A. These blocks were divided into two adjacent
column blocks of 1 mm width for each and embedded into
Epon blocks. Ultrathin Epon sections including second
through fifth cortical layers were double stained with
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uranyl acetate and lead solution, and observed with an
electron microscope (H9000-Hitachi, Tokyo, Japan). A
measure of 1-mm thick Epon sections of these column
blocks were stained with Toluidine blue for LMS. Coronary
paraffin sections of Face-A were separately stained with
hematoxylin-eosin or periodic acid-fuchsin-Schiff for LMS.

We performed the following morphometric measurements.

Number of Normal-Appearing, Degenerating, and Dead
Neurons and of Astrocytes (Light Microscopy)

Using an eye-piece micrometer (U-OCMSQ10/10) under
400-power magnification, we counted the number of
normal-appearing, degenerated, and dead neurons in all
six cortical layers in four adjacent columns, by vertically

Figure 1 Light microscopic findings in the second to fifth cortical layers of Face-A. (A) Coronal section of Face-A and -B 72 hours
after ischemia (periodic acid-fuchsin-Schiff, PAS). The four cortical columns counted, each 0.25 mm in width, are indicated. ‘1/2’
indicates the point medial between rhinal (RF) and interhemispheric (IF) fissures along the cortical surface. (B–E) Hematoxylin-eosin
(HE) staining; bars = 30.4 mm. (B) At 0.5 hour after ischemia, degenerated (arrows) and dead (arrowheads) neurons are seen. (C) At
5 hours after ischemia, degenerated (black arrows) and dead (arrowhead) neurons are seen along with obstructed microvessels
showing stasis and surrounded by swollen end-feet (blue arrows). (D) By 12 hours after ischemia, flocks of foamy necrotic neuropils
(black arrows) are noted among necrotic neurons. Blue arrows indicate patent microvessels. (E) At 24 hours after ischemia, dead
neurons are scattered in diffusely spongy necrotic tissue. Almost all microvessels are patent (blue arrows). (F) At 3 hours after
ischemia: carbon-black-suspension perfused (CBSP) and HE, bars = 30.4 mm. Carbon-black-suspension-perfused (blue arrows) and
not-perfused (black arrows) microvessels are seen. (G) At 5 hours after ischemia, signs of stasis (arrows) and obstructed microvessels
(arrowhead) are observed (Toluidine blue), bars = 12.2 mm.
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and medially moving the specimen along a 0.25-mm-wide
� 4 path of the cortex. We started medially from a point
one-half of the distance between the rhinal and interhemi-
spheric fissures on hematoxylin-eosin-stained Face-A
(Figure 1A) in each of the four animals (Supplementary
Table A). We calculated the average number of normal-
appearing, degenerated, and dead neurons in each
column. The average number of all neurons counted
was 8,641.0±256.6 per time point. In the same way, we
determined the average number of astrocytes on the
periodic acid-fuchsin-Schiff-stained sections. The average
number of all astrocytes counted was 663.2±115.7 per
time point.

The following criteria were used to classify the neurons.
For normal-appearing neurons, a clear cytoplasm contain-
ing a large round nucleus with homogenous chromatin
and a centrally located large nucleolus was required. For
degenerating neurons, an eosinophilic dark or foamy
cytoplasm surrounded by a clear halo (swollen APs) along
with nuclear chromatin condensation or aggregation was
requisite. For dead neurons, either (1) an asterisk-shaped
condensed eosinophilic cytoplasm surrounded by a clear
halo and a nucleus showing karyorrhexsis or pyknosis or
(2) ghost cells with homogeneously, faintly stained eosi-
nophilic cytoplasm occasionally having a faintly stained
basophilic nucleus with an obscure nuclear margin met the
requirement.

The following criteria were used to identify astrocytes:
those cells with a round or elliptical or occasionally
polygonal nucleus surrounded by a conspicuous nuclear
membrane and having a clear, homogenous chromatin and
an eccentrically located single small nucleolus, along with
an irregular foamy cytoplasm filled with periodic acid-
fuchsin-Schiff-positive glycogen particles.

Area and Number of Mitochondria in the Astrocytic
Cytoplasm and End-Feet (Electron Microscopy)

Using a computer-assisted digitizer (Measure-5, System
Supply, Nagano Japan), we measured the area (mm2) and
the number of mitochondria in the astrocytic cytoplasm in
each of three animals at 0, 0.5, 3, 5, 12, and 24 hours after
ischemia. These values were expressed as the average with
respect to time point, obtained from 26.3±1.7 evenly
distributed EM photographs of astrocytes taken at 4,050 to
10,800-fold magnification (Supplementary Table B). Simi-
larly, we used the same animals to measure the area (mm2)
of the end-feet and number of mitochondria in them. These
data were expressed as the average per time point, obtained
from 32.7±2.9 evenly distributed EM pictures of end-feet
at the same magnification as used for the astrocytes.

Percent Volume of Astrocytic Processes and Numbers
of Cut-Ends of Astrocytic Processes and Mitochondria
in them in Neuropils (Electron Microscopy)

Placing a 0.5� 0.5 cm2 quadratic lattice on each of
22.4±0.8 evenly distributed EM photographs (magnified
� 10,800) of neuropil for three animals in each time group,
we determined the percent volume of the APs in the
neuropil by using the point-counting method (Weibel,

1963; Supplementary Table C). By this method, we counted
the number of intersecting points of the lattice touched
by the cut-ends of the APs among an average of
38,595.6±1,421.9 evenly distributed points in the neuropil
of the EM pictures in each time group, and converted the
counted number to the number per 100 intersecting points
of the lattice for each EM picture (percent volume) and
expressed them as the average per time point. According to
the equation for the relative error for different volumetric
proportions, all values had < 5% error (Weibel, 1963).

We also measured the numbers of cut-ends of APs and
their mitochondria in an average of 36,916.4±1,313.8 evenly
distributed areas of 0.25 cm2 in size in the neuropil of the EM
pictures in each time group. The counted number was
converted to the number per a 25-cm2 area of each EM
picture (21.53mm2, after correcting for magnification by real
size) and expressed them as the average per time point.

Ultrastructural appearance of APs: Electron microscopi-
cally, APs pervade the neuropil and are recognized by their
irregular contours. Some of them form perivascular end-feet
that make a complete layer of varying width that is imposed
between the nerve fibers and the endothelial cells. In the
APs, glial fibrils occur in bundles; and the mitochondria are
oriented parallel to the long axis of the APs. Glycogen
granules are observed, more frequently in end-feet and APs
near the neuronal perikaryon than in other areas. In the
smaller processes, the only structures found are ribosomes,
glycogen granules, and bundle of fibrils.

Ultrastructural criteria for cut-ends of APs: Structures
that contained astrocytic microorganelles (e.g., endoplas-
mic reticulum, rough-surfaced endoplasmic reticulum,
ribosomes, glial fibrils, mitochondria, and glycogen gran-
ules) but were negative for components of neurites (e.g.,
microtubules, neurofilaments, synapses, synaptic vesicles,
and spine or thorn with spine apparatus). The APs showed
various degrees of swelling.

Number of Obstructed Microvessels (Light Microscopy)

We prepared Toluidine blue-stained 1-mm thick cortical
Epon sections along a 2-mm-wide path divided into two
adjacent columns of 1 mm width from each of three
animals killed at 0, 0.5, 3, 5, 12, and 24 hours after
ischemia and trimmed them to contain all cortical layers
in each column of 1-mm width. Using an eye-piece
micrometer (U-OCMSQ10/10) under 1000-power magnifi-
cation (oil immersion), we determined the percentage of
all obstructed microvessels ( < 10 mm in diameter) showing
microcirculatory obstruction and stasis (Little et al, 1981)
among all counted microvessels in each section (Supple-
mentary Table D). The average number of all counted
microvessels was 2,532.4±262.8 per time point.

Number of Patent Carbon-Black-Suspension-Perfused
Microvessels (Light Microscopy)

Under anesthesia, gerbils were perfused for 30 seconds
with 1.0 mL of carbon-black-suspension (Platina-Ink, Tokyo,
Japan) through a femoral vein by using a microinfusion
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pump (KDS100, KD Scientific, MA, USA). Thereafter, each
animal was guillotined immediately; and its brain was
then removed and fixed in 10% phosphate-buffered
formaldehyde for 3 days. Using an eye-piece micrometer
(U-OCMSQ10/10) under 400-power magnification, we
counted the number of carbon-black-suspension-perfused
microvessels (CBSPm) in all six cerebral cortical layers in
four columns of Face-A and of -B. This was performed by
vertically and medially moving the specimen along a
0.25-mm-wide � 4 path of the cortex starting medially from
a point one-half of the distance between the rhinal and
interhemispheric fissures on hematoxylin-eosin-stained
Face-A (0, 0.5, 3, 5, 8, 12, and 24 hours) and Face-B (3, 5,
and 12 hours) for each of the three animals (Figure 1A). We
also counted the number of CBSPm in each of the four
columns located at the corresponding position of the
opposite nonischemic right cerebral hemisphere, and
expressed the number of CBSPm in each column of the
ischemic left hemisphere as a percentage of the number for
the nonischemic right hemisphere per each time point
(Supplementary Table E). The average numbers of all
CBSPm per each time point of the right hemisphere of
Face-A and Face-B were 2,111.3±46.3 and 1,359.0±70.8,
respectively.

Statistical Analysis

We analyzed the statistical difference between each time
group by using analysis of variance, followed by the
Bonferroni–Dunn test. All data in the text and in Figures
2 and 5 were presented as the average±s.e.m., and a
statistically significant difference was accepted at P < 0.05.

Results

Maturation of Disseminated Selective Neuronal
Necrosis (from 0.5 to 5 hours After Last Ischemic
Insult)

By LMS observations, DSNN was found to have
matured in the cerebral cortex of Face-A (Figure 1A),
where degenerating neurons with a halo of swollen
APs and dead neurons appeared and increased in
number in disseminated manner (DSNN) among the
normal-appearing neurons at 0.5 (Figure 1B) and
5 hours after ischemia (Figure 1C). These changes
were more intense in laminar manner in the third,
fifth, and sixth cortical layers. On morphometry by
LMS, normal-appearing neurons decreased, whereas
degenerated and dead neurons increased, in number
(Figure 2A). Astrocytes slightly decreased in number
from 55.3±0.92 at 0 hours to 43.9±1.76 per column
at 5 hours (Figure 2B), but there were no statistical
differences among 0-, 0.5-, and 3-hour values.

At 3 hours after ischemia, we compared APs in EM
pictures taken around the normal-appearing, degen-
erated, and dead neurons. No necrotic hallmarks
were observed in the slightly darkened degenerated
neurons with slight condensations of nuclear chro-
matin. Some of these neurons may have later

recovered during the maturation period (Figure 3B).
Dead neurons appeared as variously condensed
dark cell bodies with necrotic hallmarks such as
flocculent densities in mitochondria, disruption of
the nuclear and/or cellular membrane, and advanced
nuclear chromatin condensates or karyorrhexis
(Figure 3C). In these areas, where DSNN was maturing
in the cerebral cortex of Face-A, swelling and
degeneration of the APs in the neuropil were more
advanced in that order around the normal-appearing
(Figure 3A), degenerated (Figure 3B), and dead
neurons (Figure 3C) at an even earlier stage, that is at
3 hours after ischemia, than at 12 hours in the cerebral
cortical RPI or penumbra in Face-B (Ito et al, 2009).

In EM photos, the astrocytic cytoplasm was
swollen at 0.5 (Figure 4A) and 5 hours (Figure 4D)
and the area of the astrocytes increased (Figure 2C).
However, there were no statistically significant
differences in the number of their mitochondria
among all time courses examined (Figure 2D). The
cut-ends of APs in the neuropil at 0.5 hour (Figure
4C) and 5 hours (Figure 4F) decreased in number
from 9.79±0.48 at 0 hour to 5.16±0.19/21.53 mm2 at
5 hours. However, there were no statistical differ-
ences among 0.5-, 3-, and 5-hour values (Figure 2E).
However, the APs increased in percent volume from
5.62%±0.45% at 0 hour to 24.15%±1.2% at 5 hours
(Figure 2F), and the density of their glycogen
granules also increased (Figure 4F). In contrast, their
mitochondrial number decreased (Figure 2G), asso-
ciated with a decrease in the number of their cut-
ends (Figure 2E).

In EM pictures, the end-feet also showed increased
swelling at 0.5 hour (Figure 4B) and at 3 hours
(Figure 4E); and the area of the end-feet increased
markedly from 6.01±0.64 at 0 hour to 67.83±
8.11 mm2 at 5 hours (Figure 5A). The number of
mitochondria in the end-feet decreased at 24 hours;
however, there were no statistical differences among
the values at the other time periods (Figure 5B).

Obstructed microvessels with stasis were observed
at 5 hours in LMS (Figures 1C and 1G). They incre-
ased in percentage from 0% at 0 hour to 57.3%±
16.1% at 5 hours (Figure 5C), whereas the CBSPm
in Face-A (Figure 1F) decreased in number
from 97.5%±4.16% at 0 hour to 31.9%±1.85%
at 5 hours; and further decreased to 23.8%±0.69%
at 8 hours after ischemia (Figure 5D). The EM
revealed obstructed microvessels of various shapes
that had been compressed by swollen end-feet and
had developed microvascular stasis (Figure 6).

In Face-B where only DSNN matured without
evolution of an infarction, no significant reduction in
the number of CBSPm was observed during 3 to
12 hours after the final insult (Figure 5D).

Evolution of Focal Infarction (at 12 and 24 hours After
Ischemia)

At 12 hours after ischemia, flocks of foamy necrotic
foci were scattered in the cerebral cortex; and

Temporarily compressed microvascular obstruction
U Ito et al

332

Journal of Cerebral Blood Flow & Metabolism (2011) 31, 328–338



G

0-hr 3-hr 5-hr

D

0

10

20

30

40

50

60

0-hr 3-hr 5-hr

E

0

2

4

6

8

10

12

0-hr 3-hr 5-hr

F

0

5

10

15

20

25

30

0-hr 3-hr 5-hr

B

0
10

20

30

40

50

60

70

0-hr 3-hr 5-hr

no
. o

f a
st

ro
cy

te
s

pe
r 

co
lu

m
n

ar
ea

 (
sq

.μ
m

) 
of

as
tr

oc
yt

es

no
. o

f n
eu

ro
ns

pe
r 

co
lu

m
n

no
. o

f c
ut

-e
nd

s 
of

 A
P

s
in

 n
eu

ro
pi

l a
re

a

%
 v

ol
um

e 
of

 A
P

s
in

 n
eu

ro
pi

l 

no
. o

f m
ito

ch
on

dr
ia

in
 a

st
ro

cy
te

s

no
. o

f m
ito

ch
on

dr
ia

of
 P

A
s 

in
 n

eu
ro

pi
l a

re
a

C

0
10
20
30
40
50
60
70
80

0-hr 3-hr 5-hr

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

A

0

100

200

300

400

500

600

0-hr 0.5-hr

0.5-hr

0.5-hr

0.5-hr

0.5-hr

0.5-hr

0.5-hr

3-hr 5-hr 12-hr 24-hr 12-hr 24-hr 12-hr 24-hr

12-hr 24-hr12-hr 24-hr12-hr 24-hr

12-hr 24-hr

time after ischemia time after ischemia time after ischemia 

time after ischemia 

time after ischemia 

time after ischemia time after ischemia 

#

#

†

†

†

†

∗

∗

∗

∗

∗

∗

∗

†

Figure 2 (A) Number of normal-appearing, degenerated, and dead neurons per cortical column of 0.25 mm width. *P < 0.05 versus
0, 3, and 12 hours; wP < 0.05 versus 0, 3, 5, and 24 hours; #P < 0.05 versus 0, 0.5, 12, and 24 hours. (B) Number of astrocytes
per cortical column of 0.25 mm in width. *P < 0.05 versus 5, 12, and 24 hours; wP < 0.05 versus 5, and 24 hours. (C) Astrocytic
area (mm2). *P < 0.05 versus 0.5, 3, 5, and 12 hours; wP < 0.05 versus 12, and 24 hours. (D) Number of mitochondria in astrocytic
cytoplasm. No statistically significant differences were found. (E) Number of cut-ends of astrocytic processes (APs) in a neuropil area
of 21.33mm2. *P < 0.05 versus 0 and 12 hours. (F) Percent volume of cut-ends of APs in the neuropil area. *P < 0.05 versus 0.5,
3, and 5 hours; wP < 0.05 versus 12 hours. (G) Number of mitochondria of APs in the neuropil area of 21.33 mm2. *P < 0.05 versus
0.5, 3, 5, and 12 hours.

Figure 3 Electron microscopic findings on three kinds of neurons in the second to fifth cortical layers of Face-A (bars = 2.4 mm), at
3 hours after ischemia. (A) Normal-appearing neuron with slightly swollen astrocytic processes (APs) (arrows). (B) Degenerated
neuron with advanced swelling of APs, especially around the neuron (arrows). (C) Dead neuron surrounded by remarkably swollen
degenerated APs (arrows).
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many microvessels became patent (Figure 1D).
The cut-ends of APs had degenerated (Figure 4I)
and become decreased in number to 1.29±0.31
(Figure 2E). The numbers of degenerated and
normal-looking neurons decreased, whereas those
of dead neurons increased drastically (Figure 2A).
The numbers of astrocytes also markedly decreased
to 25.25±1.88 (Figure 2B).

By 24 hours, the numbers of normal-appearing and
degenerated neurons were greatly reduced (Figure
2A); and dead neurons were observed throughout the

diffusely spongy necrotic tissue, and almost all
microvessels had become patent (Figure 1E; see
temporal profiles of results in Supplementary
Table F). The number of astrocytes further decreased
to 15.25±1.65 (Figure 2B), and almost all of the
astrocytes had disintegrated. The remaining ones
were swollen remarkably with degenerated cytoplasm
(Figure 4G), and the cut-ends of APs had disappeared
from the necrotic tissue (Figure 2E). In accordance
with this drastic disintegration of astrocytes, their
remaining end-feet had thinned out to 8.92±1.67mm2,

Figure 4 Electron microscopic findings on the second to fifth cortical layers of Face-A (bars = 2.4 mm). (A–C) Obtained at 0.5 hours
after ischemia. (A) Swollen astrocytic cytoplasm. (B) Slightly swollen end-feet. (C) Decreased number of astrocytic processes (APs)
and their mitochondria in the neuropil (arrows). (D) At 5 hours after ischemia, swollen astrocytic cytoplasm is noted. (E) At 3 hours
after ischemia, remarkably swollen end-feet are present. (F) At 5 hours after ischemia, swollen APs are evident in the neuropil
(arrows). (G) At 24 hours after ischemia, swollen degenerative astrocytic cytoplasm with condensed nuclear chromatin is noted.
(H) At 24 hours after ischemia, necrotic end-feet (arrows) are evident. (Inset) Magnified necrotic end-foot (arrow; bar = 1.5 mm).
(I) At 12 hours after ischemia, a remarkably decreased number of swollen APs (arrows) are found in the neuropil.
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(Figure 5A) and/or had become necrotic (Figure 4H);
and then the vascular compression disappeared
(Figure 1E). Therefore, obstructed microvessels de-
creased to 3.6%±1.3% (Figure 5C); and that of CBSPm
increased to 76.2%±7.11% (Figure 5D). However, pan-
necrosis was already complete.

At 72 hours after ischemia, a sharply demarcated
focal infarction became more prominent and was
surrounded by the RPI or penumbra, where DSNN
matured in both Face-A and -B (Figure 1A) (see
Supplementary Table F: temporal profiles of evolu-
tion of infarction in maturing DSNN).
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Figure 5 (A) Area of end-feet (mm2). *P < 0.05 versus 0.5, 3, 5, and 12 hours; wP < 0.05 versus 5, and 24 hours; #P < 0.05 versus
12, and 24 hours. (B) Number of mitochondria in end-feet. *P < 0.05 versus 0.5, 3, 5, and 12 hours. (C) Percentage of obstructed
microvessels among all counted microvessels. *P < 0.05 versus 3, 5, and 12 hours; wP < 0.05 versus 0.5, 12, and 24 hours.
(D) Percentage ratio of carbon-black-suspension-perfused microvessels (CBSPm) in the left ischemic hemisphere to all CBSPm in the
corresponding position of the opposite (right) nonischemic hemisphere. *P < 0.05 versus 3, 5, 8, and 12 hours; wP < 0.05 versus 0,
0.5, 3, 5, 12, and 24 hours. #P < 0.05 versus 0, 12, and 24 hours.

Figure 6 Electron microscopic findings of narrowed and obstructed microvessels resulting from compression by swollen end-feet, at
5 hours after ischemia. (A) Obstructed microvessel with evidence of stasis is seen. (bar = 7.5 mm). (B) This microvascular lumen is
remarkably deformed (bar = 2.4 mm). (C) A narrowed microvascular lumen showing stasis (arrow) is seen. (bar = 1.8 mm). (D) This
microvascular lumen is remarkably narrowed (bar = 3.0 mm). (E) A completely obstructed microvascular lumen is shown
(bar = 2.1 mm).
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Discussion

In this study in Face-A, during 0.5 and 5 hours after
ischemia, degenerated and dead neurons increased
in number in a disseminated manner (DSNN)
associated with heterogeneously impaired interac-
tion between neurons and degenerating APs, as in
the case of the maturing DSNN in the earlier study on
Face-B (Ito et al, 2009). As no necrotic hallmarks
were observed in the slightly darkened degenerated
neurons with slight nuclear chromatin condensa-
tions, some of these neurons may have later
recovered during the maturation period in the
DSNN. But, by 12 and 24 hours after ischemia, the
numbers of normal-appearing and degenerated neu-
rons decreased; and the dead neurons increased
in number drastically. The remaining astrocytes
degenerated, and their APs completely disappeared
around 24 hours, associated with tissue necrosis,
that is, focal infarction. Different from the earlier
study in the Face-B where the astrocytic density was
constant during DSNN maturation, the ischemic
insult in the Face-A induced injury of astrocytic
function, resulting in a slight decrease in the number
of astrocytes and marked swelling of the astrocytic
end-feet from 0.5 to 5 hours in the maturing DSNN.
That swelling induced compression of microvessels
and decreased microvascular perfusion, which in-
duced sharply circumscribed tissue necrosis sur-
rounded by RPI where only DSNN progressed
(Figure 1A; Face-A).

In our earlier study on energy metabolism using
the same experimental model, we found an abrupt

drop in ATP content, reduced SDH activity, and a
drop in pH around 12 hours after ischemia in the
cerebral cortex corresponding to the sharply circum-
scribed focal infarction in the Face-A. However, the
cause of these drops has remained unknown. On the
other hand, in the cerebral cortex of RPI where only
maturation of DSNN occurred in the Face-B, energy
metabolism showed only slight changes over the
periods during which circulation was restored
(Kuroiwa et al, 2000).

In an earlier study, we performed unilateral carotid
occlusion, and 30 minutes later investigated the no-
reflow phenomenon immediately after recirculation
by perfusion of the animals with a carbon-black-
suspension and by performing C14-antipyrine radio-
autography. In this ischemic model where the
cerebral blood flow (CBF) did not cease completely,
but was reduced during ischemia, we found that the
no-reflow phenomenon was transient; it continued
for < 0.5 minutes after recanalization, and the regio-
nal CBF (rCBF) returned to normal (Ito et al, 1980).

In this study, we found that a focal cerebral
cortical infarction evolved in the maturing DSNN.
It was being induced by delayed occurrence
of temporary microvascular obstruction because of
compression of microvessels by swollen end-feet at 3
to 8 hours after the insult, and it later resulted in
tissue pan-necrosis at 12 to 24 hours after ischemia
(Figures 1A and 7; Supplementary Table F). In
primates, the rate of rCBF in control animals is
50 mL per 100 g per minute; and when it is < 18 mL
per 100 g per minute, an infarction evolves, occurring
with a delay of < 3 to 4 hours along a rising sigmoid

Temporary micro-vascular obstruction resulting from compression by swollen end-feet

A
0.5-hr

B
3~8-hr

C
12-hr

D
24-hr

swollen end-feet necrotic end-feet 

thinned end-feet

basal lamina

endothelium

Figure 7 Illustration of temporary microvascular obstruction resulting from compression by swollen end-feet. (A) At 0.5 hour after
ischemia, no microvascular obstruction is observed. (B) By 3 to 8 hours after ischemia, swollen end-feet compressed the
microvessels and induced microvascular obstruction as evidenced by stasis. (C) By 12 hours after ischemia, there is a decrease in the
number and thickness of end-feet, resulting in restoration of blood flow in the microvessels. (D) At 24 hours after ischemia, astrocytes
and end-feet have become necrotic; and microvascular compression has disappeared. Upper: longitudinal scheme along
microvessels. Lower: transverse section of microvessels. Long arrows: bloodstream.
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function between rCBF and the duration before the
appearance of an infarction (Jones et al, 1981).
Although the rCBF in the cerebral cortex of con-
scious gerbils is 110 mL per 100 g per minute (Ohno
et al, 1984), the ratio of the normal blood flow to the
blood flow at the threshold necessary to induce
infarction remains roughly constant across species at
3:1 (Auer and Sutherland, 2002). In this study, the
percentage of microvessels perfused by the carbon-
black-suspension was reduced to 32% and 24% of
the total perfused microvessels at 5 and 8 hours after
ischemia, respectively. Thus, the rCBF in primates
can be calculated simply as reduced to 16 and 12 mL
per 100 g per minute, respectively. On the basis of
the rising sigmoid function observed in primates,
infarction evolved, occurring with a delay of about
3 to 4 hours after the microvascular obstruction. As
vascular compression by swollen end-feet became less
severe because of the rapid reduction in the number
of astrocytes and swelling of their end-feet caused
by their necrosis, the patency of the obstructed
microvessels eventually recovered at B12 to 24 hours
after ischemia. However, pan-necrosis had already
completed (Figure 7; Supplementary Table F).

The following reports were found in the past
literature: during permanent MCA occlusion, micro-
vascular obstruction and stasis induce further devel-
opment of pan-necrosis during MCA occlusion
(Crowell and Olsson, 1972; Little et al, 1981; Garcia
et al, 1994). After temporary MCA occlusion,
secondary occlusion of microvessels by polymorpho-
nuclear leukocytes demonstrates a role of these cells
in early microvascular injuries and the no-reflow
phenomenon (del Zoppo et al, 1991). In this study,
an occasional mixture of polymorphs and platelets
was observed among the erythrocytes in the micro-
vessels where stasis had occurred. However, neither
microthrombi nor microvascular obstruction by
polymorphs was observed.

Swelling of end-feet and temporary compressive
obstruction of microvessels may occur in the early
phase after reopening of an obstructed major vessel
(e.g., after tissue plasminogen activator (tPA) admin-
istration). Therefore, before evolution of an infarc-
tion, strategies to prevent swelling of end-feet should
commence soon after stroke onset, before or imme-
diately after the reopening of the obstructed major
vessels but before infarction evolution. Osmotherapy
using low-molecular-weight dextran (Crowell and
Olsson, 1972), mannitol (Little, 1978), or glycerol
(Meyer et al, 1972), as well as high colloid-oncotic
pressure therapy (Hakamata et al, 1995), might be
effective. Aquaporin 4, a member of the family of
membrane water channels, is present as orthogonal
arrays in the cell surface of the end-feet in contact
with microvessels (Berry et al, 2002), and pharma-
cological manipulations of AQP-4 and -9 expression
may offer a therapeutic strategy (Lo et al, 2005;
Badaut et al, 2007). In conclusion, during DSNN
maturation in the cerebral cortex, focal infarction did
not develop continuously from DSNN. Instead, it

evolved by secondary microvascular obstruction and
stasis resulting from compression by the swollen
astrocytic end-feet.
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