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Targeted inhibition of mitochondrial Hsp90 suppresses localised
and metastatic prostate cancer growth in a genetic mouse model

of disease
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BACKGROUND: The molecular chaperone heat shock protein-90 (Hsp90) is a promising cancer drug target, but current Hsp90-based
therapy has so far shown limited activity in the clinic.

METHODS: We tested the efficacy of a novel mitochondrial-targeted, small-molecule Hsp90 inhibitor, Gamitrinib (GA mitochondrial
matrix inhibitor), in the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model. The TRAMP mice receiving 3-week or
5-week systemic treatment with Gamitrinib were evaluated for localised or metastatic prostate cancer, prostatic intraepithelial
neoplasia (PIN) or localised inflammation using magnetic resonance imaging, histology and immunohistochemistry. Treatment safety
was assessed histologically in organs collected at the end of treatment. The effect of Gamitrinib on mitochondrial dysfunction was
studied in RMI cells isolated from TRAMP tumours.

RESULTS: Systemic administration of Gamitrinib to TRAMP mice inhibited the formation of localised prostate tumours of
neuroendocrine or adenocarcinoma origin, as well as metastatic prostate cancer to abdominal lymph nodes and liver. The Gamitrinib
treatment had no effect on PIN or prostatic inflammation, and caused no significant animal weight loss or organ toxicity.
Mechanistically, Gamitrinib triggered acute mitochondrial dysfunction in RMI cells, with loss of organelle inner membrane potential
and release of cytochrome-c in the cytosol.

CONCLUSIONS: The Gamitrinib has pre-clinical activity and favourable tolerability in a genetic model of localised and metastatic prostate
cancer in immunocompetent mice. Selective targeting of mitochondrial Hsp90 could provide novel molecular therapy for patients

with advanced prostate cancer.
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Despite advances in treating early-phase prostate cancer (Carter
et al, 2006), advanced disease, characterised by castration
resistance and bone metastases, poses significant therapeutic
challenges (Taichman et al, 2007), with over 30000 deaths in the
United States alone. Cytotoxic or radiation has limited efficacy
in these patients, and molecular therapies are still in early stages of
evaluation (Vogiatzi et al, 2009). Because advanced prostate cancer
is heterogeneous (Taylor et al, 2010), targeting so-called ‘nodal’
cancer genes (Lamb et al, 2006) overseeing multiple downstream
pathways of tumour maintenance (Butcher, 2005) may offer
concrete therapeutic prospects. In this context, the molecular
chaperone heat shock protein-90 (Hsp90) is a nodal cancer gene
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(Whitesell and Lindquist, 2005), controlling the folding and/or
maturation of client proteins involved in tumour cell proliferation,
survival and adaptation (Trepel et al, 2010). The Hsp90 has
been intensely pursued for cancer therapeutics, and several
small-molecule antagonists of its ATPase pocket have been
developed (Drysdale and Brough, 2008). However, Hsp90-based
therapy (Kim et al, 2009) has shown so far modest activity in
patients with epithelial malignancies, including prostate cancer
(Heath et al, 2008), whether as single agent (Solit et al, 2008) or
combined with cytotoxics (Tse et al, 2008) or molecular therapies
(Modi et al, 2007).

A key feature of Hsp90 and Hsp90-like molecules is their
localisation to multiple subcellular compartments (Trepel et al,
2010). Recently, a pool of Hsp90 has been found in mitochondria
of tumour cells (Kang et al, 2007), where it promotes cell survival
by antagonising cyclophilin D (CypD)-dependent organelle perme-
ability transition and apoptosis (Green and Kroemer, 2004).
Whether this pathway (Kang et al, 2007) influences the response
to Hsp90-based therapy in the clinic (Trepel et al, 2010) is
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currently unknown, but it is intriguing that none of the Hsp90
ATPase antagonists currently in (pre)clinical development
(Drysdale and Brough, 2008) has the ability to accumulate in
mitochondria (Kang et al, 2009), thus leaving unscathed this
general survival mechanism. To address this limitation, a new
class of small-molecule Hsp90 inhibitors selectively targeted to
mitochondria, that is, Gamitrinibs (GA mitochondrial matrix
inhibitors) was recently generated (Kang et al, 2009), which
exhibited potent anti-cancer activity in various xenograft tumour
models, in vivo (Kang et al, 2009).

In this study, we evaluated the pre-clinical activity of Gamitrinib
in the Transgenic Adenocarcinoma of the Mouse Prostate
(TRAMP) model (Greenberg et al, 1995). Albeit with limitations
(Pienta et al, 2008), prostatic tumourigenesis in TRAMP mice
recapitulates many aspects of the human disease on an immuno-
competent background (Kaplan-Lefko et al, 2003), and is suitable
for cancer drug discovery, in vivo (Zorn et al, 2007).

MATERIALS AND METHODS

Cells and reagents

RM1 cells derived from TRAMP mice have been described (Voeks
et al, 2002). The chemical synthesis, HPLC profile and mass
spectrometry of mitochondria-targeted small-molecule Hsp90
antagonists, Gamitrinibs, have been reported (Kang et al, 2009).
This study utilised Gamitrinib-G4 (G-G4), which contains the
Hsp90 ATPase inhibitory structure of 17-AAG (LC-Laboratories,
Woburn, MA, USA) linked to four tandem repeats of guanidinium,
used as a mitochondriotropic moiety (Kang et al, 2009).

The Gamitrinib treatment of TRAMP mice

All experiments involving animals were approved by an
Institutional Animal Care and Use Committee. The TRAMP model
has been described (Kaplan-Lefko et al, 2003), and involves
expression of the SV40 large T and small t oncogene in the
prostatic epithelium under the control of the minimal —426/ + 28
rat probasin promoter (Greenberg et al, 1995). Transgene
expression is regulated by androgen, and results in a spectrum
of lesions, including prostatic intraepithelial neoplasia (PIN),
invasive adenocarcinoma, neuroendocrine tumours and meta-
stases to loco-regional abdominal lymph nodes, liver and lungs
(Greenberg et al, 1995; Kaplan-Lefko et al, 2003). Female TRAMP
mice on a C57BL/6 background were bred with non-transgenic
males, and the offspring was weaned at 3-4 weeks of age.
Male pups were genotyped by PCR amplification of tail genomic
DNA using transgene-specific primers. To test a potential anti-
cancer activity of Gamitrinib (Kang et al, 2009) in this model,
TRAMP mice were divided into two age groups to receive G-G4
monotherapy at 5mg/kg in cremophor as i.p. injections, with the
schedule 3 days on/2 days off. Mice in group 1 (short-term
treatment) received G- G4 starting at 21.9 weeks of age for 3 weeks
(24.9 weeks of age), with analysis of primary and metastatic
prostate cancer as end point. Animals in group 2 (long-term
treatment) were started on G-G4 at 14.7 weeks of age for 5 weeks
(19.7 weeks of age) and assessed histologically for primary prostate
cancer growth, PIN and localised inflammation.

Magnetic resonance imaging

The 2T magnetic resonance imaging (MRI) analysis of TRAMP
mice was carried out on a Bruker/General Electric CSI-II 2.0
T/45 cm imaging spectrometer (Madison, WI, USA) equipped with
a thermostat-controlled animal holder and gas anaesthesia,
containing magnetic field gradients, RF phase, amplitude control
and automatic shimming. For these experiments, 20-week-old
non-castrated TRAMP mice were imaged by MRI using the
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following parameters: repetition time (TR)=2000/600ms; echo
time (TE)=25ms; data acquisition field-of-view =40 mm X
40 mm/30 mm x 30 mm; slice thickness (ST) =1 mm; data acquisi-
tion matrix =256 x 256; number of echo averages =4; and display
FO =30mm x 30 mm.

Analysis of mitochondrial dysfunction

RM1 cells isolated from TRAMP prostate tumours (Voeks et al,
2002) were incubated with 20 um G-G4 or non-mitochondrially
targeted Hsp90 inhibitor, 17-AAG, and analysed after 12h for
changes in mitochondrial membrane potential by JC-1 (200 um)
staining and multiparametric flow cytometry on a FACSCalibur
(Becton Dickinson, Franklin Lake, NJ, USA), as described (Kang
et al, 2009). Alternatively, cytosolic extracts were isolated from
treated RM1 cells using an ApoAlert Cell Fractionation Kit
(Clontech, Otsu, Shiga, Japan), and analysed by western blotting.

Histology

The TRAMP mice in control or G-G4-treated groups were killed,
and the entire genitourinary tract containing seminal vesicles,
prostate (including dorsal, lateral, ventral and anterior lobes) and
urethra (thus excluding the urinary bladder), was isolated, fixed
and stained with hematoxylin/eosin. In some experiments, tissue
sections were stained with an antibody to the proliferation-
associated marker, Ki67, as described (Kang et al, 2009). At the
end of the experiment, organs from control or G-G4-treated
TRAMP mice were removed, paraffin embedded and analysed by
H&E staining and light microscopy. The histological analysis
in each case was performed by a veterinary pathologist (DSG), and
the percentage of prostate gland involvement with PIN, adeno-
carcinoma or neuroendocrine tumours was assessed in individual
prostatic lobes. The scoring system used to quantify inflammation
or metastatic prostate cancer was as follows: 0, none; 1, mild;
2, moderate; and 3, marked.

Statistical analysis

Data were analysed using the unpaired t-test on a GraphPad
software package (Prism 4.0, La Jolla, CA, USA) for Windows. All
statistical tests were two sided. A P-value of 0.05 was considered to
be statistically significant.

RESULTS

Prostate tumourigenesis in TRAMP mice

We began this study by quantifying prostate cancer growth in
untreated TRAMP mice (Greenberg et al, 1995). Consistent
with previous reports (Kaplan-Lefko et al, 2003), TRAMP mice
at 22 weeks of age exhibited enlarged prostates, by MRI
(Supplementary Figure 1). Prostatic lesions under these conditions
included well-differentiated adenocarcinomas with low prolifera-
tive index as well as large neuroendocrine tumours, composed of
sheets of small, undifferentiated cells that stained intensely for the
proliferation-associated marker, Ki-67 (Supplementary Figure 1).

Gamitrinib inhibits localised prostate cancer growth in
TRAMP mice

Consistent with these data, prostatic samples from untreated
TRAMP mice harvested at 19.7 weeks of age (group 2) revealed the
presence of neuroendocrine tumours, adenocarcinomas and PIN
lesions, mixed with various degrees of local inflammation
(Figure 1). Large neuroendocrine tumours occupying >50% of
a prostatic lobe were observed in dorso-lateral and ventral
prostate samples (Figure 1A and B), whereas adenocarcinomas
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Figure |

Prostate histopathology of untreated TRAMP mice at 19.7 weeks of age (group 2). Prostatic samples were isolated from group 2 TRAMP mice,

and analysed by H&E staining and light microscopy. Representative cases of prostatic neuroendocrine tumours (A, B; ventral prostate) or adenocarcinoma
(C, D; dorsal prostate) in group 2 TRAMP mice associated with extensive PIN lesions and various degrees of inflammation are shown.

Table | Prostate histopathology in untreated TRAMP mice age matched to group 2 (19.7 weeks)

Mouse no. Neuroendocrine (%) Adenocarcinoma (%) PIN (%) Inflammation (Score)
1137 100 (DLP, VP) 0 10 (AP) 0

1145 100 (DLP, VP) 0 10 (AP) 0

1150 75 (DLP) 0 100 (DLP); 75 (VP); 10 (AP) | (DLP); +2 (VP)
1158 0 25 (DLP) 50 (DLP); 50 (VP); 10 (AP) | (DLP); +\ (VP)
1208 0 25 (DLP); 5 (VP) 50 (DLPY; 75 (VP); 10 (AP) 2 (DLP); +1 (VP)
1211 0 20 (DLP); 5 (AP) 70 (DLP); 100 (VP); 10 (AP) +| (VP); +1 (AP)
1219 50 (VP) 5 (DLP) 75 (DLPY; 50 (VPY; 25 (AP) +1 (DLP); +1 (AP)
1224 0 0 (DLP); 20 (VP) 60 (DLP); 80 (VP); 25 (AP) +1 (VP)

Abbreviations: AP = anterior prostate; DLP = dorso-lateral prostate; PIN = prostatic intraepithelial neoplasia; TRAMP = Transgenic Adenocarcinoma of the Mouse Prostate;

VP = ventral prostate.

(Figure 1C and D) were histologically well differentiated, of
smaller size, that is, 5-25% of a prostatic lobe and equally
distributed in dorso-lateral, ventral and anterior prostate.
A complete histopathological analysis of control group 2 TRAMP
mice is presented in Table 1.

Long-term treatment of group 2 TRAMP mice with G-G4
suppressed the growth of localised prostate cancer of both
neuroendocrine and adenocarcinoma origin (Supplementary
Figure 2 and Figure 2). Conversely, G- G4 treatment had no effect
on localised prostatic inflammation in TRAMP mice, whereas it
moderately but significantly increased the incidence and distri-
bution of PIN lesions compared with age-matched control
TRAMP mice (Supplementary Figure 2 and Figure 2). A complete
histopathological characterisation of Gamitrinib-treated group 2
TRAMP mice is shown in Table 2.

Gamitrinib inhibits metastatic prostate cancer in TRAMP
mice

Histological analysis of untreated group 1 TRAMP mice at
24.9 weeks of age revealed the presence of large neuro-
endocrine tumours in the dorso-lateral and ventral prostate, and
well-differentiated adenocarcinomas in various prostatic lobes
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(Table 3). In all, 6 out of 10 of these animals also presented
moderate prostate cancer dissemination to liver and loco-regional
abdominal lymph nodes (Table 3 and Figure 2), consistent with
previous observations (Hsieh et al, 2007). In contrast, none of the
age-matched G-G4-treated animals in group 1 (0 out of 4 mice)
had metastatic prostate cancer in liver or abdominal lymph nodes
(Figure 2). Histological examination of brain, kidneys or lungs in
these mice was also negative (not shown).

Safety of long-term Gamitrinib treatment in TRAMP mice

Both groups of TRAMP mice given Gamitrinib exhibited no
significant weight loss throughout treatment (Supplementary
Figure 3A). Similarly, organs harvested at the end of treatment
from group 2 TRAMP mice were histologically unremarkable
(Supplementary Figure 3B) compared with age-matched untreated
mice (not shown).

‘Mitochondriotoxic’ activity of Gamitrinib

To begin elucidating the mechanism of anti-cancer activity of
Gamitrinib in the TRAMP model, we next used RM1 cells that are
derived from TRAMP tumours (Voeks et al, 2002). Treatment
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Figure 2 Quantification of prostatic lesions in untreated or

Gamitrinib-treated TRAMP mice. Prostatic samples were harvested from
untreated (control) or Gamitrinib (G-G4)-treated TRAMP mice, and
analysed by H&E staining and light microscopy. The percentage of
PIN lesions in representative matched samples of dorso-lateral prostate
(DLP) from the various groups is shown. An inflammation or metastasis
score was determined, and expressed as arbitrary units (U). Quantification
of inflammation (NS), PIN (P=0.091) or tumour formation (P=0.0038)
was carried out in TRAMP mice at 19.7 weeks of age (group 2).
Quantification of metastasis to liver and loco-regional abdominal lymph
nodes was determined in TRAMP mice at 24.9 weeks of age (group I).
Abbreviation: NS = not significant.

Table 2 Prostate histopathology of Gamitrinib—G4-treated TRAMP
mice (group 2; 19.7 weeks)

Neuro- Adeno-

Mouse endocrine carcinoma PIN Inflammation
no. (%) (%) (%) (Score)
2999 0 | (DLP) 99 (DLP); 20 (VP); 10 (AP) +1 (VP)
4255 0 0 95 (DLP); 95 (VP); 10 (AP) +2 (VP)
4260 0 0 100 (DLP); 50 (VP) +1 (VP)
4464 0 0 95 (DLP); 95 (VP); 25 (AP) 0

4473 0 0 100 (DLP); 50 (VP); 10 (AP) 0

Abbreviations: AP = anterior prostate; DLP = dorso-lateral prostate; Gamitrinib =
GA  mitochondrial matrix inhibitor; PIN = prostatic intraepithelial neoplasia;
TRAMP = Transgenic Adenocarcinoma of the Mouse Prostate; VP = ventral prostate.

Table 3 Prostate histopathology of untreated TRAMP mice age
matched to group | (24.9 weeks)

Neuro-
Mouse endocrine (%) Adenocarcinoma Metastasis
1207 0 Well differentiated (DLP) 0
1377 0 Well differentiated (DLP, AP) + (Liver)
1271 0 Well differentiated (DLP, AP) + (Liver)
1282 100 (DLP, VP) Well differentiated (AP) + (Liver, lymph nodes)
1295 100 (DLP, VP) 0 + (Lymph nodes)
1299 100 0 + (Liver, lymph nodes)
1300 0 Well differentiated (DLP) + (Liver)
1265 0 Well differentiated (DLP) 0
1381 0 Well differentiated (AP) 0
1281 0 Well differentiated (DLP, AP) 0

Abbreviations: AP =anterior prostate; DLP =dorso-lateral prostate; TRAMP =
Transgenic Adenocarcinoma of the Mouse Prostate; VP = ventral prostate.

of RM1 cells with Gamitrinib caused nearly complete loss of
mitochondrial inner membrane potential, as detected by multi-
parametric flow cytometry (Figure 3A). This was associated with
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concentration-dependent release of mitochondrial cytochrome-c
in the cytosol of Gamitrinib-treated RM1 cells (Figure 3B).
Conversely, non-subcellularly targeted 17-AAG had no effect
on mitochondrial membrane potential or cytochrome-c release
(Figures 3A and B).

DISCUSSION

In this study, we have shown that systemic administration of
Gamitrinib (Kang et al, 2009), a novel small molecule that targets
exclusively the pool of Hsp90 in mitochondria (Kang et al, 2007),
suppressed localised and metastatic prostate cancer growth in
TRAMP mice (Greenberg et al, 1995), with no effect on PIN
or local inflammation. Long-term systemic treatment of TRAMP
mice with Gamitrinib was feasible, with no evidence of systemic or
organ toxicity. Mechanistically, Gamitrinib functioned as a
‘mitochondriotoxic’ agent in the TRAMP model, triggering loss
of organelle inner membrane potential and discharge of cyto-
chrome-c in the cytosol.

Although still the backbone of cancer drug discovery, xenograft
studies in immunocompromised mice have significant drawbacks
(Kelland, 2004), as tumour growth in these settings does not
recapitulate the complexity of clonal selection, cross-talk with the
microenvironment, interplay of inflammatory responses and
acquisition of metastatic traits. This has prompted renewed
interest in exploiting genetically engineered mouse models for
cancer drug discovery (Walrath et al, 2010), especially for prostate
cancer, where cross-talk between the tumour cell population and
its microenvironment has a critical role in progression to
castration resistance and metastasis (Taichman et al, 2007).
Despite its well-known limitations (Pienta et al, 2008), including
the preponderance of neuroendocrine tumours compared with
adenocarcinoma (Chiaverotti et al, 2008), and the failure to
metastasise to bones (Hsieh et al, 2007), prostatic tumourigenesis
in TRAMP mice (Shappell et al, 2004) has provided a reliable
genetic model for the human disease (Kaplan-Lefko et al, 2003),
suitable for pre-clinical studies (Zorn et al, 2007).

Here, the anti-cancer activity of Gamitrinib in TRAMP mice
extends recent studies in xenograft models (Kang et al, 2009),
including prostate cancer, where systemic administration of
Gamitrinib-TPP (Kang et al, 2009) suppressed the growth of
subcutaneous or bone-localised PC3 prostate tumours in immu-
nocompromised mice (Kang et al, 2010). In the TRAMP model,
Gamitrinib-G4, which contains a structurally distinct mitochon-
drial-targeting moiety compared with Gamitrinib-TPP (Kang et al,
2009), was active across the spectrum of poorly differentiated,
rapidly proliferating neuroendocrine tumours, as well as of
differentiated adenocarcinoma. This is consistent with the
abundant distribution of one of the targets of Gamitrinibs (Kang
et al, 2007), the mitochondrial Hsp90 homologue TNF receptor-
associated protein-1 (Trepel et al, 2010), in all Gleason grade
localised and metastatic prostate cancer in humans, but not benign
prostatic hyperplasia (Leav et al, 2010).

Consistent with earlier observations (Kang et al, 2009), the
mechanism of action of Gamitrinib in the TRAMP model involved
acute induction of mitochondrial dysfunction (Kang et al, 2010),
with loss of organelle inner membrane potential and release of
cytochrome-c in the cytosol (Green and Kroemer, 2004). This
produces direct tumour cell killing by Gamitrinib, at variance with
the mainly cytostatic activity of non-subcellularly targeted Hsp90
inhibitors (Kang et al, 2009). In prostate cancer, Gamitrinib-
mediated killing indistinguishably affected androgen-dependent
and -independent cell types (Kang et al, 2010; Leav et al, 2010),
which may contribute to its activity against TRAMP tumours, often
characterised by loss of androgen receptor (Huss et al, 2007) and
androgen insensitivity (Kaplan-Lefko et al, 2003). With respect to
the anti-metastatic activity of Gamitrinib in the TRAMP model,
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Figure 3

‘Mitochondriotoxic’ activity of Gamitrinib. (A) The TRAMP tumour-derived RMI cells were labelled with the mitochondrial membrane

potential-sensitive dye, JCI, incubated as indicated and analysed after 12 h by multiparametric flow cytometry. The percentage of cells in each quadrant is
indicated. (B) RM| cells were treated as indicated, and isolated cytosolic extracts were analysed by westem blotting. COX-IV and f-actin were used as
mitochondrial or cytosolic markers, respectively. Abbreviations: Cyto-c = cytochrome-¢; Pl = propidium iodide.

it is possible that prostate cancer cells in the hypoxic environment
of a metastatic niche, enriched in reactive oxygen species (Sung
et al, 2008), may become especially ‘addicted’ to cytoprotection by
mitochondrial Hsp90s (Kang et al, 2007). This model is consistent
with an important role of CypD (Baines et al, 2005; Nakagawa et al,
2005) in mediating oxidative stress-induced mitochondrial perme-
ability transition (Hua et al, 2007; Montesano Gesualdi et al, 2007),
a cell death response antagonised by mitochondrial Hsp90s
(Kang et al, 2007).

Long-term, continuous Gamitrinib treatment of TRAMP mice
was feasible, devoid of systemic or organ side effects, in vivo. This
tolerability likely reflects the low to undetectable expression of
the targets of Gamitrinib, that is, mitochondrial Hsp90s, in most
normal tissues, as opposed to tumours (Kang et al, 2007). This
cytoprotective pathway may be also uniquely ‘wired’ in tumour
cells, as suggested by the insensitivity of normal prostatic
epithelium to Gamitrinib-mediated killing (Leav et al, 2010) and
the lack of association between Hsp90s and CypD in mitochondria
of normal tissues (Ghosh et al, 2010).

In sum, we have shown that one of the Gamitrinib variants,
G-G4 (Kang et al, 2009), has activity in a pre-clinical genetic
model of localised and metastatic prostate cancer in an
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