
Azacytidine and Decitabine Induce Gene-Specific and
Non-Random DNA Demethylation in Human Cancer Cell
Lines
Sabine Hagemann1, Oliver Heil2, Frank Lyko1, Bodo Brueckner1*

1 Division of Epigenetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany, 2 Genomics and Proteomics Core Facility, Deutsches Krebsforschungszentrum,

Heidelberg, Germany

Abstract

The DNA methyltransferase inhibitors azacytidine and decitabine represent archetypal drugs for epigenetic cancer therapy.
To characterize the demethylating activity of azacytidine and decitabine we treated colon cancer and leukemic cells with
both drugs and used array-based DNA methylation analysis of more than 14,000 gene promoters. Additionally, drug-
induced demethylation was compared to methylation patterns of isogenic colon cancer cells lacking both DNA
methyltransferase 1 (DNMT1) and DNMT3B. We show that drug-induced demethylation patterns are highly specific, non-
random and reproducible, indicating targeted remethylation of specific loci after replication. Correspondingly, we found
that CG dinucleotides within CG islands became preferentially remethylated, indicating a role for DNA sequence context. We
also identified a subset of genes that were never demethylated by drug treatment, either in colon cancer or in leukemic cell
lines. These demethylation-resistant genes were enriched for Polycomb Repressive Complex 2 components in embryonic
stem cells and for transcription factor binding motifs not present in demethylated genes. Our results provide detailed
insights into the DNA methylation patterns induced by azacytidine and decitabine and suggest the involvement of complex
regulatory mechanisms in drug-induced DNA demethylation.
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Introduction

Aberrant DNA methylation is a major hallmark of cancer

[1,2,3]. In cancer cells, global hypomethylation is accompanied by

hypermethylated and transcriptionally silenced tumor suppressor

genes. These so-called epimutations contribute to the loss of

proliferation control in cancer cells [4,5,6].

The maintenance of hypermethylation-induced epimutations

requires the continuous activity of DNA methyltransferases

(DNMTs) during cell division. Thus, inhibition of DNMTs has

been successfully used in epigenetic cancer therapy to reverse

epimutations and to reactivate epigenetically silenced tumor

suppressor genes [7,8,9,10]. The archetypal DNMT inhibitors 5-

azacytidine (azacytidine, AZA) and 29-deoxy-5-azacytidine (deci-

tabine, DAC) have been approved for the treatment of

myelodysplastic syndrome, a preleukemic bone marrow disorder.

Despite their use in the clinic and in numerous preclinical studies,

the knowledge of the mode of action of these drugs is still

incomplete [11].

One of the major consistently observed cellular effects of

azacytidine and decitabine is DNA demethylation. As nucleoside

analogues, AZA and DAC are incorporated into replicating DNA

where they can form covalent bonds with DNMTs [12,13,14].

This trapping of DNMTs leads to passive demethylation during

DNA replication and cell division. Inhibition of DNA methylation

by AZA and DAC has been successfully demonstrated at selected

loci in various clinical studies [7,9,15].

Recently, the effects of AZA and DAC have also been

investigated on the genomic level. Due to the limited availability

of suitable tools for genome-wide methylation analysis, these

studies were initially restricted to the analysis of drug-induced

transcription changes. For example, gene expression profiling was

used to analyze the effects of DAC on the gene expression pattern

of HCT116 colon cancer cells and the results suggested that,

besides gene activation of hypermethylated genes, transcriptional

downregulation may be an important effect of DAC [16,17]. More

recently, Illumina GoldenGate arrays were used to directly

characterize drug-induced DNA demethylation at 1,505 CG

dinucleotides representing 807 cancer-related genes in myeloid

leukemia cells [11]. However, due to the comparably low coverage

of this array, the resulting data were not analyzed in detail and the

molecular characteristics of DNA demethylation responses

remained to be investigated.

In the present study, we used genome-scale Infinium analysis to

systematically characterize the demethylation responses after AZA

and DAC treatment in two human cancer cell lines. To this end

we investigated methylation levels of more than 27,000 CG

dinucleotides representing more than 14,000 genes [19] in

HCT116 colon cancer cells and in HL-60 myeloid leukemia cells.

Our results show that AZA and DAC demethylate CGs in non-
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CG islands more efficiently than those in CG islands (CGI).

Moreover, treatment with AZA and DAC results in non-random

and reproducible DNA demethylation patterns in HCT116 and

HL-60 cells. Additionally, we identified a subset of CGs that is

neither demethylated after drug-treatment nor in cells with

extremely reduced levels of DNMT1 and no DNMT3B [20,21].

Demethylation-resistant CGs are associated with genes preferen-

tially bound by Polycomb Repressive Complex 2 (PRC2)

components in ES cells and are enriched for transcription factor

binding motifs not present in demethylated genes. These results

unravel the patterns of DNA demethylation by AZA and DAC

and suggest that drug-induced demethylation is regulated by

defined molecular mechanisms.

Materials and Methods

Cell culture
Human HCT116 colon carcinoma cells and HCT116 double

knockout (DKO) cells (DNMT1-/-; DNMT3B-/-) were kindly

provided by Bert Vogelstein (July 2007) and cultured under

standard conditions in McCoy’s 5A medium supplemented with

5% L-glutamine and 10% FCS (Invitrogen). Identity of HCT116

cells was confirmed by DMSZ (Braunschweig, Germany; January

2008) using DNA profiling of eight short tandem repeats. HL60

cells were obtained from ATCC and cultured under standard

conditions in RPMI medium (Sigma) supplemented with 5% L-

glutamine and 10% FCS (Invitrogen). Fresh aliquots of all cell lines

were used for experiments. To analyze the effects of 5-azacytidine

(AZA) and 29-deoxy-5-azacytidine (DAC), cells were cultivated in

media supplemented with the compounds, at the concentrations

indicated.

Inhibitors
5 mM stock solutions of AZA (Sigma) and DAC (Calbiochem)

were prepared by dissolving the substances in distilled H2O

(GIBCO) and stored at 280uC. Immediately before treatment,

stock solutions were diluted in cell culture medium to the

concentrations indicated.

Genomic DNA methylation analysis
Drug-treated cells were incubated with the indicated concentra-

tions of AZA and DAC after a 24 h seeding period, and genomic

DNA was prepared using the DNeasy Blood and Tissue Kit

(Qiagen). Global genomic DNA methylation levels were determined

by capillary electrophoresis as described previously [22].

Array based DNA methylation analysis
Array-based gene-specific DNA methylation analysis was

performed using Infinium HumanMethylation27 bead chip

technology (Illumina) according to the manufacturer’s instructions.

Shortly, bisulfite treated genomic DNA was whole-genome

amplified and hybridized to the HumanMethylation27 BeadChip.

Oligomers, attached to two different bead types per interrogated

locus, match either the unmethylated or the methylated state,

enabling single-base extension and detection. The methylation

status of a specific cytosine is indicated by average beta (AVB)

values where 1 corresponds to full methylation and 0 to no

methylation. Delta beta (DB) values were calculated by subtracting

AVB values of treated or knockout cells from control AVB values.

Biological replicates (see Figure S2) of each experiment were

grouped and array probes with P$0.05 were excluded from the

analysis. Loci were scored as methylated if the AVB was greater

than or equal to 0.2 [23]. The complete CG methylation data are

available in the ArrayExpress database (www.ebi.ac.uk/arrayex-

press). For a more detailed description of normalization and

further calculations refer to Methods S1. Results were analyzed

using Illumina’s BeadStudio software, version 3.1.3.0 and with R,

version 2.10.0 [24]. Specifically, following R packages were used

for data analysis: graphics (boxplots), stats (kernel density estimates

and statistical analyses), the limma package [25] for the

construction of Venn diagrams and the lattice package [26] for

the display of multivariate data (trellis plots).

454 DNA bisulfite sequencing
Deep DNA bisulfite sequencing of CGs of 4 genes (PIK3CG,

Ells1, Aff2, NTRK3) was performed as described previously

[27,28]. For 454 sequencing, bisulfite-treated genomic DNA was

amplified using sequence-specific primers containing treatment-

specific barcodes and 454 linker sequences (Figure S7). 454 deep

sequencing was performed by the DKFZ Genomics and

Proteomics Core Facility.

Analysis of transcription factor binding motifs
To identify enriched transcription factor binding motifs we used

the online tool PScan [29] and 130 transcription factor-binding

profiles (H. sapiens) from the JASPAR database [30]. The analysis

of genes was focused on the region from -450 to +50, with respect

to their transcription start site. To summarize the results of the

PScan analysis, a heatmap displaying the natural logarithm of the

P values was generated.

Results

Establishment of treatment conditions for AZA- and
DAC-induced demethylation in HCT116 cells

As a first step towards a systematic characterization of

demethylation responses induced by azacytidine (AZA) and

decitabine (DAC), we aimed to maximize demethylation efficien-

cy, to minimize drug toxicity [31,32] and to prevent remethylation

as observed during long-term treatment [33]. To this end, we

treated HCT116 cells with increasing drug concentrations

(Figure 1A) and over various periods of time (Figure 1B) to

determine global genomic methylation levels by capillary electro-

phoresis. The results clearly showed for both drugs that maximum

demethylation was reached with concentrations of 1 mM after 24–

36 h with DAC showing a 60% reduction and AZA showing a

50% reduction of global DNA methylation.

Since azanucleosides require DNA replication for their function,

we analyzed whether the number of cells in S phase might be

affected by drug treatment. HCT116 cells were treated with 0.1, 1,

and 10 mM of AZA or DAC and cell cycle distribution was

analyzed by FACS (Fluorescence Acitvated Cell Sorting). While

the proportion of cells in S phase was increased after 24 h

treatment with 0.1–10 mM AZA or DAC, only longer incubation

times resulted in a decrease of replicating cells for several drug

concentrations (Figure S1A). Furthermore, FACS analyses also

revealed that only high drug concentrations (10 mM) resulted in a

G2 phase arrest, which was accompanied by a reduction of cells in

G1 phase (Figure S1B). Also, pronounced cell death was only

observed with high drug concentrations, especially after treatment

with 10 mM AZA, which indicates that AZA-treated cells stopped

to replicate and died. These observations confirmed that

demethylation should be analyzed after 24 h and at 1 mM drug

concentration to exclude the confounding effects of drug toxicity.

Array-based genome-wide DNA methylation analysis
To analyze DNA methylation patterns of HCT116 cells on a

genome-wide scale we used Infinium methylation profiling to

Drug-Induced Non-Random DNA Demethylation
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interrogate the methylation status of 27,578 CG dinucleotides

representing 14,475 associated genes [11,19]. Methylation of

individual loci was determined by average beta (AVB) values that

ranged from 0 (unmethylated) to 1 (completely methylated). Based

on previous studies [19], only CGs that showed a decrease or

increase in their AVB value (delta beta, DB) of at least 0.2 were

used for the analysis of methylation changes. Biological replicates

of HCT116 control cells and drug-treated cells showed a very high

similarity (Figure S2A, B, C), confirming the technical robustness

of the array and the high specificity of drug-induced methylation

patterns.

Subsequent data analysis clearly revealed a bimodal distribution

of CG dinucleotide methylation with a low-methylation peak

(13,667 of 27,571 CGs) that was found at AVB values ranging

from 0 to 0.2 and a high-methylation peak (8,222 of 27,571) that

covered the interval from 0.8 to 1.0 (Figure 1C). As in untreated

cells, the bimodal methylation distribution was also observed after

treatment of cells with AZA and DAC (see Figure 1C). However,

after drug treatment the high-methylation peak (AVB$0.8 in

control cells) was shifted to lower methylation values, indicating

drug-induced demethylation.

To validate the methylation array results, we used highly

quantitative 454 bisulfite sequencing [28] to analyze four strongly

methylated CGs which became demethylated by drug-treatment

in HCT116 cells. On average, we obtained about 300 reads per

CG (see Figure S7). Correlation analysis of bisulfite sequencing

data and array results (Figure 1D) showed a very good overall

agreement of both methods (r = 0.84). These results demonstrate

that the Infinium methylation array generates an accurate

representation of the HCT116 methylation pattern in our

experiments.

Drug-induced demethylation patterns are non-random
Further analyses of array data showed that treatment with AZA

resulted in demethylation (DB#20.2) of 6% (852 of 13,911) of the

CGs methylated in control cells (Figure 2A). Showing an even

higher efficacy, DAC treatment induced demethylation of 11%

(1,487 of 13,911) of these CG sites (Figure 2B). A Wilcoxon rank

sum test confirmed the significance of the difference between

methylation in AZA- and DAC-treated cells (Figure 2C,

P,2610216). The higher efficiency of DAC-mediated demethyl-

ation on the gene-specific level is consistent with our global

methylation analysis in HCT116 cells (Figure 1A, B).

Based on the observation that demethylation patterns appeared

to be surprisingly specific with high inter-replicate reproducibility,

we wondered whether both drugs share commonly demethylated

CG dinucleotides. To identify commonly demethylated CGs we

grouped AZA and DAC replicates, respectively, and found a

substantial overlap of CGs that were demethylated by both drugs

(Figure 2D). This overlap was significantly greater than expected

by random demethylation (P,2610216, Fisher’s Exact Test),

indicating that specific loci are preferentially demethylated by

Figure 1. Genome-wide methylation analysis of HCT116 cells. A, Global methylation analysis (CE) of HCT116 cells treated with the indicated
concentrations of AZA and DAC for 24 h. B, Time-course CE measurement of drug-induced demethylation using 1 mM AZA or DAC; Co, untreated
HCT116 cells. C, Kernel density estimates of Infinium methylation data for untreated (Co) and drug-treated cells. D, Validation of Infinium methylation
data using 454 bisulfite sequencing; methylation data of 4 CG loci, measured either by Infinium analysis or by 454 sequencing, correlate strongly
(Pearson’s correlation coefficient r = 0.84); treatment with AZA and DAC is indicated by A and D, respectively; different loci are indicated by colors:
PIK3CG (blue), NTRK3 (green), Ells1 (red), and AFF2 (black).
doi:10.1371/journal.pone.0017388.g001

Drug-Induced Non-Random DNA Demethylation
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AZA and DAC. Despite the widespread demethylating activity of

AZA and DAC, a substantial number of CG dinucleotides

appeared resistant to drug-induced demethylation in HCT116

cells (Figure 2A, B).

Resistance to drug-induced demethylation is mostly
overcome in DNMT1; DNMT3B double knockout cells

To further characterize the CGs resistant to drug-induced

demethylation we obtained methylation profiles from HCT116

cells with strongly reduced levels of DNMT1 and complete loss of

DNMT3B (DKO cells). Data analysis revealed pronounced

demethylation in DKO cells with more than 85% of methylated

CGs being demethylated (Figure 3A). DKO cells also showed the

greatest degree of demethylation represented by median DB values

of less than 20.55 relative to control cells (Figure 3B). In

comparison, we observed significantly (P,2610216, Wilcoxon

rank sum test) lower degrees of demethylation for AZA and DAC

(Figure 3B).

We next compared the mean methylation level of gene-

associated CGs derived from the Infinium array to global

methylation measured by capillary electrophoresis (CE)

(Figure 3C). In addition to Infinium methylation analysis, CE

also interrogates CGs in repetitive elements which comprise the

majority of methylated DNA in the human genome [34].

Interestingly, the degree of demethylation of whole genomic

DNA was always higher than gene-specific demethylation. This

suggests that CGs in repetitive elements became more efficiently

demethylated than gene-associated CGs. When we compared

demethylation patterns of drug-treated and knockout cell lines, we

found that 92% of the CGs demethylated by AZA and 90% of the

CGs demethylated by DAC were also demethylated in DKO cells

(Figure 3D). However, our results indicate that drug-induced

demethylation of specific genes is relatively inefficient when

compared to the entire genome and to DNMT-deficient cells.

Drug-induced demethylation of cancer-related and bona
fide tumor suppressor genes

We next analyzed drug-induced demethylation in a panel of

cancer-associated genes (adapted from the GoldenGate Methyla-

tion Cancer Panel I, Illumina). Out of 807 cancer-associated genes

in this panel, 784 (represented by 2,125 CGs) were also present on

the Infinium methylation chip. The analysis of our methylation

data revealed that cancer-related genes were more highly

methylated than non-cancer-related genes, which are present on

the Infinium platform but not on GoldenGate (Figure 4A).

Furthermore, cancer-related methylation was strongly reduced in

DKO cells (Figure 4A).

A detailed analysis revealed that out of 2,125 cancer-associated

CGs, a set of 906 CGs was hypermethylated (AVB$0.8) in

HCT116 control cells. DAC demethylated these hypermethylated

cancer-associated genes with a similar efficiency as AZA

(Figure 4B). Interestingly, we observed that almost all genes were

Figure 2. AZA and DAC induce non-random demethylation patterns in HCT116 cells. Methylation changes in HCT116 cells treated for 24 h
with AZA (A) or DAC (B); blue dots and numbers represent demethylated CGs (DB#20.2). C, Boxplots show the distribution of methylated CGs in
HCT116 control samples and cells treated with AZA or DAC; black lines denote medians, notches the standard errors, boxes the interquartile range,
and whiskers the 2.5th and 97.5th percentiles. D, Venn diagrams indicate overlapping demethylated CGs in drug-treated cells.
doi:10.1371/journal.pone.0017388.g002
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strongly demethylated in DKO cells. Similar results were also

obtained for a set of hypermethylated bona fide tumor suppressor

genes (Figure 4C). These data further illustrate the ability of DAC

and AZA to demethylate tumor suppressor genes, and suggest that

drug-induced overall gene-specific demethylation is comparably

weak.

Non-CG islands and highly methylated CGs are
preferentially demethylated

To further refine our analysis, we distinguished between CGI

and non-CGI-associated CGs. As expected [35,36], CGs in non-

CGIs were predominantly methylated (3,667 of 7,513, AVB$0.8)

whereas those in CGIs were mostly unmethylated (12,782 of

20,002, AVB#0.2) (Figure 5A). In addition, we also observed a

prominent fraction of highly methylated CGs that were associated

with CGIs (4,527 of 20,002, AVB$0.8), which is consistent with

CGI hypermethylation in cancer [6]. Interestingly, our results

show that both, AZA and DAC, demethylated a higher proportion

of methylated CGs not located in CGIs. Specifically, in HCT116

cells, AZA demethylated 3.0% (219 of 7,224) of methylated CG

dinucleotides in CGIs but 9.5% (633 of 6,687) methylated CGs in

non-CGIs (Figure 5B); DAC demethylated 6.6% (474 of 7,224) of

CG dinucleotides in CGIs but 15.2% (1,013 of 6,687) CGs in non-

CGIs (Figure 5C). We therefore conclude that CG dinucleotides

within CGIs became preferentially remethylated after drug-

induced passive demethylation (P,2610216, Fisher’s exact test).

To analyze whether demethylation efficiency is a function of the

degree of CG methylation, we grouped CGs by their methylation

level in 10 intervals from 10% to 100% methylation and

determined to which extent CGs in different intervals were

demethylated. Our results show that AZA- and DAC-induced

demethylation was more efficient for highly methylated CGs

(methylation intervals from 60% to 100% methylation). The

significance of this effect was further illustrated by an analogous

analysis of demethylation efficiency in DKO cells. Here, CGs of all

methylation levels were demethylated equally well, as demonstrat-

ed by the constantly increasing distance of their medians to the

baseline (Figure 5D). We therefore conclude that AZA and DAC

preferentially lead to demethylation of highly methylated CG

dinucleotides.

Since non-CGI-associated CGs show higher methylation levels

than CGI-associated CGs (Figure 5A), we further analyzed if the

differential methylation of both groups resulted in the observed

difference in demethylation efficiency between CGI- and non-

CGI-associated CGs (Figure 5B, C). To this end, we grouped CGs,

according to their methylation level in untreated cells, in intervals

of equal methylation and determined demethylation of CGs in

CGIs and non-CGIs (Figures S3, S4). This analysis confirmed that

for methylation levels greater than 50–60% in HCT116 cells

(greater than 20–30% for HL60 cells, see below), CGs in non-

CGIs become significantly more demethylated than CGs in CGIs.

Drug-induced demethylation in myeloid leukemia cells
We sought to confirm our previous findings in a model more

closely related to the approved indication of DAC and AZA. To

this end, we treated HL-60 myeloid leukemia cells for 24 h with

Figure 3. The majority of CGs resistant to drug-induced demethylation become demethylated in DKO cells. A, DKO cells show
substantial differences to HCT116 cells in their methylation pattern; blue dots and numbers represent demethylated or hypermethylated CGs
(DB#20.2 or $0.2). B, Boxplots show the demethylation (DB) in drug-treated HCT16 cells and DKO cells; black lines denote medians, notches the
standard errors, boxes the interquartile range, and whiskers the 2.5th and 97.5th percentiles. C, Comparison of relative mean methylation of drug-
treated cells and DKO cells as determined by global genomic methylation analysis (CE) and Infinium methylation analysis. D, Venn diagrams indicate
overlapping demethylated CGs between drug-treated cells and DKO cells.
doi:10.1371/journal.pone.0017388.g003

Drug-Induced Non-Random DNA Demethylation
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drug concentrations that induced in the strongest demethylation

response (0.5 mM DAC or AZA) and again obtained methylation

profiles by Infinium analysis. The results showed that treatment

with AZA resulted in strong demethylation (DB#20.2) of 16%

(1,839 of 11,406) of the CGs methylated in control cells

(Figure 6A). DAC treatment induced demethylation of 8% (941

of 11,406) of these CG sites (Figure 6B). Methylation levels

between drug-treated cells differed significantly (P,2610216,

Wilcoxon rank sum test), as described above for HCT116 cells, and

we again observed a strong overlap of CGs demethylated by AZA

and DAC (Figure S5E). The comparison of CGI-associated CGs

and non-CGI-associated CGs showed that CGs in CGIs were less

methylated than those in non-CGIs, which is in agreement with our

findings in HCT116 cells. Also, as previously observed in HCT116

cells, AZA and DAC demethylated CGs in non-CGIs more

efficiently than those in CGIs in HL60 cells (Figure 6C, D)

(P,2610216, Wilcoxon rank sum test). Consistent with our findings

in HCT116 cells, drug-induced demethylation was also more

efficient for highly methylated CGs in HL60 cells (Figure 6E, F).

Resistance to demethylation correlates with PRC2
occupancy and transcription factor binding

We finally considered potential molecular mechanisms which

may modulate drug-induced demethylation efficiency. Previous

studies have suggested that specific binding of Polycomb

complexes (PRC2) may induce hypermethylation of gene

Figure 4. Hypermethylated cancer-associated genes and tumor suppressor genes are strongly demethylated in DKO cells. A, Median
methylation levels of cancer-related and non-cancer-related CGs in untreated cells (Co), drug-treated cells (AZA, DAC) and DKO cells. B, Heatmap of
CG methylation in cancer-associated genes. C, Heatmap of hypermethylated bona fide tumor suppressor-genes in drug-treated and DNMT knockout
cells.
doi:10.1371/journal.pone.0017388.g004

Drug-Induced Non-Random DNA Demethylation
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promoters during tumorigenesis [37,38]. Accordingly, PRC2-

associated regions may be predisposed to rapid remethylation after

replication. Thus, we assigned genome-wide association data for

SUZ12, EED, and H3K27 trimethylation [39] to the correspond-

ing CGs on the Infinium chip. Our analysis revealed that CGs

associated with the interrogated PRC2 components show higher

median methylation than CGs not associated with PRC2

(Figure 7A). Interestingly, PRC2-associated CGs were significantly

more resistant to demethylation by AZA and DAC (Figure 7B, C).

To refine this analysis, we subsequently focused on demethyl-

ation-resistant CGs. We identified a set of 1129 gene-associated

CGs which were resistant to demethylation by AZA and DAC in

HL60 cells (AVB$0.8). Interestingly, 75% of these CGs were also

resistant to drug-induced demethylation in HCT116 cells

(Figure 7D). A detailed analysis showed that PRC2 components

were strongly enriched at promoter regions of CGs resistant to

demethylation in HCT116 and HL60 cells, as well as in

overlapping resistant CGs of both cell lines (Figure 7E). To

identify further distinguishing features of demethylation-sensitive

and -resistant CGs, we also analyzed if genes harbouring

demethylation-resistant CGs are characterized by different sets

of transcription factor binding motifs compared to genes that

become demethylated. Using the software tool Pscan [29], we

analysed the presence of binding sites for 130 transcription factors

in 644 genes (851 CGs) that were resistant to demethylation in

HCT16 and HL-60 cells and 121 genes (128 CGs) that became

demethylated in both cell lines after drug treatment. The analysis

revealed that demethylation-sensitive and -resistant CGs are

associated with genes that show a complementary enrichment of

transcription factor binding sites (Figure 7F, Figure S8). Interest-

ingly, the corresponding transcription factors also belong to

different transcription factor families (see Figure S9). For example,

binding sites of Forkhead box (Fox) transcription factors are

enriched in demethylation sensitive genes whereas basic Helix-

Loop-Helix (bHLH) transcription factor binding sites are enriched

in demethylation resistant genes. These results confirm the notion

that specific molecular mechanisms, based on sequence context

and chromatin configuration, are involved in the regulation of

drug-induced DNA demethylation.

Discussion

The role of DNA methylation in tumor cell biology has been

systematically analyzed in HCT116 cells and DNMT knockout

cells in two previous studies [16,17]. These studies utilized the

indirect approach of pharmacological unmasking [40] to identify

methylated genes through changes in their transcriptional profile.

Interestingly, recent data show that AZA and DAC induce

different sets of genes with only little overlap [41]. This finding is

consistent with previously published data indicating that both

compounds are metabolized differently and thereby induce

different effects on cellular viability [42]. In the present study,

we have now directly analyzed the demethylation pattern of

HCT116 and HL60 cells after drug-treatment by interrogating the

methylation status on the genome-scale. In contrast to the above

mentioned differential effects of AZA and DAC on cell viability

and gene expression, our data demonstrate a substantial overlap of

genes demethylated by both drugs. This is likely due to the fact

Figure 5. Highly methylated CGs and CGs outside of CG islands are preferentially demethylated in HCT116 cells. A, Boxplots indicate
differences in methylation between CGIs and non-CGIs. B, Boxplots show demethylation efficiency indicated by DB values in AZA- and DAC-treated
HCT116 cells dependent on CG association with CGIs. For A and B, black lines denote medians, notches the standard errors, boxes the interquartile
range, and whiskers the 2.5th and 97.5th percentiles. C, Boxplots show demethylation efficiencies as a function of degree of CG-methylation in AZA-
and DAC-treated HCT116 cells. Methylation levels were grouped in 10% intervals from 0 to 100% methylation; black marks denote medians, boxes
the interquartile range, and whiskers the 2.5th and 97.5th percentiles.
doi:10.1371/journal.pone.0017388.g005

Drug-Induced Non-Random DNA Demethylation
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that both compounds are ultimately incorporated into DNA as

identical metabolites (i.e. 5-aza-29-deoxycytidine-59-triphosphate)

[18], where they function as DNMT inhibitors. However,

presuming a random mechanism of DNA demethylation, the

strong overlap of CGs demethylated by AZA and DAC was

surprisingly high. In addition, a high reproducibility of demeth-

ylation patterns was also observed for biological replicates of drug-

treated cells (Figure S5A, B, C, D). In agreement with the

currently accepted model of passive demethylation, one would

expect that every round of replication leads to a reduction of

DNA methylation by half, in the absence of functional

maintenance methylation activity. Thus, our observation indi-

cates that specific loci remain demethylated after replication

whereas others appear resistant because they become preferen-

tially remethylated by DNMTs, leading to a non-random pattern

of demethylation.

Figure 6. Drug-induced demethylation patterns in HL60 myeloid leukemia cells. Methylation changes in HL60 cells treated for 24 h with
AZA (A) or DAC (B); blue dots and numbers represent demethylated CGs (DB#20.2). C, D, Boxplots show demethylation efficiency indicated by DB
values in AZA- and DAC-treated HCT116 cells dependent on CG association with CGIs; black lines denote medians, notches the standard errors, boxes
the interquartile range, and whiskers the 2.5th and 97.5th percentiles. Boxplots show demethylation efficiencies as a function of degree of CG
methylation in E, AZA- and F, DAC-treated HL60 cells. Methylation levels were grouped in 10% intervals from 0 to 100% methylation; black marks
denote medians, boxes the interquartile range, and whiskers the 2.5th and 97.5th percentiles.
doi:10.1371/journal.pone.0017388.g006
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The resistance to drug-induced demethylation was overcome for

most CGs in DKO cells with minimal amounts of DNMT1 and no

DNMT3B activity. These cells showed more demethylated loci

than any of the drug-treated cells which is in agreement with a

previous study that analyzed gene expression changes in these cells

[16]. Although drug treatment led to depletion of both DNMT1

and DNMT3B (Figure S6), drug-induced demethylation was

much less efficient than demethylation in DKO cells. While

extended treatment with AZA and DAC might lead to stronger

demethylation, our results suggest that the demethylation effects

observed in DKO cells cannot be achieved by the use of DAC or

AZA.

However, a significant number of CGs was found to be resistant

to demethylation even in strongly demethylated DKO cells. About

33% of these CGs were also resistant to drug-induced demeth-

ylation in HCT116 and HL60 cells (155 CGs), which again

indicates that specific CGs became more rapidly remethylated

after replication than other CGs. This preferential remethylation

of specific loci suggests the involvement of factors which may

modulate the cellular methylation efficiency after replication.

Importantly, array-based analysis also revealed that the

efficiency of demethylation depends on the degree of methylation

of CG dinucleotides as well as on their localization within or

outside of CGIs. We observed that AZA and DAC preferentially

led to demethylation of CGs not located in CGIs, whereas CGI-

associated CGs became preferentially remethylated. Interestingly,

78% of the demethylation-resistant CGs in HCT116 and HL60

cells were located in CGIs, which confirms our notion about the

demethylation-resistance of CGIs. This further indicates that a

subset of CGs, conserved across different cell lines, might be a

target of specific regulatory mechanisms.

The resistance of methylated CG dinucleotides in CGIs to drug-

induced demethylation in HCT116 colon cancer and HL60

leukemic cells might partly be explained by the higher densities of

CG nucleotides in CGIs and associated proteins. Therefore, also

the chromatin surrounding the hypermethylated CGIs in

HCT116 cells could possibly contribute to the preferential

remethylation of these regions. Consistent with this notion, it has

previously been demonstrated that genes associated with PRC2

components in ES cells show increased levels of DNA methylation

in cancer cells [37,38]. Correspondingly, we observed a significant

enrichment of PRC2 components at these demethylation-resistant

loci, which may mediate rapid remethylation of associated CG

dinucleotides after replication. In line with this hypothesis, EZH2

Figure 7. The chromatin environment may modify drug-induced demethylation efficiency. A, Boxplots show the distribution of CG
methylation in PRC2-associated CGs and non-PRC2-associated CGs in HL60 cells. B, C, Boxplots show demethylation efficiency indicated by DB values
in AZA- and in DAC-treated HL60 cells dependent on association with PRC2 components. For A, B, and C black lines denote medians, notches the
standard errors, boxes the interquartile range, and whiskers the 2.5th and 97.5th percentiles. D, Venn diagrams indicate CGs which did not become
demethylated (AVB$0.8) in drug treated HCT116 and HL60 cells and in DKO cells, respectively. E, Percentage of demethylation-resistant CGs
associated with PRC2 components in HCT116 and HL60 cells, and for overlapping CGs of both cell lines (HCT116 & HL60). F, Significance of
enrichment of transcription factor binding sites in genes with demethylation-resistant CGs in HCT116 and HL60 cells and with CGs that became
demethylated by AZA and DAC in HCT116 and HL60 cells (sensitive to demethylation). Heatmap columns represent log (P values) for enrichment of
130 transcription factors.
doi:10.1371/journal.pone.0017388.g007
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has been shown to interact with DNMTs and thus may recruit

these enzymes to specific loci [38]. Especially interesting is our

finding of the complementary enrichment of transcription factor

binding motifs, which belong to different transcription factor

families, in resistant and demethylated loci. We found that binding

sites of transcription factors of the Forkhead box (Fox) family are

enriched in demethylated but not in demethylation-resistant genes.

Intriguingly, Fox transcription factors have been demonstrated to

induce transcriptional competence [43] and implicated in the

formation of unmethylated gene-specific regions in ES cells [44].

Thus, differences in transcription factor binding may also account

for the observed differences in drug-induced demethylation

efficiency at specific loci. This is in line with a recent report [45]

that demonstrated the enrichment of defined sequence motifs in

CGIs resistant to de novo methylation. Correspondingly, binding

of transcription factors might interfere with maintenance methyl-

ation at defined regions of the newly synthesized DNA strand

during replication and thereby mediate non-random demethyla-

tion at specific loci. Additionally, other factors with sequence-

specific binding motifs such as MeCP2 might also recruit

transcriptional repressor complexes to specific loci and thereby

indirectly mediate rapid remethylation at demethylation-resistant

CGs [46].

The involvement of complex regulatory mechanisms in drug-

induced DNA demethylation may also explain the observed low

demethylation efficiency at many hypermethylated loci during

epigenetic cancer therapy [11]. Interestingly, our data show that

long-term depletion of both DNMT1 and DNMT3B, as observed

in DKO cells, may overcome demethylation-resistance at many

loci which supports the development of specific and non-toxic

inhibitors for clinical improvement of epigenetic therapy.

Supporting Information

Methods S1 Statistical analysis of Infinium methylation
array data.
(PDF)

Figure S1 FACS analysis of HCT116 cells treated with
0.1, 1, and 10 mM of AZA or DAC.
(TIF)

Figure S2 Kernel density distribution of AVB values
from biological replicates. Co, untreated HCT116 cells;

AZA, azacytidine treated HCT116 cells; DAC, decitabine treated

HCT11 cells.

(TIF)

Figure S3 Difference in demethylation efficiency be-
tween CGI- and non-CGI-associated CGs (DAC, left
panel; AZA, right panel) in HCT116 cells. Difference is

significant (P,0.05, pairwise Wilcoxon rank sum tests) for

methylation levels greater than 0.5.

(TIF)

Figure S4 Difference in demethylation efficiency be-
tween CGI- and non-CGI-associated CGs (DAC, left
panel; AZA, right panel) in HL-60 cells. Difference is

significant (P,0.05, pairwise Wilcoxon rank sum tests) for

methylation levels greater than 0.2.

(TIF)

Figure S5 Venn diagrams show high reproducibility of
demethylation patterns for biological replicates of drug-
treated cells.
(TIF)

Figure S6 Western blot of DNMT1 and DNMT3B
protein levels after 24 h drug treatment with the
indicated concentrations. Beta actin was used as a loading

control.

(TIF)

Figure S7 Primer sequences used for 454 sequencing.
Adapter sequences are indicated in red and sample-specific bar

codes in green. Number of sequencing reads for each CG is

indicated in the bottom panel.

(TIF)

Figure S8 PScan enrichment analysis of 130 transcrip-
tion factor binding sites in demethylated and non-
demethylated genes (see main text for details). Heatmap

columns represent log (P values) for enrichment of 130

transcription factors.

(TIF)

Figure S9 PScan enrichment analysis of transcription
factor binding families in demethylated and non-de-
methylated genes (see main text for details).
(TIF)
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