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Graphical analysis (GA) is an efficient method for estimating total tissue distribution volume (VT)
from positron emission tomography (PET) uptake data. The original GA produces a negative bias in
VT in the presence of noise. Estimates of VT using other GA forms have less bias but less precision.
Here, we show how the bias terms are related between the GA methods and how using an
instrumental variable (IV) can also reduce bias. Results are based on simulations of a two-
compartment model with VT’s ranging from 10.5 to 64 mL/cm3 and from PET image data with the
tracer [11C]DASB ([11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl) benzonitrile). Four esti-
mates of VT (or distribution volume ratio (DVR) using a reference tissue) can be easily computed
from different formulations of GA including the IV. As noise affects the estimates from all four
differently, they generally do not provide the same estimates. By taking the median value of the four
estimates, we can decrease the bias and reduce the effect of large values contributing to noisy
images. The variance of the four estimates can serve as a guide to the reliability of the median
estimate. This may provide a general method for the generation of parametric images with little bias
and good precision.
Journal of Cerebral Blood Flow & Metabolism (2011) 31, 535–546; doi:10.1038/jcbfm.2010.123; published online
1 September 2010

Keywords: distribution volume; distribution volume ratio; graphical analysis; instrumental variable; modeling;
positron emission tomography

Introduction

Positron emission tomography (PET) provides
images of the distribution time course of radiotracers
in tissue. Physiological information can be extracted
from this data by the application of compartment
models using an arterial plasma input function that
consists of the concentration (radioactivity) of the
tracer versus time. The direct application of compart-
ment models requires a nonlinear estimation techni-
que to obtain the kinetic parameters associated
with the model (Carson, 1980). Patlak et al (1983)
introduced a transformation of the compartmental
equations for irreversible systems such that ordinary
least squares could be applied to the transformed
equations to obtain a physiological measure desig-
nated as the influx constant, which is a composite of
the model parameters. This technique is referred to
as graphical analysis (GA). An extension to rever-
sibly binding tracers provides an estimate of the total
tissue distribution volume (VT) (Logan et al, 1990).

As most PET radiotracers bind reversibly, the latter
technique has been used more extensively. Graphical
analysis has important advantages, it is simple to
implement and does not require that a particular
model structure be adopted for the analysis, which
makes it desirable for use in voxel wise image
analysis. However, the original version used for
reversible radiotracers suffers from a noise-depen-
dent bias, which results in the underestimation of
the distribution volume (Carson, 1993; Slifstein and
Laruelle, 2000).

The utility of the GA approach has led to a number
of papers suggesting modifications to reduce the
bias. Varga and Szabo (2002) proposed the total least
squares estimation referred to as the ‘perpendicular
linear regression model’; however, this only partially
removes the bias. Ichise et al (2002) proposed a
rearrangement of the GA equation (referred to as
MA1) that resulted in reduced bias. Ogden (2003)
introduced the likelihood estimation in graphical
analysis (LEGA) method for estimating the para-
meters in the linear portion of the GA equation. This
involves estimation through an iterative minimiza-
tion process using a recursive relation for radiotracer
concentration and its numerical integral in the GA
equation. An improvement on LEGA that reduced
the variance of VT using a maximum a posteriori-
based estimation was introduced by Shidahara et al
(2009). The approach taken by Joshi et al (2008) is
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a principal component analysis that is applied to
image data before the analysis step. This reduces the
noise and increases precision compared with other
noise removal processes but requires the preproces-
sing step, which must be optimized with respect to
the number of principal components used. However,
too many principal components reintroduces the
bias. The most recent contribution to this literature
is Zhou et al (2009), who propose using the plasma
radioactivity in the denominator of the GA plot. This
was also extended to a reference tissue (RT) method.
This, however, requires that the tissue to plasma
ratio be constant, limiting the application to certain
tracers. Ito et al (2010) introduced an unrelated graphic
method specific for a two-compartment model, which
provided unbiased estimates of VT but the estimates are
subject to variation with noise.

In this paper, we compare several arrangements of
the GA equation as well as an instrumental variable
(IV) method for reducing bias in least squares
estimation. The IV approach was introduced by
Young (1970) and Stoica and Soderstrom (1983).
Minchin (1978) applied the IV approach of Young to
tracer experiments of phloem translocation in plants.
We tested the IV method using the iterative approach
used by Minchin as well as an alternative method in
which the IV is constructed from a smooth time–
activity curve (TAC). These methods were applied to
simulations of a two-tissue compartment model,
with total distribution volumes ranging from 10.5
to 64 (mL/cm3) and to voxel image data from PET
studies with the serotonin transporter tracer
[11C]DASB ([11C]-3-amino-4-(2-dimethylaminomethyl-
phenylsulfanyl) benzonitrile).

Theoretical Background

Formulations of the Graphical Analysis Method

The original equation for the graphical analysis of
reversible PET radiotracers is given in equation (1a)
(designated GA)Rt

0

ROIðt 0Þdt 0

ROIðtÞ ¼ b1

Rt
0

Cpðt 0Þdt 0

ROIðtÞ þ b2 ð1aÞðGAÞ

where ROI(t) is the radioactivity in tissue at time
t after injection and Cp(t) is the plasma radioactivity
corrected for the presence of labeled metabolites
at time t (Logan et al, 1990). For some time
after injection, that is for t > t* a plot of equa-
tion (1a) becomes linear with slope b1, the total
tissue distribution volume, VT. b2, the intercept, is a
function of model parameters. A noise-dependent
bias results in the underestimation of the distri-
bution volume b1. If the tissue radioactivity measure
at time t contains noise, there is an error term at
each time point. Writing equation (1a) in terms of
the ‘true’ parameter vector ~b, an error term at time tn

(where n designates a particular time frame), e(n),

can be defined in equation (1b) as (Soderstrom and
Stoica, 2002)

eðnÞ ¼

Rtn

0

ROIðt 0Þdt 0

ROIðtÞ � ~b1

Rtn

0

Cpðt 0Þdt 0

ROIðtÞ � ~b2 ð1bÞ

In the absence of noise e(n) is zero. Rewriting
equation (1a) in a matrix form gives

Y ¼ Yb ð1cÞ
where YT = [y(k)yy(N)] and YT = [WT(k)yWT(N)],
with k being the index of t* (at which linearity
is observed) and N the index of the last frame.
The components of Y and Y are given by
yðnÞ ¼ ½

R tn

0 ROIðtÞdt=ROIðtnÞ�, WðnÞ ¼ ½
R tn

0 CpðtÞdt=ROIðtnÞ; 1�,
respectively, and the error is E = Y�Y~b where
ET = [e(k)ye(N)].

The vectors b and ~b are b ¼ ½b1

b2
� and ~b ¼ ½~b1

~b2

�.
The estimation error in b, becomes (Soderstrom

and Stoica, 2002)

b� ~b ¼ ðYTYÞ�1YTE ð2aÞ
where

b ¼ ðYTYÞ�1YTY ð2bÞ
and

~b ¼ ðYTYÞ�1YTY � ðYTYÞ�1YTE ð2cÞ
b is unbiased if the second term on the right-hand
side is zero.

Equation (1a) can be rearranged into an alternative
form shown in equation (3a) (designated GA1),Rtn

0

Cpðt 0Þdt 0

ROIðtnÞ
¼ 1

b1

Rtn

0

ROIðt 0Þdt0

ROIðtnÞ
� b2

b1

ð3aÞðGA1Þ

Equation (1b) can be rearranged to give the error
term for GA1 in terms of the error term for GA

eðnÞ
~b1

¼ �

Rtn

0

Cpðt 0Þdt 0

ROIðt 0Þ þ
1
~b1

Rtn

0

ROIðt 0Þdt 0

ROIðt 0Þ �
~b2

~b1

ð3bÞ

Therefore, the magnitude of the bias error term for
GA1 is reduced compared with that for GA (equation
(1b) if ~b1 > 1. Converting equation (1c) to a bilinear
form where

yðnÞ ¼
Ztn

0

ROIðtÞdt

2
4

3
5 and

WðnÞ ¼
Ztn

0

CpðtÞdt; ROIðtnÞ

2
4

3
5

ð4Þ

gives Ztn

0

ROIðt 0Þdt 0 ¼ b1

Ztn

0

Cpðt 0Þdt 0 þ b2ROIðtÞ

ð5aÞðGAbiÞ
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Using ~b1 and ~b2 as the true values, the bias error term
equation (5b) is

eðnÞROIðtnÞ ¼
Ztn

0

ROIðt 0Þdt 0�~b1

Ztn

0

Cpðt 0Þdt 0�~b2ROIðtnÞ

ð5bÞ
Equations (5a) and (5b) can be rearranged into
equations (6a) and (6b)Ztn

0

Cpðt 0Þdt 0 ¼ 1

b1

Ztn

0

ROIðt 0Þdt 0 � b2

b1

ROIðtnÞ

ð6aÞðGA1biÞ

eðnÞROIðtnÞ
~b1

¼ �
Ztn

0

Cpðt 0Þdt 0 þ 1
~b1

�
Ztn

0

ROIðt 0Þdt 0 �
~b2

~b1

ROIðtnÞ ð6bÞ

so that the magnitude of the bias for Equation (6a) is
less than that of equation (5a) if ~b1 > 1. The ROI(tn)
term does not contribute to the bias error in the
estimation of b in equations (5b) and (6b), that is
b�~b= (YTY)�1YTE is the same if the elements of E
are replaced by E(tn)ROI(tn) and the elements of Y are
defined as in equation (4).

The bilinear version MA1 (Ichise et al, 2002) is
given by

ROIðtnÞ ¼ �
b1

b2

Ztn

0

Cpðt 0Þdt 0 þ 1

b2

�
Ztn

0

ROIðt 0Þdt 0 ð7aÞðMA1Þ

with

eðnÞROIðtnÞ
~b2

¼ �
~b1

~b2

Ztn

0

Cpðt 0Þdt 0 þ 1
~b2

�
Ztn

0

ROIðt 0Þdt 0 � ROIðtnÞ ð7bÞ

Therefore, the magnitude of the bias in the estima-
tion of b using equation (7a) would be expected to be
less than that using equation (6a) if |~b2| > |~b1| and
less than equation (5a) for |~b2| > 1. We will use
simulations to investigate the influence of the error
term on the estimation of b1 for these different
formulations of GA.

Instrumental Variable

An alternative method for reducing bias is the use of
an IV. The IV methods have been used to eliminate the
bias in the estimation of parameters from a set of linear

algebraic equations when the independent variable
contains noise as it does in the GA equations,
particularly equation (1a). The degree of bias is
dependent upon the noise/signal ratio (Young, 1970).

The IV method is an extension of the least squares
method. Starting with the general equation in matrix
form including the noise term E (Soderstrom and
Stoica, 2002).

Y ¼ Ybþ E ð8Þ
we can solve for b in a manner similar to the least
squares method using an IV Ŷ,

ŶTY ¼ ŶTYbþ ŶTE ð9Þ
If ŶT and E are independent and the distribution of E
is mean zero the expected value of the last term is
zero and the estimation of b (Young, 1970) is

b ¼ ðŶTYÞ�1ŶTY ð10Þ:
When Ŷ=Y equations (9) and (10) reduce to the
normal equations. The problem lies in determining the
IV. It is necessary that the inverse matrix in equation
(10) be nonsingular, that the true value for b be
recovered from equation (10) using Ŷ(t) when Y(t)
and Y(t) are noise free and that IV be uncorrelated with
E (or that (ŶTY)�1ŶTE-0). Two alternative methods
for constructing an IV for the GA of PET data are
considered. For the first case an iterative method is
used for generating an IV. This has been proposed by
Minchin (1978) based on the work of Young (1970). The
steps adapted to the GA problem for generating Ŷ are:

(1) Make an initial estimate of the parameters b1

and b2 using the GA formulation (the other forms
have less bias and do not need the IV intervention).

(2) Use b1 and b2 to generate estimated values of
W(n), designated Ŵ(n) (by estimating values of ROI(tn)).
For example, Ŵ(n) from equation (1c) becomes

ŴðnÞ ¼

Rtn

0

CpðtÞdt

Z�ðtnÞ
; 1

2
6664

3
7775 ð11Þ

where Z*(t) is the estimated ROI(t) evaluated using the
recursion relation developed by Ogden (equation (12)
below) and the estimated vector b. Y remains the same.

(3) Using Ŷ (with elements Ŵ(n)) as the IV a new
estimate of b is obtained.

This can be repeated until b converges.
The recursion formula introduced by (Ogden,

2003) relates the estimated ROI(ti) designated Zi*

Z�i ¼

Pi�1

j¼1

Z�j ðsj � sj�1Þ þ 1
8 Z�i�1ðsi � si�1Þ � b1

Rti

0

Cpðt 0Þdt 0

b2 � 3
8 ðsi � si�1Þ

ð12Þ

to Zi�1* where ti is the midpoint of scan i, si is the end
point of scan i, and (si�si�1) is the length of scan i.
This relationship is derived from equation (1a) by
using the trapezoidal rule for the integral of the scan
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from the beginning of i to the midpoint at ti where
the integral from 0 to the end of scan i�1 (which
corresponds to si�1), is

Zti

0

ROIðtÞdt ¼
Xi�1

j¼1

ROIðtjÞðsj � sj�1Þ

þ 1

8
ð3ROIðtiÞ þ ROIðti�1ÞÞðsi � si�1Þ

For times before the linear part measured ROI values
are used.

A second method for the IV is much simpler to apply
and does not require multiple determinations as in the
iterative method described above. For this we propose
to use a ‘noise-free’ TAC generated from a region of
interest with sufficient voxels that the curve is smooth
to form Ŷ. In addition to requiring that (ŶTY)�1ŶTE-
0, the IV must also produce the ‘true’ value of b1 when
Y and Y are the noise-free ‘true’ data. This is obviously
achieved when Ŷ is formed from the ‘true’ noise-free
data. As this will usually not be available, another
potential choice for a TAC with which to construct Ŷ
would be to use the reference region or a global region.
In this case, the IV components of Ŷ are

ŴðnÞ ¼

Rtn

0

CpðtÞdt

TACðtnÞ
; 1

2
6664

3
7775

Both of these IV methods were tested with simula-
tions described below.

Extension to Reference Tissue (RT) Analysis

The extension of equation (1a) to a RT model is given
by (Logan et al, 1996)Rtn

0

ROIðt 0Þdt 0

ROIðtnÞ
¼ C1

Rtn

0

REFðt 0Þdt 0 þ REFðtnÞ
k2

ROIðtnÞ
þC2 ð12Þ

Substituting for Cp(t)Ztn

0

Cpðt 0Þdt 0 ¼ 1

b1

Ztn

0

REFðt 0Þdt 0 � b2REFðtnÞ

0
@

1
A

where C1 is the distribution volume ratio (DVR) of
the region of interest to the reference tissue (REF).
(The DVR is related to the nondisplaceable-binding
potential, BPND, as DVR = 1 + BPND.) b2 =�(1/k2), k2 is
the tissue to plasma efflux constant for the RT, taken
to be a population average. An alternative version
(Ichise and Ballinger, 1996) isRtn

0

ROIðtÞdt

ROIðtnÞ
¼ C1

Rtn

0

REFðtÞdt

ROIðtnÞ
þC02

REFðtnÞ
ROIðtnÞ

þC03 ð13Þ

which allows the determination of k2 directly from
C02. Equations (12) and (13) can be rearranged into

alternative forms based on those using plasma input.
Corresponding to equation (3a)

Rtn

0

REFðt 0Þdt 0 þ REFðtnÞ=k2

ROIðtnÞ

¼ 1

C1

Rtn

0

ROIðt 0Þdt 0

ROIðtnÞ
�C2

C1
ð14Þ

and from equation (8a) (Ichise et al, 2003),
MRTM2

ROIðtnÞ ¼ �
C1

C2

Ztn

0

REFðt 0Þdt 0 þ REFðtnÞ=k2

0
@

1
A

þ 1

C2

Ztn

0

ROIðt 0Þdt 0

0
@

1
A ð15Þ

The strategy (Ichise et al, 2003) is to evaluate k2

from equation (13) using regions of interest from
the RT and from a receptor region that contain
a sufficient number of voxels that noise is not
an important factor. This value can then be
used in linear models of equations (12), (14),
and (15).

The IV methods can also be applied to the RT
equations to remove bias. For equation (12),
(DVR(GA)) the Ŵ(n) are given by

ŴðnÞ ¼

Rtn

0

REFðtÞdt þ REFðtnÞ=k2

TACðtnÞ
; 1

2
6664

3
7775 ð16Þ

Materials and methods

Generation of Simulated Data

A two-compartment model was used to generate the simu-
lation data. Model parameters K1 = 0.35 mL/min/cm3 and
k2 = 0.086 min�1 were used for the transfer constants between
blood and tissue (and to generate data simulating RT). The
value for k4 was fixed (k4 = 0.0475 min�1) and five values of
k3 (0.075, 0.25, 0.42, 0.565 and 0.7 min�1) were used giving
for b1 (VT) 10.5, 25.5, 40.05, 52.5 and 64.05 mL/cm3

respectively. (The units for VT are always mL/cm3.)
Corresponding values for b2 are �42.88, �90.52, �133.4,
�169.4 and �202.7 (min) (b2 ¼ � VT

K1
� 1

k4ð1þk4=k3Þ). The
scanning protocol consisted of 24 frames: 4 (30 seconds),
8 (1 minute), 4 (5 minutes), 8 (7.5 minutes) for a total of
90 minutes. Uptake curves for this data are shown in
Figure 1A. The solid lines represent the noise-free data and
the symbols correspond to examples from each noisy
data set. A measured plasma input function was used
(injected dose 7.1 mCi) (Figure 1B). Gaussian noise was
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added to each error-free simulated time frame (�R�O�IðtnÞ) as
ROIN ðtnÞ ¼ �R �O�IðtnÞ þ SDðtnÞGð0; 1Þ where

SDðtnÞ ¼ Sc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R �O�IðtnÞeltn

Dtn

s

SD is the standard deviation approximation for decay-
corrected radioactivity counts (Vesa Oikonen Turku PET
Centre Modelling report TPCMOD0008 2003-01-19). G(0,1)
is a pseudo-random number from a Gaussian distribution
generated in IDL (http://www.ittvis.com/idl). The decay
constant of the isotope (11C with a half-life of 20.4 minutes)
is l. At each noise level, 1000 data sets were generated for
each example. Only one value of Sc (Sc = 1) was used to set
the noise level. However, as the VT was varied from 10.5 to
64 mL/cm3, the effects of noise while small for VT = 10.5
were much greater for 52.5 and 64.5 mL/cm3.

Times for the linear portion were taken to be between 22
and 90 minutes. Plots of the GA using equation (1a) for the
noise-free simulated data are shown in Figures 1C and 1D.

The four versions of the graphical analysis equation,
equations (1a) and (3a) and the bilinear versions, equa-
tions (5a) and (6a) and MA1 (equation (7a)) as well as
the IV methods were used to test the effect of noise on
the estimation of the total distribution volume, b1. For the
noniterative IV method, three different TACs were used:

(1) a noise-free version of the data set being tested, (2) a noise-
free RT ROI, and (3) as a test, an ROI formed by placing 1’s for
each time point in the ROI. All of these functions returned
the true value of b1 when noise-free data were used. Results
are only reported for the RT ROI as in a practical situation the
true noise-free data would not be known.

Besides the mean, s.d. and bias, results are presented in
terms of box plots and distributions (SigmaPlot 9) of
parameter estimates from selected simulations. For each
box in a box plot, the upper and lower edges are
determined by the 75th and 25th percentile of the data
and the line in between is the median. The error bars
indicate 90th and 10th percentile. The open or closed
circles indicate values at 95th and 5th percentile. For the
distribution plots, the histogram function of SigmaPlot 9
was used within a user-defined function transform.

Application to Image Data

Image data from five studies with the serotonin transporter
ligand, [11C]DASB, synthesized according to the method
developed by Wilson et al (2000) were used. The PET data
were acquired over a 90-minute period using a whole body,
high-resolution positron emission tomograph (Siemen’s
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Figure 1 (A) Simulated uptake data for six values of the total distribution volume. The ‘reference region’ VT = 4 is based on a one-
compartment model using only K1 and k2. The other curves are two-compartment model simulations with k4 = 0.0475 min�1 and
k3 values of 0.075, 0.25, 0.42. 0.565, and 0.7 min�1 corresponding to VT = 10.5, 25.5, 40, 52.5, and 64 mL/cm3, respectively.
The solid lines are the noise-free data, and the symbols correspond to selected time–activity curves (TACs) with noise. (B) Plasma
input used in the simulations was taken from a human study with 7.1 mCi injected dose. Only the first 15 minutes are shown but the
input function extends to 100 minutes. (C) Plots of graphical analysis (GA) using equation (1a) for VT = 25.5, 40, 52.5, and 64.
In all cases, linearity was achieved by 22 minutes indicated with arrows. (D) Plots of GA using equation (1a) for VT = 4 mL/cm3

(reference tissue) and VT = 10.5 mL/cm3. VT, total tissue distribution volume.
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HR + 4.5� 4.5� 4.8 mm3 at the center of field of view) in
3D dynamic acquisition mode. An arterial plasma input
function for [11C]DASB was obtained, samples were drawn
every 2.5 seconds for the first 2 minutes (Ole Dich auto-
matic blood sampler), then at 3, 4, 5, 6, 8, 10, 15, 20, 30, 45,
60, and up to 90 minutes. All samples were centrifuged
to obtain plasma and selected samples are assayed
for the presence of unchanged [11C]DASB. The average
injected dose was 8.71±0.32 mCi. The scanning protocol
(number of scans and scan length) was 3� 20 seconds,
3� 1 minute, 3� 2 minutes, 2� 5 minutes, and 7� 10 min-
utes. Voxels for analysis were selected from three adjacent
planes containing maximum uptake as determined by the
integrated radioactivity over 90 minutes. Voxels of low,
intermediate, and high uptake were separated based on the
value of the integrated image (maximum = 100). Voxels of
low uptake were taken as those between 22% and 25% of
the maximum. Intermediate values were 40% to 42.5% and
high values were 80% to 100%. The analyses were
performed on each voxel within the group, and the VT

estimates averaged over all voxels in each group were
compared with the VT estimated from the ROI formed using
all voxels. Because of the high noise level in individual
voxels, it is necessary to have a scheme for minimizing the
effect of outliers. To do this, we defined a maximum value
so that if any estimated VT exceeded that value it was
eliminated before forming the median. In the DASB
calculations, the maximum value was set to 100 (two times
the maximum ROI value for these data sets). Negative
values were also eliminated. However, a number of outliers
remained. If the voxel noise level is great, the VT estimates
will differ considerably. We hypothesized that if the
variance of the estimates exceeds a certain value, none of
them will be reliable. This was validated by comparing VT

estimates of the DASB data that exhibited high variance to
the estimates of lower variance.

Proposed Method

The estimation of VT (or DVR) using the four methods GA,
GA1, MA1, and IV (GA with IV using a smooth TAC for the
IV) does not present a computational burden in parametric
image generation, as these are all linear equations. These
estimations generally provide different values because of
the different effect of noise in the formulation of each one.
We have tried to define a simple procedure for increasing
the precision of the VT estimate for images. The methods
GA1, MA1, and IV all have less bias than GA equation (1a)
but are subject to outliers (values that can be considerably
larger than the true value) with increasing noise. To reduce
the effect of these outliers and obtain reliable estimates of
VT, we propose to take the median value of the four
estimates as the best estimate of the VT. This eliminates the
highest and lowest value and uses the average of the
middle two. In some cases, the median may be formed by
fewer estimates if one was eliminated by exceeding a preset
threshold. In the presence of low noise, the four estimates
should be fairly close with a low variance. With increasing
noise, the variance of the estimates for each voxel
increases. By defining a maximum allowed variance those

voxels can be identified for which accurate estimates
cannot be obtained. In such cases, some smoothing (i.e.,
combining voxels or clustering) can be performed.

Results

Error in Estimate of b1 for the Five Forms of Graphical
Analysis

In Table 1, the difference of b1�~b1 averaged over all
data sets for each value of VT are given for methods
GA, GA1, MA1, GAbi, and GA1bi. The first entry is
the mean of b1�~b1 for that value of VT (~b1 = true VT

value). The average difference b1�~b1 for GA and
GAbi are very close as is the average for GA1 and
GA1bi. The method MA1 has the least bias of all GA
forms. The entries in parentheses are the averages
over all data sets of the error terms summed over all
time points included in the linear estimation. For
each data set, the error term for GA is the sum of e(n)

ERRðGAÞ ¼
XN
n¼k

eðnÞ
�����

�����

¼
XN
n¼k

Rtn

0

ROIðt 0Þdt 0

ROIðtnÞ
� ~b1

Rtn

0

Cpðt 0Þdt 0

ROIðtnÞ
þ ~b2

0
BBB@

1
CCCA

���������

���������
ð17Þ

and for GA1

ERRðGA1Þ ¼
XN
n¼k

eðnÞ
~b1

�����
�����

¼
XN
t¼k

Rtn

0

Cpðt 0Þdt 0

ROIðtnÞ
� 1

~b1

Rtn

0

ROIðt 0Þdt 0

ROIðtnÞ
þ

~b2

~b1

0
BBB@

1
CCCA

���������

���������
ð18Þ

Similarly the error terms for GAbi, GA1bi, and MA1
can be found by summing e(n) in equations (5b), (6b),
and (7b), respectively. From Table 1, the error for
GA1 is less than GA for VT = 40, ERR(GA) is 0.384
and for GA1 it is 0.384/40 = 0.0096 and similarly for
VT = 52.5 the ratio 1.7/52.5 = 0.032 gives ERR (GA1).
Therefore, the bias in the estimation of b1 is less for
GA1 than for GA in all examples. The error terms for
the bilinear formulations are larger than those for GA
and GA1 because of the presence of ROI(t) in
equations (6b), (7b), and (8b). From Table 1, the error
for MA1 which is 5.2 for VT = 52.5 is related to that of
GAbi as 874/169.4 = 5.2. The biases for GA and GAbi
(and GA1 and GA1bi) are essentially the same. Of the
bilinear forms MA1 has the smallest error of all three
and the least bias for the lowest VT values but is
subject to large outliers with increasing noise so that
for these simulations the average of b1�~b1 becomes
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larger for the higher values of b1. Apparently, the
presence of the ROI term while not contributing to
bias contributes to loss of precision because of an
increase in the number of independent variables
compared with GA (Shidahara et al, 2009).

Comparison of Simulation Results for Graphical
Analysis Using the Five Equation Forms and the
Instrumental Variable Calculations of VT

Table 2 presents the mean±s.d. (percent bias) for VT

over all data sets using the methods, GA, GA1, GAbi
GA1bi, and MA1 as well as the two IV methods and
the median. (In this table, bias is reported as percent
of the true value.) Consistent with the results in
Table 1, the mean for VT is less biased for GA1 and
GA1bi than for GA or GAbi. The method MA1 is the
least biased but produces more outliers (defined here
as values > 100) for the higher VT values. For VT = 64,
MA1 produced 100 values > 100. The GA1bi pro-
duced the second most outliers (50 values > 100 for
VT = 64). The method MA1 has the largest s.d. and is
the estimation method with the least precision. For
VT = 52.5 and 64, results are reported using all data
and replacing values > 100 with the GA value. For
VT = 64, that last entry in the median column
eliminates VT estimates with variances > 400 (99/
1000). This reduces the average to 59.8 but the s.d. is
also less so that the coefficient of variation is the
same as for the GA estimates. The differences
between the methods are less for the smaller values
of VT (a result of the using the same noise scale factor
for all simulations) for VT = 10.5, the bias is �5% for
GA and B�4% for GA1. For VT = 40, this becomes
�20% for GA and �5% for GA1.

Results using the iterative IV method are given in
column labeled IV (iterative). There is a general
reduction in bias with an increase in s.d. compared
with GA. The coefficient of variation (s.d./mean) is
0.17 for VT = 40 and 0.12 for VT = 25.5. There were
very few outliers found for the lower VT values. For
VT = 64, however, the number of outliers was greater.
Although calculations were performed for all three of
the TACs described previously, results are reported
for TAC using RT for TAC in the GA form, equation

(13). There was little difference in results using the
other two TACs; however, ROI1 produced a few more
outliers. The IV calculated with the smooth TAC’s
was found to be preferred over the iterative method
as only one calculation was involved (although the
iterative method generally requires only a few
interations) and also because it was more stable.
The iterative method failed for a number of voxels
particularly in conditions of high noise.

According to Young (1970), the IV reduces bias in
the parameter estimate by virtue of the fact that it is
uncorrelated with the error. However, with the use of
TACs other than the ‘true ROI’ to form the IV, this
condition will not necessarily hold. Comparing the
first element of the vector ŶTE with YTE, where
E = Y�Y~b and

ŶTE ¼ ŶTY þ ŶTY~b YTE ¼ YTY þYTY~b

the average of ŶTE is �69 compared with �26.9
(average using simulated data sets for VT = 52.5).
However, we also find that

1

N

X
i

ðŶTYiÞ�1ŶTEi

�����
�����o 1

N

X
i

ðYTYiÞ�1YTEi

�����
����� ð19Þ

(N is the number of simulated data sets and i is the
index for each data set). This inequality gives 1.45 for
left side of equation (19) versus 12.8 for the right
side. The condition for the IV to remove bias is then
that (ŶTYi)

�1ŶT is uncorrelated with E.
The last column in Table 2 reports the average

(over all data sets) of the median value of GA, GA1,
MA1, and IV. There is a small bias of 5% to 6% at the
highest value. Figure 2A is a plot of the distribution
of the VT estimates for VT = 52.5 using GA (equation
(1a)) and of the median of the four estimates for
VT = 52.5 (N = 1000). There is less bias for the median
than for GA; however, the distribution for the median
is broader. Figure 2B compares the same GA
distribution for VT = 52.5 mL/cm3 with that of the
MA1 estimates. There is a substantial number of
values in the tail of the distribution such that 17% of
the estimated values are > 20% above the true value.
Although less than MA1, distribution plots of
methods GA1 and IV (not shown) also exhibit a
significant number of values in this region. Figure 3

Table 1 Bias and ERR for five arrangements of the graphical analysis equation

VT GA GA1 GAbi GA1bi MA1

10.5 �0.57 (0.098) �0.39 (0.0094) �0.51 (466) �0.30 (42) �0.02 (10.9)
25.5 �2.74 (5.2) �1.09 (0.2) �2.9 (754) �0.92 (29.5) 0.31 (8.3)
40 �6.8 (0.384) �1.7 (0.0096) �7.5 (1100) �1.4 (27.5) 1.6 (8.25)
52.5 �12.1 (1.7) �2.16 (0.032) �13.6 (874) �1.6 (16.6) 4.2 (5.2)
64 �18.5 (2.5) �2.24 (0.039) �20.9 (771.5) �0.91 (12.05) 14.8 (3.81)

VT, total tissue distribution volume.
The first entry is the error term for b1 (VT) calculated for the five graphical analysis methods as the average (b1�~b1) over all data sets (N = 1000) for each VT

value. ~b1 is the ‘true’ value and b1 is the value estimated from the individual data set. The number in parentheses refers to the error term (ERR) calculated as
equations (17) and (18) for GA and GA1. The extension to the other forms uses the absolute value of the sum of time points for equations (5b), (6b), and (7b)
averaged over all data sets. For each VT (~b) value, ERR for GA1 is equal to the value for ERR(GA)/VT and also ERR(biGA1) = ERR(GAbi)/~b1 while
ERR(MA1) = ERR(GAbi)/|~b2|.
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presents box plots of VT of the median and of GA
estimates for VT = 25.5 and 40 (Figure 3A) and
VT = 52.5 and 64 (Figure 3B). The spread in values
is somewhat larger for the median than for GA and
the presence of a greater number of large values is
indicated by the 5% and 95% circles. For all values
of VT, the median represents less bias with an
increase in spread of values. For VT = 64, the median
value with the variance filtering (eliminating B10%
of the values) was used, which reduced the spread in
VT estimates from that of the unfiltered median. The
presence of a larger spread of values will contribute
to image noise.

Comparison of Simulation Results for Distribution
Volume Ratio Determined by Graphical Analysis

The DVR calculations corresponding to equations
(12), (14), and (15), designated DVR(GA), DVR(GA1),
and MRTM2 for the five data sets are given in
Table 3. Here, it was assumed that an accurate k2 was
previously calculated from the noise-free ROI accord-
ing to equation (13). The IV calculation using the
RT to form Ŷ in equation (16) is also reported. The
MRTM2 generated a few values outside the realm of
possibility, some < 0 and some > 100. These values
were set to the corresponding DVR(GA) for the
statistics given in Table 3 under MRTM2 for the first
entry for 12.89 and 15.74. The second entry for 12.89
and 15.74 in Table 3 replaces values > 30 with the
DVR(GA) value. The first entry for GA1 under 15.74
was without filtering. No filtering was performed on
the other estimations. The DVR estimation using
MRTM2 was unbiased after the filtering described
but with greater variability than the other methods.
The median is given in the last column and is less
biased than DVR(GA) and has less variability than
any one individual method except GA.

Comparison of Results for Alternative Forms of
Graphical Analysis Using Image Data from Studies
with the Positron Emission Tomography Ligand
[11C]DASB

Results from the four graphical methods applied to
[11C]DASB data are reported in Table 4. The last
column (ROI) is the VT estimated using the voxel
average at each time point to generate a ‘ROI’. As this
involves a fairly large number of voxels, this is taken
to be the ‘true’ value for comparison. For columns
labeled GA, GA1, GAIV, and MA1, the VT estimates
are performed for each voxel and the results are
averaged. The VT values < 0 were eliminated from
the statistical computations. These were only a few.
The total numbers of voxels are given in parentheses
in column GA. Results in column 7 (median) are
given as the median and the median for which voxels
with a variance > 50 were excluded. In two cases,
there were a significant number of voxels with
variances exceeding 50, study 603BH (particularlyTa
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Med) and study 516BH. The average percent bias
over all five studies for GA was �12.4±4.9,
�6.3±4.7, and �3.57±3.8 for low, intermediate,
(Med) and high uptake, respectively. Using the
median (with the variance filter) gave biases of
0.97±0.57, 1.57±0.96, and 0.50±3.0 for low, inter-
mediate, and high uptake, respectively. The greatest
bias and the greatest variance in the graphical
estimates occurred for the lowest VT estimates, most

likely related to the lower counts and therefore
greater noise.

Data from studies 516BH and 603CH were used to
test whether the variance of the four graphical
estimates represents a good measure of noise and
therefore reliability of the median. After eliminating
estimates < 0 and > 100, the average of estimates for
which the variance exceeded 50 were 8.99±4.36
(GA), 32.9±17 (GA1), 40±16 (IV), and 42.7±24

VT
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Figure 2 (A) Histogram plot (bin size 2.5 VT units) illustrating the distribution of VT estimates for GA and the median value for
VT = 52.5 mL/cm3 (dashed line). In all, 3% of estimated values were above 67.4, which is 20% above the true value. (B) Histogram
plot illustrating the distribution of VT estimates for GA and MA1 for VT = 52.5 (same bin size as A). In all, 17% of estimated values
were above 67.4% or 20% above the true value. VT, total tissue distribution volume.
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Figure 3 Box plots comparing GA and the median (Med) of the four estimates for VT = 25.5 and 40 mL/cm3 (A) and) VT = 52.5 and
64 mL/cm3. (B). For VT = 64, the median value with the variance filtering was used (this eliminates about 10% of the values,
reducing the spread in estimates). The ‘true’ values are indicated with dashed lines. VT, total tissue distribution volume.

Table 3 DVR for GA, GA1, MRTM2, IV, and the median as mean ±s.d. (% bias)

DVR GA GA1 MRTM2 IV Median (GA, GA1, MA1, IV)

2.58 2.43±0.16 (�5.7) 2.48±0.17 (�3.8) 2.57±0.19 (�0.3) 2.55±0.18 (�1) 2.50±0.17 (�3.1)
6.26 5.58±0.6 (�10.8) 5.99±0.7 (�4.4) 6.33±0.93 (1.1) 6.28±0.94 (0.4) 6.09±0.77 (�2.8)
9.84 8.15±1.1 (�17) 9.39±1.6 (�4.5) 10.2±2.4 (3.7) 10.05±2.3 (2.5) 9.61±1.8 (�2.3)
12.89 9.47±1.7 (�26) 12.36±3.4 (�4.2) 14.2±6.4 (10.6) 13.2±3.1 (2.5) 12.5±2.2 (�3)
12.89 12.15±3.3 (�6) 13.1±3 (2.1)
15.74 11.2±2.0 (�29) 15.1±4.2 (�4) 17.4±7.4 (10) 16.5±5.2 (4.6) 15.5±4.2 (�1)
15.74 14.9±3.6 (�5.4) 15.9±4.5 (1.0) 15.9±3.9 (0.8) 15.2±3.6 (�3)

DVR, distribution volume ratio; IV, instrumental variable; TAC, time–activity curve.
The IV calculation used the GA form (equation (12)) with Y (t) defined as in equation (16) with reference tissue as TAC. In the second entries for 12.895 and
15.74 values of MRTM2 > 30 were replaced with the GA value.
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(MA1) compared with the ROI value of 11.5 (516BH
low). The GA estimates were closest but biased.
Restricting the average to estimates with variance
< 10 gave 9.9±2.16 (GA), 10.6±2.89 (GA1),
11.2±3.2 (IV), and 11.3±3.1 (MA1), which compare
more favorably to the ROI value. For study 603CH,
the average VT estimates with variances exceeding 50
were 8.1±3.4 (GA), 29.1±13.7 (GA1), 38.7±13.8
(IV), 42.9±19.4 (MA1) compared with the ROI
value 9.84. For variances < 10, the averages were
8.38±1.72 (GA), 8.97±2.37 (GA1), 9.57±2.69 (IV),
and 9.75±2.72 (MA1). We conclude that the var-
iance of the individual estimates is a reasonable way
to determine if the noise level is too high to give a
good estimate of VT using graphical methods.

Discussion

The construction of PET brain images of receptor
binding is complicated by noise at the voxel level as
well as the large number of voxels in an image. The
nonlinear estimation techniques used for estimating
the kinetic constants associated with a compartment
model are not appropriate for use in image-wide
analysis. If the data conform to a one-compartment
model and a RT exists, the simplified RT models
can be used (Gunn et al, 1997; Wu and Carson, 2002).
However, in many cases, these conditions are not met

or only partially met if the data does not quite conform
to a one-compartment model. An alternative and more
general method is graphical analysis that transforms
the differential equations of compartmental analysis
into a least squares form that gives the VT without
having to specify a particular model structure. This is
an advantage when working with images as the model
may change in moving from one region of an image
to another. There are a number of versions of the
graphical analysis equation. Using a measured plasma
input function these versions are GA (equation (1)),
GA1 (equation (4a)), GAbi (equation (6a)), GA1bi
(equation (7a)), and MA1 (equation (8a)). We have
compared the bias and precision effects of the estima-
tions of VT for simulated data sets as well as image
voxel data for low, intermediate, and high uptake. As a
constant noise factor was used in the simulations, the
simulations with higher VT had greater noise and bias
in the GA estimate, whereas the image data did well at
the high VT levels and more poorly at the low values
because of the lower count rate.

Using the simulation data, we have shown that the
bias in the estimation of VT is related to the error
terms defined in equations (17) and (18) for GA and
GA1 and by summing over the time points in
equations (5b), (6b), and (7b) for MA1, GAbi, and
GA1bi. The negative bias in GA is substantially
removed by rearrangements GA1 and GA1bi (as
~b1 > 1) and for MA1 (as |~b2| > 1) The bias for GA1

Table 4 Comparison of GA, GA1, GAIV, MA1, and median VT values (mean ±s.d.) (no. of voxels) averaged over voxels selected from
three planes of five DASB dynamic images

Study Uptake GA GA1 IV MA1 Median ROI

280DH (9.0 mCi) Low 6.7±1.42 (733) 7.03±1.82 7.37±2.08 7.50±2.21 7.17±1.86 (733) 7.2
Med 10.2±1.82 (2133) 10.3±2.26 10.5±2.51 10.5±2.68 10.4±2.19 (2129) 10.5
High 26.8±2.31 (183) 27.0±2.53 27.2±2.53 27.3±2.60 27.1±2.48 (183) 28.0

491AH (8.81 mCi) Low 6.70±1.42 (555) 7.23±1.82 7.64±2.35 7.90±4.64 7.38±1.95 (553) 7.45
Med 12.2±1.87 (1244) 12.6±2.43 13.0±2.88 13.1±3.36 12.7±2.4 (1244) 12.9
High 31.9±4.95 (528) 32.3±5.26 32.7±5.42 32.7±5.51 32.5±5.3 (528) 32.7

603CH (8.51 mCi) Low 4.50±0.95 (525) 5.28±2.55 6.24±4.63 6.82±13.3 5.59±2.91 (525) 5.32
5.25±1.62 (507)*

Med 8.43±1.95 (749) 11.1±9.6 13.7±22 14.2±26 10.9±6.50 (748) 9.84
9.57±2.89 (690)*

High 25.6±4.83 (638) 27.9±7.3 29.1±8.5 29.2±8.2 28.3±7.6 (638) 27.45
27.3±5.74 (603)*

513CH (9.11 mCi) Low 7.28±1.71 (963) 9.37±5.25 10.8±9.2 10.8±8.8 9.74±5.28 (963) 8.84
8.80±2.75 (895)*

Med 11.2±1.75 (1548) 11.6±2.66 12.1±3.20 12.1±2.74 11.8±2.72 (1548) 11.8
11.7±2.33 (1536)*

High 30.6±4.22 (133) 31.1±4.50 31.5±4.54 31.5±4.49 31.2±4.49 (133) 29.9

516BH(8.25 mCi) Low 9.91±2.65 (894) 12.8±8.1 16.5±44 16.0±31 13.0±7.7 (894) 11.5
11.3±3.43 (819)*

Med 17.7±4.06 (1196) 19.2±7.5 20.2±9.1 20.5±11.0 19.54±7.7 (1194) 18.3
18.4±4.5 (1147)*

High 46.5±4.66 (327) 47.7±5.3 48.3±5.54 48.3±5.6 47.8±5.2 (327) 48.9

DASB, 3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl) benzonitrile; IV, instrumental variable; ROI, region of interest; VT, total tissue distribution volume.
Voxels in the low uptake category corresponded to the fraction of the integrated image that ranged from 22% to 25% of the maximum, the intermediate
category (Med) corresponded to between 40% and 42.5%, and the high was 80% to 100%. The numbers of voxels used in the average are given in
parentheses. For the median calculation, average estimates labeled with * were calculated by excluding voxels for which the variance was > 50. The last
column is the VT calculated from the average over all voxels.
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B4% to 6% for all VTs and for MA1 it is even less
for the smaller VTs. For GA, the bias increased with
VT from 11% for VT = 25.5% to 30% for VT = 64.
Similar results were found for the RT methods.

We have shown that IV methods also reduce bias.
Using simulation data, the iterative method of
Minchin that we adapted to PET data using the
recursive relation given by Ogden produced esti-
mates with much less bias than GA. However, it is an
iterative process somewhat time consuming and
more prone to outliers than using a noise-free
TAC, which we found gave the same results. It
made no difference if this was the ‘true’ TAC from
which the simulated data was derived or the TAC
representing a ‘reference’ tissue. The IV method
reported in Table 2 appeared to perform better
than MA1 in that the bias was substantially removed
with less loss of precision. A reasonable choice
for a TAC to use in forming the IV is either a RT or a
global TAC, which includes a large number of
voxels from the image. It appears that the condition
for the success in the IV method using the TACs
other than the ‘true’ TAC is due to equation (19)
rather than that the IV itself is uncorrelated with the
noise vector.

The reduction in bias of these alternative graphical
methods comes with a price, and that is loss of
precision compared with GA. This problem is
common to other methods proposed for reducing
bias and results in noisy parametric images (Joshi
et al, 2008). The loss of precision is related to the
noise level. In the actual image data in Table 4, loss
of precision occurred for the lower uptake voxels,
particularly for studies 603CH and 516BH. The
presence of these large values can be the source of
significant image noise as seen in Joshi et al (2008)
and will affect image quantitation. The variance of
the four graphical estimates appears to provide a
useful way to identify whether the median estimate
of VT is reliable. Alternative measure can be taken
when this is found to be the case. In such cases, a
clustering of local voxels can be used or the GA value
can be substituted, although it tends to be biased, it
is less likely to contribute a large value to the image.
Alternatively a principal component analysis could
be applied.

In summary, there are essentially four graphical
type methods related to equation (1a) that provide
estimates of VT with somewhat different biases and
precision. These are GA, GA1, MA1, and IV, the
methods labeled GAbi and GA1bi were not included
as they produce essentially the same bias as GA and
GA1. The estimation of VT (or DVR using DVR(GA),
DVR(GA1), MRTM2, and DVR(IV)) using all four
methods is not computationally expensive as they
are all linear methods. As they all provide estimates
of VT but with different sensitivities to noise, we
propose that the best estimate may be to take the
median value of the four estimates. It may first be
necessary to remove or replace any values that are
outside a specified expected range as MA1 in

particular can generate some unrealistic values.
Using a variance filter on the median, most outliers
can be identified for further processing. The pro-
posed method offers a possibility of balancing the
bias versus precision effects in the generation of
parametric images.
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