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In this study, we show a basis function method (BAFPIC) for voxelwise calculation of kinetic
parameters (K1, k2, k3, Ki) and blood volume using an irreversible two-tissue compartment model.
BAFPIC was applied to rat ischaemic stroke micro-positron emission tomography data acquired
with the hypoxia tracer [18F]fluoromisonidazole because irreversible two-tissue compartmental
modelling provided good fits to data from both hypoxic and normoxic tissues. Simulated data show
that BAFPIC produces kinetic parameters with significantly lower variability and bias than nonlinear
least squares (NLLS) modelling in hypoxic tissue. The advantage of BAFPIC over NLLS is less
pronounced in normoxic tissue. Ki determined from BAFPIC has lower variability than that from the
Patlak–Gjedde graphical analysis (PGA) by up to 40% and lower bias, except for normoxic tissue at
mid-high noise levels. Consistent with the simulation results, BAFPIC parametric maps of real data
suffer less noise-induced variability than do NLLS and PGA. Delineation of hypoxia on BAFPIC k3

maps is aided by low variability in normoxic tissue, which matches that in Ki maps. BAFPIC
produces Ki values that correlate well with those from PGA (r2 = 0.93 to 0.97; slope 0.99 to 1.05,
absolute intercept < 0.00002 mL/g per min). BAFPIC is a computationally efficient method of
determining parametric maps with low bias and variance.
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Introduction

[18F]fluoromisonidazole (FMISO) positron emission
tomography (PET) has been used for in vivo imaging
of hypoxia in tumours (Koh et al, 1992; Rasey et al,
1996; Bruehlmeier et al, 2004; Thorwarth et al, 2005,
2006; Rajendran et al, 2006; Eschmann et al, 2007;

Wang et al, 2010), ischaemic myocardium (Martin
et al, 1992), and stroke (Markus et al, 2004; Takasawa
et al, 2007, 2008; Spratt et al, 2009). FMISO is a nitro-
midazole compound that diffuses freely through cell
membranes and binds in hypoxic cells (Chapman
et al, 1989; Casciari et al, 1995).

Most FMISO PET studies have used late imaging,
with 2 to 4 hours postinjection being considered
optimal because of the passive transport and slow
reaction mechanism (Koh et al, 1992). These late
images are then quantified through conversion to
standardised uptake value (Thorwarth et al, 2006),
tissue-to-blood ratio (Koh et al, 1992) or tissue-to-
muscle ratio (Eschmann et al, 2007). To determine
more specific information, both reversible (Bruehl-
meier et al, 2004; Kelly and Brady, 2006) and
irreversible (Casciari et al, 1995; Thorwarth et al,
2005; Wang et al, 2009, 2010) compartment models
have been proposed to model FMISO kinetics.

Bruehlmeier et al (2004) applied both Logan
graphical analysis (Logan et al, 1990) and a two-tissue
reversible compartment model to tumour FMISO data,
and Kelly and Brady (2006) also used this model on
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simulated data, with an extra parameter to model
spatial diffusion of free FMISO and its reduced
compounds. Casciari et al (1995) developed a com-
prehensive irreversible kinetic model that consists
of four tissue compartments and seven model para-
meters, three of which were fixed to make the model
more robust. Thorwarth et al (2005) presented an
irreversible two-tissue compartment model with a
reference tissue input which obviates blood sampling
and Wang et al (2009) used a plasma input two-tissue
irreversible compartment model on simulated data.
Subsequently, Wang et al (2010) used this model
combined with an image-based plasma input function
for the analysis of clinical FMISO data.

For our FMISO data obtained in an ischaemic stroke
model in the rat, Patlak–Gjedde graphical analysis
(PGA, Gjedde, 1982; Patlak et al, 1983) indicated an
irreversible kinetic model and regional kinetic model-
ling with a two-tissue irreversible model provided good
fits to the data (Takasawa et al, 2007). Kinetic modelling
at the voxel level has a number of advantages over its
regional counterpart: it maximises the information
obtained on the spatial distribution of tracer kinetics;
the use of a kinetic model designed for the homo-
geneous tissue is more valid for voxelwise modelling;
the production of parametric maps allows any subse-
quent region-of-interest (ROI) analysis to be tailored to
kinetically homogeneous regions if required; applica-
tions such as PET-guided radiotherapy require para-
metric maps rather than regional information. However,
the key problem with voxelwise modelling is the high
noise level. For irreversible tracers, influx rate (Ki) can
be determined with PGA, which is robust against noise.
A disadvantage of Ki is that it is affected by tracer
delivery and washout, as well as by tracer accumula-
tion in the tissue. Compartment modelling allows these
factors to be decoupled, which is especially of interest
if the rate of tracer accumulation is a key parameter, as
for FMISO because it can be related to tissue oxygen
concentration (Casciari et al, 1995).

Determination of rate constants using nonlinear least
squares solution (NLLS) of compartmental models is
highly sensitive to noise and hence not suited to
voxelwise modelling. In this study, we provide a basis
function solution of the irreversible two-tissue com-
partment model. Parametric mapping with basis
functions based on compartment models has been
used previously for a reversible one-tissue compart-
ment model (Koeppe et al, 1985; Lodge et al, 2000;
Boellaard et al, 2005; Watabe et al, 2005), for reference
tissue modelling (Gunn et al, 1997; Wu and Carson,
2002) and for the production of [18F]fluorodeoxyglu-
cose (FDG) Ki maps with two-tissue compartment
models (Hong and Fryer, 2010). This study illustrates
the latter approach for FMISO K1, k2, k3, Vb and Ki

mapping using an irreversible two-tissue compartment
model with a plasma input function. The bias-noise
properties of the basis function method (BAFPIC)
are compared with those of NLLS and PGA using
simulated FMISO data. These methods are also
assessed with real FMISO microPET data.

Materials and methods

Kinetic Modelling

Basis Function Solution of a Two-Tissue Irreversible
Compartment Model (BAFPIC): For a two-tissue compart-
ment model of an irreversible tracer, the total radioactivity
concentration is given by

CT ¼ ð1� VbÞðCr þ CiÞ þ VbCb ð1Þ
where Vb is the fractional blood volume in the tissue, Cr the
concentration in the reversible tissue compartment, Ci the
concentration in the irreversibly trapped compartment,
and Cb the concentration in whole blood. It should be
noted that for clarity, the time dependence of the
concentrations has been omitted.

The temporal behaviour of the above model is given by

dCr

dt
¼ K1Ca � ðk2 þ k3ÞCr

dCi

dt
¼ k3Cr

ð2Þ

where K1 (mL/g per min) is the transport rate constant of
tracer from the plasma to the tissue, k2 (1/min) the efflux
rate constant from the tissue to the plasma, k3 (1/min) the
rate constant into the irreversibly trapped state, and Ca the
tracer concentration in arterial plasma.

Solution of the differential equations in equation (2)
allows equation (1) to be rewritten as

CT ¼
ð1� VbÞK1

a
k3 þ k2e�at
� �

� Ca þ VbCb ð3Þ

where a= k2 + k3. Equation (3) can be parameterised as

CT ¼ ðy1 þ y2e�atÞ � Ca þ Vb Cb ð4Þ
Basis functions (e.g., N = 100) can be precalculated for the
nonlinear term in equation (4) using a physiologically
feasible range of a

Bj ¼ e�aj t � Ca j ¼ 1; . . . ;N ð5Þ
The range of a is tracer specific and based on values
obtained from regional kinetic modelling of FMISO in an
ischaemic stroke rat model, 100 basis functions with
logarithmically spaced a= [0.01, 0.1] 1/min were used.
With the inclusion of a diagonal matrix of weights W,
calculated using the scheme of Gunn et al (1997), equation
(4) can be written for each basis function as

WCT ¼ Aj

y1

y2

Vb

2
4

3
5

j

ð6Þ

where

Aj ¼W
R

Ca Bj Cb

� �
ð7Þ

The use of basis functions allows the linear solution of
equation (6)

y1

y2

Vb

2
4

3
5

j

¼ A�1
j WCT ð8Þ

To obtain the inverse of Aj, QR decomposition (House-
holder, 1970) was used

A�1
j ¼ R�1

j QT
j ð9Þ
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where Rj is a right triangular matrix and Qj an orthogonal
matrix. From the set of N solutions, the one with the lowest
weighted residual sum of squares was chosen.

Individual kinetic parameters can then be obtained

K1 ¼
y1 þ y2

1� Vb
ð10Þ

k2 ¼
y2a

y1 þ y2
ð11Þ

k3 ¼
y1a

y1 þ y2
ð12Þ

Ki ¼
y1

1� Vb
ð13Þ

Nonlinear Least Squares Compartmental Modelling: For
both simulated and real FMISO data, individual kinetic
rate constants and Vb were determined from equation (3)
using nonlinear weighted least squares fitting optimised
with the Levenberg–Marquardt method (Marquardt, 1963),
using the same weighting scheme as used for the basis
function fitting. Ki was then determined from Gjedde
(1982)

Ki ¼
K1k3

k2 þ k3
ð14Þ

Patlak–Gjedde Graphical Analysis: Ki was determined
using linear least squares (LLS) fitting to transformed data
(Gjedde, 1982; Patlak et al, 1983) for both simulated and
real FMISO data. In all cases, tissue data from 75 minutes
onwards were used.

Simulated [18F]Fluoromisonidazole Data

Hypoxic and normoxic time–activity curves (TACs) were
generated from kinetic parameters determined by NLLS
fitting to ROI data from an ischaemic stroke rat microPET
study using a permanent distal middle cerebral artery
occlusion (MCAo; Takasawa et al, 2007). The ROI
(20.3 mm3) was defined with an intensity threshold in the
hypoxic region of the summed FMISO image. It was then
moved to a similar position in the contralateral hemisphere
to determine the normoxic TAC. The kinetic parameters
from the NLLS fits were: hypoxic: K1 = 0.0247 mL/g per
min, k2 = 0.0191 1/min, k3 = 0.0218 1/min, Vb = 0.0407 and
normoxic: K1 = 0.0423 mL/g per min, k2 = 0.0487 1/min,
k3 = 0.0020 1/min, Vb = 0.0549.

Monte Carlo simulation with 1,000 realisations per noise
level was performed to test the bias and variability of
BAFPIC against NLLS and PGA. Noise with a Gaussian
distribution (m= 0, s2 ¼ bðCTðtiÞ=DtiÞ) was added to the
TACs, where b had 20 values spaced linearly in the range
[0.001, 0.65], CT is the average of the hypoxic and normoxic
TACs at mid-frame time ti, and Dti the duration of time
frame i. The use of CT in the noise model is appropriate as

the filtered backprojection algorithm used to reconstruct
the real data results in a noise level that is not dictated
by the local voxel value (Barrett et al, 1994). The
simulation was performed for the same protocol used
for real microPET experiments: 80 time frames over
3 hours (24� 5 seconds, 6� 30 seconds, 15� 60 seconds,
5� 120 seconds, and 30� 300 seconds).

For NLLS, the initial parameter estimates for fits to both
hypoxic and normoxic TACs were: K1 = 0.035 mL/g per
min, k2 = 0.035 1/min, k3 = 0.01 1/min and Vb = 0.04. These
values represent reasonable estimates in the absence of
information on the degree of hypoxia, as would be the case
with real data. The weights for BAFPIC and NLLS used the
average TAC, CT, within the scheme of Gunn et al (1997) in
lieu of true coincidences.

microPET [18F]Fluoromisonidazole Rat Data

Data from two rats were used: the permanent MCAo rat and
a control rat from the data set described in the study by
Takasawa et al (2007). Parametric maps were generated for
both rats and the permanent MCAo rat was also used to
produce regional data from which the aforementioned
simulated data were derived.

Animal experiments were performed in accordance with
the UK Home Office guidelines and with the approval of
the University of Cambridge Animal Ethical Review Panel.
Male spontaneous hypertensive rats (Charles River Labora-
tory, Margate, UK) were used. The experimental proce-
dures are detailed in the study by Takasawa et al (2007).

As the data acquisition was described in detail in
Takasawa et al (2007), brief details are given here. List-
mode PET data were acquired using a microPET P4
scanner (Concorde Microsystems, Knoxville, TN, USA)
(Tai et al, 2001) after B80 MBq of FMISO in 1 mL was
injected intravenously as a bolus over 30 seconds using an
automated syringe driver. For the MCAo rat, the tracer was
administered 39 minutes after the start of MCAo. In
Takasawa et al (2007), the list-mode data were histo-
grammed into 60 time frames, but in this study, data from
the first 5 minutes were histogrammed into shorter time
frames to produce 80 time frames in total, with durations as
described above for the simulated data. Emission data
acquisition was followed by windowed coincidence mode
transmission scans for attenuation correction (acquisition
time: 20 minutes) with a rotating 68Ge/68Ga point source.

The images were reconstructed into 0.5� 0.5� 0.5 mm3

voxels using the PROMIS three-dimensional filtered back-
projection algorithm (Kinahan and Rogers, 1989), with
corrections for randoms, dead time, background, normal-
isation, attenuation, sensitivity and decay applied.

Arterial blood samples were collected from two control
rats to obtain average plasma and whole-blood input
functions. For other rats, to limit blood loss, 4 arterial
blood samples were taken at 30, 60, 120, and 180 minutes
after FMISO injection and these samples were used to scale
the input function from control rats.

For NLLS, the initial parameter estimates were the same
as for the simulated data. The weights used for BAFPIC
and NLLS were based on true coincidences, obtained
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by subtracting delayed coincidences from prompts, as
described by Gunn et al (1997).

Voxelwise parametric mapping was constrained to brain
tissue through the use of a binary mask derived from a
coregistered magnetic resonance (MR) scan. The correla-
tion between parameters estimated at the voxel level was
quantified using the Pearson correlation coefficient.

Results

Evidence of Irreversible Trapping of
[18F]Fluoromisonidazole

Figure 1A shows Patlak plots for hypoxic and
normoxic regional TACs from the MCAo rat used
to produce the simulated data. Linear regions are
found for data > 75 minutes after injection, indicat-
ing irreversible trapping. The hypoxic and normoxic
Ki values are 0.0123 and 0.0011 mL/g per min,
respectively.

Evidence Supporting the Validity of the Irreversible
Two-Tissue Compartment Model

Figure 1B shows the TACs used in Figure 1A and the
corresponding NLLS fits. These data support the use
of the irreversible two-tissue compartment model
(equation (3)). The kinetic parameters and blood
volumes obtained from the NLLS fits were those
used to produce the simulated data.

Simulated [18F]Fluoromisonidazole Data

Figure 2 gives bias-variability plots for K1, k2, k3, and
Vb estimated by BAFPIC and NLLS for the simulated
hypoxic and normoxic TACs. Values from Figure 2 at
the noise level that best corresponds to the real data
(at noise level 11) are given in Table 1. This noise
level was determined through visual inspection of
simulated and real TACs, and by comparing the
residual sum of squares from model fitting to the
TACs. The variability of NLLS is significantly
inferior to BAFPIC for hypoxic tissue, much less so
for normoxic tissue. It should be noted that for a
number of the plots in Figure 2, the variability of
NLLS, especially for hypoxic tissue, is so high that a
number of the 20 data points lie outside the plot. The
instability of NLLS results in high biases for K1, k2

and k3 in hypoxic tissue. For BAFPIC, comparable
variability is found for hypoxic and normoxic
tissues, with the most notable exception being much
lower variability for k3 in normoxic tissue than in
hypoxic tissue.

Some noise-induced bias is found for BAFPIC,
most notably for k2 in hypoxic tissue (Figure 2B) and
k3 (Figure 2C). The cause of this bias is positive bias
of a, leading to positive bias of y2; the a-spectra in
Supplementary Figure 1 for noise level 11 have mean
values that are 2 and 12% high for normoxic and

hypoxic tissues, respectively. For hypoxic tissue, the
main bias is found for k2 because the numerator of
equation (11) is the product of two positively biased
parameters (y2a), whereas for normoxic tissue, a
negative bias is found for k3 (equation (12)) because
the small positive bias in y2 leads to a larger
compensatory negative percentage bias in y1 because
y2by1.

Ki values determined from the simulated data by
BAFPIC, NLLS, and PGA are also shown in Figure 2
and in Table 1. For both tissue types, BAFPIC has the

Figure 1 Patlak–Gjedde plots and time-activity curves for
hypoxic and normoxic tissue. (A) Patlak–Gjedde plot of hypoxic
and normoxic regional data with the linear region indicating an
irreversible compartment and (B) irreversible two-tissue com-
partmental model fit to the hypoxic and normoxic regional
data. CT, decay-corrected total radioactivity concentration in the
tissue; Ca, decay-corrected radioactivity concentration in arterial
plasma.
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lowest variability, up to 40% lower than for PGA.
Variability for NLLS is comparable with that for
BAFPIC and PGA in normoxic tissue but signifi-
cantly higher in hypoxic tissue, consistent with the
variability found for K1, k2 and k3 with NLLS. The
BAFPIC has the lowest bias for hypoxic and
normoxic tissues at low noise, but the highest bias
for normoxic tissue in the middle noise levels—as for
k3, this bias in Ki (equation (13)) is caused by

negative bias of y1. Overall, PGA gives the best bias
performance for Ki in normoxic tissue.

microPET [18F]Fluoromisonidazole Rat Data

Figures 3 and 4 show parametric maps for a MCAo
rat and a control rat, respectively. K1, k2, k3, and Vb

maps are given for NLLS and BAFPIC, and Ki is

Figure 2 Bias-variability plots of kinetic parameters estimated from simulated hypoxic and normoxic data. (A to D) Parameters
estimated by BAFPIC and NLLS: (panel A) K1, (panel B) k2, (panel C) k3, and (panel D) Vb. (E to F) Ki estimated by BAFPIC, NLLS,
and PGA for (panel E) normoxic and (panel F) hypoxic data. The vertical lines indicate the true parameter values. The legend shown
in plot A is applicable to plots A to D, whereas that shown in plot E is also applicable to plot F. BAFPIC, basis function method; NLLS,
nonlinear least squares; PGA, Patlak–Gjedde graphical analysis; SD, standard deviation.
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shown for PGA and BAFPIC. The PET images for
each rat were coregistered to a template MR image
and the same coronal slice is shown in the two
figures.

In Figure 3, MCAo occurred on the right-hand side
of images and the expected patterns of reduced K1

and k2 are seen in the affected cortex with BAFPIC.
For NLLS, reductions in K1 and k2 are seen super-
iorly, but in the focus of the occlusion, large K1 and k2

increases are seen. This is consistent with the
findings of the simulated data where large positive
biases for K1 and k2 were seen with NLLS in hypoxic
tissue (Table 1). Both NLLS and BAFPIC show that k3

is increased in the MCAo cortex, with the k3 increase
for NLLS being much larger than that for BAFPIC,
again consistent with the positive bias found with
NLLS for k3 in simulated hypoxic tissue (Table 1).
The k3 increase for BAFPIC is consistent with the Ki

increases seen for both PGA and BAFPIC, although
the k3 increase is slightly more focal. This is not
unexpected as a reduction in k2 which is greater than
that in K1, as observed, will increase Ki unless k3 is
also reduced (see equation (14)). Therefore, part of
the increased Ki domain seen with both PGA and
BAFPIC can be attributed to increased K1/k2 rather
than to an increase in k3. In the unaffected hemi-
sphere, BAFPIC has less variability than both NLLS
for K1, k2, k3, and Vb and PGA for Ki, again consistent
with the findings of the simulated data.

The control rat in Figure 4 does not exhibit the
asymmetric changes in kinetic parameters seen with
the MCAo rat. As for the unaffected hemisphere of
the MCAo rat, the spatial variability of the kinetic
parameters for the control rat is lower for BAFPIC
than for NLLS and PGA.

Table 2 shows the correlations between parameters
estimated at the voxel level by BAFPIC for MCAo
and control rats within a region (4,357 voxels)
delineated in the hypoxic area of the MCAo rat with

Ki > 30% of the maximum. For both rats, the correla-
tions are high between K1 and k2 (r = 0.90 to 0.92) and
between k3 and Ki (r = 0.71 to 0.85), with the highest
of these correlations being in the MCAo rat. In
addition, for the MCAo rat, high negative correla-
tions are found between K1/k2 and both K1 (r =�0.69)
and k2 (r =�0.82), and a mild correlation (r = 0.41) is
found between K1/k2 and Ki. The increase in K1/k2

inferred by these data, together with the increased
correlation between K1/k2 and Ki substantiate the
idea that part of the increase in Ki in the affected
cortex of the MCAo rat is attributed to increased
K1/k2.

Table 1 Bias and s.d. values for kinetic parameters estimated at
noise level 11 of the simulated data

Normoxic tissue Hypoxic tissue

Parameter Method Bias (%) s.d. Bias (%) s.d.

K1 NLLS 2.2 0.0080 57.9 0.0764
BAFPIC 0.4 0.0061 2.8 0.0042

k2 NLLS 5.7 0.0173 559.9 0.5384
BAFPIC 1.1 0.0112 15.2 0.0131

k3 NLLS 7.6 0.0017 77.1 0.1609
BAFPIC �5.0 0.0015 �2.4 0.0106

Vb NLLS �0.5 0.0226 �11.5 0.0283
BAFPIC 0.9 0.0219 1.0 0.0217

Ki NLLS �5.8 0.0012 22.4 0.1013
BAFPIC �6.7 0.0010 0.4 0.0009
PGA �2.6 0.0012 �2.9 0.0013

BAFPIC, basis function method; NLLS, nonlinear least squares; PGA, Patlak–
Gjedde graphical analysis.
s.d., standard deviation units: K1 and Ki (mL/g per min), k2 and k3 (1/min), Vb

unitless.

Figure 3 Parametric maps of K1, k2, k3, Vb and Ki for a MCAo
rat. Images in the left-hand column were produced by NLLS (K1,
k2, k3 and Vb) and PGA (Ki); the right-hand column shows the
corresponding images for BAFPIC. Scale bar units: K1 and Ki

(mL/g per min); k2 and k3 (1/min); Vb unitless. BAFPIC, basis
function method; MCAo, middle cerebral artery occlusion; NLLS,
nonlinear least squares; PGA, Patlak–Gjedde graphical analysis.
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Figure 5 shows the correlation between voxel
Ki values obtained with BAFPIC and PGA for
both the MCAo rat and the control rat. The correla-
tion plots used 9,091 voxels within the MR
brain mask on 12 contiguous coronal slices with
enhanced Ki for the MCAo rat. Slopes near to unity
are found for both rats; because of the inclusion of
blood volume correction with BAFPIC (equation
(13)), Ki values B5% higher than PGA are to be
expected. As the bulk of the voxels for the MCAo rat
are normoxic, the correlation pattern seen with
the control rat is apparent at low Ki values for the
MCAo rat.

Discussion

Both reversible and irreversible models have pre-
viously been used for FMISO. The key difference
between the model given by Casciari et al (1995) and
that used for BAFPIC here is the addition by Casciari
et al of two compartments to model diffusible FMISO
products in the cell and extracellular space. This
diffusion pathway provides another means of tissue
signal loss in addition to the reversible loss of FMISO
itself. Although the model structure is different from
that of Casciari et al, Bruehlmeier et al (2004) and
Kelly and Brady (2006) both used a reversible two-
tissue compartment model that allows for the loss of
FMISO products. However, Kelly and Brady (2006)
only applied their reversible model to simulated
data, and in three of the seven patients studied by
Bruehlmeier et al (2004), an irreversible model
(k4 = 0) was sufficient to model the data. Irreversible
models have also been applied by Thorwarth et al
(2005) and by Wang et al (2009, 2010). Patlak–Gjedde
graphical analysis of our data indicated the existence
of an irreversible compartment (Figure 1A) and an
irreversible two-tissue compartment model was
found to fit both hypoxic and normoxic tissue TACs
(Figure 1B).

Kelly and Brady (2006) also modelled the spatial
effects of diffusion of FMISO products in their
reversible two-tissue compartment model. However,
the diffusivity coefficient of misonidazole used by
Kelly and Brady (5.5� 10�11 m2/sec) would result in
a diffusion distance of 0.43 mm during a 3-hour PET
scan. This is small compared with the resolution of
the microPET P4 used in this study: 2.3 mm full-
width half-maximum (FWHM) with a Hanning
window cutoff at the Nyquist frequency (2.0 1/mm).
Combining these two numbers in quadrature yields
2.34 mm FWHM, a negligible increase in effective
spatial resolution. For human imaging, the impact of
diffusion will be even less because of the poorer
spatial resolution of clinical PET scanners (B5 mm

Figure 4 Parametric maps of K1, k2, k3, Vb and Ki for a control
rat. Images in the left-hand column were produced by NLLS (K1,
k2, k3 and Vb) and PGA (Ki), the right-hand column shows the
corresponding images for BAFPIC. Scale bar units: K1 and Ki

(mL/g per min); k2 and k3 (1/min); Vb unitless. BAFPIC, basis
function method; NLLS, nonlinear least squares; PGA, Patlak–
Gjedde graphical analysis.

Table 2 Correlation matrix for parameters estimated with
BAFPIC for MCAo and control rats

Rat K1 k2 k3 Vb Ki K1/k2

MCAo K1 1 0.92 0.00 �0.15 �0.26 �0.69
k2 1 0.16 �0.14 �0.23 �0.82
k3 1 �0.10 0.85 �0.03
Vb 1 �0.10 0.07
Ki 1 0.41
K1/k2 1

Control K1 1 0.90 0.17 0.17 �0.28 �0.34
k2 1 0.33 0.20 �0.32 �0.35
k3 1 0.23 0.71 �0.12
Vb 1 0.29 �0.29
Ki 1 0.10
K1/k2 1

BAFPIC, basis function method; MCAo, middle cerebral artery occlusion.
P < 0.001 for all correlations shown.
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FWHM). On the basis of this, together with the fits to
our data and the use of irreversible models by others,
we ignored the kinetic and spatial effects of diffusion
in our model.

Voxelwise modelling of rate constants for two-tissue
compartment models has been performed previously
by LLS (Blomqvist, 1984), constrained LLS (Huang
et al, 2007), generalised LLS with clustering based
on principal components (Kimura et al, 2002), and
nonlinear ridge regression with spatial constraint
(Zhou et al, 2002). Blomqvist (1984) and Kimura
et al (2002) ignored blood volume, Huang et al (2007)
applied blood volume correction using a cluster value,
and Zhou et al (2002) produced maps of blood
volume. Feng et al (1995) showed that the estimates
from the LLS algorithm are biased and consequently
extended the method to generalised LLS, which was

shown for FDG to have bias and variance properties
similar to NLLS. To reduce the variability found with
generalised LLS, Kimura et al (2002) combined it with
clustering based on the principal components of TACs
and applied the technique to FDG. For an irreversible
two-tissue compartment model (with blood volume
neglected), the clustering technique reduced variabil-
ity by 23 and 33% for Ki and k3, respectively. As a
direct comparison, in Hong and Fryer (2010), BAFPIC
reduced FDG Ki variability by B60% compared with
NLLS in the simulated grey matter at clinically
realistic noise levels, indicating the impressive noise
reduction properties of BAFPIC, which matched those
of nonlinear ridge regression with spatial constraint
applied to FDG (Zhou et al, 2002). Zhou et al (2002)
obtained reductions in FDG k3 variability of B70%,
whereas Huang et al (2007) reported corresponding
reductions of 34%. As the tracer and physiology are
different, the variability reductions quoted above
cannot be directly related to those reported in this
study on FMISO, in which BAFPIC reduced Ki

variability compared with NLLS by 18 and 99% in
normoxic and hypoxic tissues, respectively, with
corresponding reductions in k3 variability of 15 and
93% (Table 1). However, the values for FDG with
similar kinetic models put the reported FMISO values
into some context because there are no corresponding
published numbers for voxelwise FMISO kinetic
modelling, the closest being illustrative uptake at
infinite time (SN) maps of head and neck cancer
patients in Thorwarth et al (2005), and Ki and K1 maps
in Wang et al (2010) also in head and neck cancer.

The improvement in variability and bias offered by
BAFPIC over NLLS is considerably higher for hypoxic
than for normoxic tissue (Figure 2 and Table 1). This is
likely to be because of the fact that normoxic tissue is
dominated by two kinetic parameters (K1 and k2) as
k35k2, whereas in hypoxic tissue, k3 is comparable
with k2. The effective reduction in the numbers of free
parameters from four to three for normoxic tissue
results in a dramatic increase in stability for NLLS. In
hypoxic tissue found in the stroke model, which has
reductions in K1 and k2, NLLS is totally unreliable at
realistic noise levels, with the exception of blood
volume estimation. In contrast, BAFPIC shows the
expected patterns of reduced K1 and k2, together with
increased k3 in the affected, i.e., ischaemic and
hypoxic, cortex (Figure 3). However, even for BAFPIC,
the parametric images of real data shown in Figures 3
and 4 are subjected to blotchy noise artefacts,
especially for k2, Vb, and K1. It is important to note
that even the Ki maps produced by PGA have the
artefacts, which are attributed to the spatial correlation
of noise by the filtered backprojection algorithm
propagating into the parametric maps. The artefacts
are so pronounced because the height and width of
the brain in these images is only 10 and 13 mm,
respectively, which is only B5 times the spatial
resolution. In a human brain image, this factor is
B30; hence, spatially correlated noise from the
reconstruction process is less apparent.

Figure 5 Correlation of Ki from BAFPIC and PGA. (A) MCAo rat
shown in Figure 3 and (B) control rat shown in Figure 4. The
same voxels (n = 9,091) were used for both panels A and B.
BAFPIC, basis function method; MCAo, middle cerebral artery
occlusion; PGA, Patlak–Gjedde graphical analysis.
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Correlation analysis shows that only two pairs of
the parametric maps produced by BAFPIC for real
FMISO microPET data have strongly correlated voxel
values: K1 and k2; k3 and Ki (Table 2). The high
correlation between K1 and k2 is to be expected
because it is consistent with matched tissue influx
and efflux, although in the affected cortex of the
MCAo rat, significant negative correlations are found
between K1/k2 and both K1 and k2 indicating that
although the K1 and k2 reductions are correlated k2 is
reduced more. Importantly, k2 and k3 are not strongly
correlated, indicating that high k3 is not being falsely
attributed as low k2 or vice versa. Although k3 and
Ki are highly correlated (r = 0.71 to 0.85), increased
K1/k2 could explain part of the increase in Ki for the
MCAo rat.

As the irreversible trapping rate can be related to
tissue oxygen concentration (Casciari et al, 1995), k3 is
potentially a more specific measure of hypoxia than
Ki. BAFPIC reduced the variability of k3 to match that
of Ki in normoxic tissue, although it was still higher in
hypoxic tissue. Further studies are warranted to
determine which of k3 and Ki is the best in vivo
measure of hypoxia, particularly for scenarios subject
to changes in tissue influx/efflux which potentially
compromise the ability of Ki to quantify hypoxia. The
stroke model used in this study is one example of this,
others include tumour response to therapy studies. In
addition to FMISO, mapping k3 could be of interest
for irreversible tracers such as the cellular prolifera-
tion marker [18F]fluorothymidine (de Langen et al,
2009), [11C]methionine used to image amino-acid
metabolism (Buus et al, 2004), and FDG, although Ki

is usually the key parameter of interest for FDG
because it can be converted to glucose metabolic rate.
Parametric maps of k3 produced by BAFPIC and/or
the low variance Ki maps produced by BAFPIC may
be particularly useful if PET information is to be used
in radiotherapy treatment planning (Alber et al, 2003;
Rajendran et al, 2006).

In conclusion, simulations and real data have
shown that in a rat model of cortical ischaemia, a
basis function approach (BAFPIC) for kinetic model-
ling with an irreversible two-tissue compartment
model provides superior FMISO parametric maps
than NLLS solution for K1, k2, k3, Vb, and both NLLS
solution and PGA for Ki. BAFPIC is easy to imple-
ment, computationally efficient, and could be ap-
plied to other tracers in which an irreversible two-
tissue compartment model is applicable, particularly
those in which k3 is a parameter of interest as well as
Ki. Although the emphasis of this study has been on
voxelwise modelling, BAFPIC will also be an
attractive option for kinetic parameter estimation at
the regional level if the regional TAC is noisy.
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