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Abstract

Background: Many proteins that are dysregulated or mutated in cancer cells rely on the molecular chaperone HSP90 for
their proper folding and activity, which has led to considerable interest in HSP90 as a cancer drug target. The diverse array
of HSP90 client proteins encompasses oncogenic drivers, cell cycle components, and a variety of regulatory factors, so
inhibition of HSP90 perturbs multiple cellular processes, including mitogenic signaling and cell cycle control. Although
many reports have investigated HSP90 inhibition in the context of the cell cycle, no large-scale studies have examined
potential correlations between cell genotype and the cell cycle phenotypes of HSP90 inhibition.

Methodology/Principal Findings: To address this question, we developed a novel high-content, high-throughput cell cycle
assay and profiled the effects of two distinct small molecule HSP90 inhibitors (XL888 and 17-AAG [17-allylamino-17-
demethoxygeldanamycin]) in a large, genetically diverse panel of cancer cell lines. The cell cycle phenotypes of both
inhibitors were strikingly similar and fell into three classes: accumulation in M-phase, G2-phase, or G1-phase. Accumulation
in M-phase was the most prominent phenotype and notably, was also correlated with TP53 mutant status. We additionally
observed unexpected complexity in the response of the cell cycle-associated client PLK1 to HSP90 inhibition, and we
suggest that inhibitor-induced PLK1 depletion may contribute to the striking metaphase arrest phenotype seen in many of
the M-arrested cell lines.

Conclusions/Significance: Our analysis of the cell cycle phenotypes induced by HSP90 inhibition in 25 cancer cell lines
revealed that the phenotypic response was highly dependent on cellular genotype as well as on the concentration of HSP90
inhibitor and the time of treatment. M-phase arrest correlated with the presence of TP53 mutations, while G2 or G1 arrest
was more commonly seen in cells bearing wt TP53. We draw upon previous literature to suggest an integrated model that
accounts for these varying observations.
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Introduction

Cancer cells depend on an array of mutant and overexpressed

proteins to support their unregulated growth and proliferation.

However, this reliance on abnormal or highly expressed proteins

strains the capacity of the cellular systems that support protein

folding, and results in an increased dependence on molecular

chaperones such as HSP90 [1], which is estimated to have more

than 100 client protein substrates [2,3]. Key cancer-related

proteins such as AKT, ERBB2, and activated forms of EGFR

and BRAF [4] are included in the HSP90 clientele, as are many

other proteins with oncogenic associations. This preponderance of

cancer-associated proteins in the HSP90 clients, combined with

the overexpression of HSP90 in multiple tumor types [5], has led

to a large number of preclinical and clinical studies focused on

HSP90 inhibitors [6].

Because HSP90 is involved in a wide array of processes, its

inhibition results in the simultaneous perturbation of multiple

pathways and gives rise to complex cellular phenotypes. The most

basic of these is a simple inhibition of proliferation, with varying

degrees of subsequent cell death [4,7,8,9]. However, the range of

cell cycle effects induced by HSP90 inhibitors (accumulation in
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G1, G2, G2+M, or a combination of these, depending on the cell

type) illustrates the diversity underlying the common phenotype of

proliferation suppression [10,11,12,13,14,15]. This phenotypic

heterogeneity likely reflects genotype-specific responses to desta-

bilization of the many cell cycle-associated HSP90 client proteins

[16], including CDK1 and CDC25C [12,13], CDK2/4/6

[17,18,19], WEE1 and CHK1 [20,21,22] and PLK1 [23].

Therefore, assessing the cell cycle phenotypes induced by small-

molecule inhibitors of HSP90 can provide insight into the

mechanisms by which loss of HSP90 function causes growth

arrest and cell death, and can also potentially guide the selection of

cancer types for the clinical application of HSP90 inhibitors.

Cell cycle analysis has traditionally been carried out by FACS

(fluorescence-activated cell sorting) analysis of propidium iodide-

stained cells, which assigns cell cycle phase by DNA content.

However, FACS is limited by its inability to distinguish between

G2 and M, by its imprecise quantification of S-phase, and in many

cases, by its low throughput. To allow for more in-depth and easily

scalable analysis of cell cycle phenotypes, we developed a novel

and robust image-based cell cycle assay that accurately reports the

phase status of a cell as well as its DNA content (2N vs. 4N). We

surveyed a panel of 25 lung, breast, and melanoma cell lines and

assessed the cell cycle perturbations induced by two distinct small-

molecule inhibitors of HSP90: XL888, a novel synthetic small

molecule and 17-AAG, an ansamycin derivative. Results showed

that both HSP90 inhibitors induced remarkably similar cell cycle

effects. We also observed phenotypic correlation with the

mutational status of TP53, as well as unexpectedly complex

behavior in the response of the cell cycle client PLK1 to HSP90

inhibition.

Results

We developed a high-throughput, high-content, image-based

cell cycle analysis method (Figure 1A–B) in which S-phase cells are

defined by incorporation of the thymidine analog EdU (5-ethynyl-

29-deoxyuridine) into DNA, and M-phase cells are defined by

immunostaining for the mitotic marker phospho-histone H3 (pH3)

[24]. Immunostaining for cyclin A, which is present in S, G2, and

M [25], allowed us to derive G1 and G2 phase assignments: G2

cells were defined as positive for cyclin A staining but negative for

EdU and negative for pH3, while G1 cells were defined as negative

for EdU, cyclin A, and pH3. To evaluate the accuracy of the phase

designations, HeLa and A549 cells were synchronized with a

double-thymidine block and released at timed intervals to create

populations enriched for G1/S or G2/M. High-content cell cycle

analysis showed the expected phase enrichments in these

synchronized cells, as well as in asynchronous cells that were

treated with taxol (paclitaxel) or hydroxyurea to enrich for M or

for G1/S (data not shown). We also generated a ‘‘DNA

distribution plot’’ histogram that combines a FACS-like display

of DNA content with an overlay of cell cycle phase assignments

(Figure 1C), and demonstrated that phase assignments in DMSO-

treated Calu-6 cells were consistent with the expected 2N vs. 4N

DNA content. DNA distribution patterns varied in different cell

lines according to their degree of aneuploidy and heterogeneity,

but the majority exhibited distinguishable 2N and 4N populations.

(See Dataset S1 for an example of the custom Excel macro used to

generate DNA distribution plots from raw cell cycle data output.)

We used the high-content (HC) cell cycle method to analyze the

cell cycle perturbations induced by XL888 (Figure S1A), a

synthetic, orally bioavailable, ATP-competitive inhibitor of

HSP90 with potent anti-proliferative activity against a large panel

of cancer cell lines. We compared HC cell cycle analysis to FACS

analysis in two XL888-treated melanoma lines: In WM-266-4 cells

(Figure 2A), both methods showed that XL888 treatment caused

loss of S-phase and accumulation of cells with 4N DNA content;

the HC method additionally showed that the 4N accumulation

consisted of G2 (and not M) cells. In XL888-treated A375 cells

(Figure 2B), the HC cell cycle method revealed that the 4N

accumulation seen by FACS analysis was not due to an increase in

G2 or M, but to the generation of 4N-pseudo-G1 cells, presumably

by mitotic checkpoint slippage (i.e. chromatin decondensation and

mitotic exit without cytokinesis). These examples illustrate the

greater clarity and higher definition of the HC method vs.

traditional FACS analysis.

We focused our analysis of the cell cycle effects of HSP90

inhibition on a panel of lung, breast, and melanoma cancer lines

because of their dependence on key oncogenic drivers such as

activated EGFR and BRAF, overexpressed ERBB2, and amplified

MET—all of which are HSP90 client proteins [1]. We included 25

genetically diverse cancer cell lines in order to assess the effect of

mutational status on the cell cycle response to XL888 or 17-AAG.

Since the average proliferation IC50 across the cell panel was

,0.1 uM (see Figure S1B), we chose ,1 uM compound as the

high end of the concentration curve in order to ensure a full range

of response. Figure 3 summarizes the cell cycle phenotypes that

resulted from 24 h of treatment with the highest tested

concentration of each compound (1–1.6 uM), and illustrates the

remarkably similar effects of both compounds. Note that the cell

cycle profiles induced by treatment with a lower concentration of

inhibitor (0.4 uM; see Figure S1B) closely resembled those seen at

the 1 uM range, demonstrating that development of the cell cycle

patterns shown in Figure 3 did not require high levels of XL888 or

17-AAG.

We observed three classes of cell cycle response to HSP90

inhibition: accumulation in M+/2G2 (M-class), accumulation in

G2 (G2-class), and accumulation in G1 and/or 4N-pseudo-G1

(G1-class). The M-accumulation class was most common, and

interestingly, 13 of the 14 M-class lines were mutant for TP53 (vs.

only 3 TP53 mutants in the 11 non-M-class lines); we suggest a

possible basis for this genotype-phenotype correlation in the

Discussion. Figure 4 shows MCF-7 cells treated with XL888 or 17-

AAG, and illustrates several characteristics of the M-class lines: a

pronounced reduction in S with a concomitant increase in M (+/

2G2), and a phenomenon we term the ‘‘G1 blip’’—a distinctive

biphasic pattern of G1 accumulation in which the percentage of

G1 cells increased over a relatively narrow bracket at the lower

end of the concentration range, then decreased at higher inhibitor

concentrations (at which the percentage of M and G2 increased).

To examine the kinetics of these concentration-dependent

changes in cell cycle perturbations, we carried out a timecourse

analysis (Figure 5) in which representative cell lines from each

phenotypic class were treated with XL888 and analyzed 4 h–36 h

after compound addition. At 4–12 h, all tested lines showed

varying degrees of proliferation inhibition, with maximal loss of S

at 24–36 h. At 24–36 h, both of the M-class lines CHL-1 and

EBC-1 showed the characteristic ‘‘G1 blip’’ at lower XL888

concentrations (Figure 5A–B), while at higher concentrations,

there was prominent M accumulation as well as a decrease in G2

that was nearly the inverse pattern of the ‘‘G1 blip.’’ This complex

concentration-dependent pattern may arise from loss of mitogenic

signaling at lower concentrations, and inability to complete mitosis

at higher concentrations. In A549 (G2-class) cells, accumulation in

G2 was visible by 12 h (Figure 5C). However, at 24–36 h, higher

concentrations of XL888 led to some loss of G2 with concomitant

recovery of G1—suggesting that perhaps at higher concentrations,

the integrity of the G2 (and M) checkpoints was compromised and

Cell Cycle Effects of HSP90 Inhibition
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Figure 1. Development of the high-content (HC) cell cycle assay. (A) Markers used in the HC cell cycle assay and their distribution during the cell
cycle. As defined by the HC cell cycle assay, G1 phase formally includes both G0 and G1 phases—however, for the sake of simplicity, we refer to it as ‘‘G1’’
rather than ‘‘G0/G1’’. See text for discussion of assay development and validation. (B) Images of A549 cells stained for HC cell cycle analysis with Hoechst
33342, cyclin A, EdU, and pH3. Top panel, a field of asynchronous cycling cells; bottom panel, examples of G1, S, G2, and M cells. Bottom panels: the G2
panel shows one G2 cell (white arrowhead), one G1 cell, and one S cell; the M panel shows two M cells (white arrowheads) and three G1 cells. The G1 and
S panels show exclusively G1 or S cells, respectively. The inset table summarizes the Boolean logic used to identify cell cycle phases when images are
analyzed with the Cellomics Target Activation algorithm. (C) A DNA distribution plot of data derived from HC cell cycle analysis of DMSO-treated Calu-6
cells. This plot combines aspects of FACS (DNA content, as measured by total nuclear intensity of Hoechst 33342 staining) with the image-based cell
cycle phase assignment, and demonstrates that the phase assignments correlate well with the DNA content expected for a given phase (i.e. G1 lies
primarily at 2N; S lies between 2N and 4N, G2+M lies primarily at 4N). Note that complex karyotypes in some cell lines can contribute to a complex
distribution, such that each phase is not completely contained within discrete boundaries of 2N-4N DNA content.
doi:10.1371/journal.pone.0017692.g001
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some cells transited inappropriately through G2/M and into G1.

The cell cycle profile of A375 cells (G1-class) was extremely

dynamic (Figure 5D): At 4–12 h, G2 and M increased (with

concomitant loss of G1 and S), but this increase was transient

and was lost by 24 h. At 24–36 h, XL888 concentrations .40 nM

resulted in an increase in G1 accompanied by a dramatic decrease

in S. In these G1-class cells, the transition from G2+M

accumulation at 12 h to G1 accumulation at 24 h indicates that

a portion of the G2+M population was likely released from G2/M

checkpoint surveillance and progressed to G1 and/or 4N-pseudo-

G1 (via mitotic checkpoint slippage).

We used live-cell timelapse analysis to further characterize the

cell cycle perturbations induced by HSP90 inhibition. CHL-1 (M-

class), A549 (G2-class), and A375 (G1-class) cells were stably

transfected with a histone-H2B-GFP plasmid to fluorescently mark

chromatin, then treated with XL888 and imaged every 30 min for

36–48 h to track cell fate. Timelapse analysis (Figure 6A–B)

revealed that XL888-treated CHL-1 cells arrested in M with

highly organized chromosomes in a linear, metaphase-like

configuration (as did other M-class cells; data not shown). It is

notable that this metaphase-like phenotype was very different from

the disorganized chromatin and prometaphase arrest that typically

result from treatment with checkpoint-activating agents such as

taxol (paclitaxel). The distinctive linear chromosome configuration

in XL888-treated cells persisted for up to 16–18 h, although with

increasing time, it became somewhat more disorganized, and some

lagging chromosomes began to appear. Eventually, after pro-

longed M-arrest, CHL-1 cells underwent cell death without exiting

from mitosis.

A549 cells (G2-class; Figure 6C) responded very differently to

XL888 treatment: Most cells underwent one round of seemingly

normal division, but then died 18–24 h after completion of the

first division. The timing of cell death (and the increased size of the

cells that subsequently died) suggested that after completion of the

first division, cells were able to proceed through G1 and S and

enter G2, but then were arrested and died in G2. XL888-treated

A375 cells (G1-class; Figure 6D) also arrested in a metaphase-like

configuration, although it was generally less organized than that of

CHL-1, and the M arrest was more transient. A portion of the M-

arrested A375 cells exited mitosis without cytokinesis to yield 4N-

pseudo-G1 cells, and a portion died while in M-phase arrest. Some

A375 cells did not accumulate in M; we judged these cells to

bearrested in a 2N-G1 state, based on their lack of division and on

their relatively small size.

We postulated that depletion of the client protein PLK1 could

be contributing to the metaphase arrest phenotype. PLK1 is

Figure 2. Comparison of HC cell cycle analysis to FACS analysis. (A) WM-266-4 cells were treated for 24 h with DMSO or 370 nM XL888: FACS
analysis (left panel) of XL888-treated cells shows 4N accumulation and a decrease in S phase. HC cell cycle analysis (right panel) similarly shows that
XL888 treatment resulted in G2 (4N) accumulation and loss of S cells, and also reveals the presence of a population of sub-2N dead/dying cells. (B)
A375 cells were treated for 24 h with DMSO or 370 nM XL888. FACS analysis (left panel) of XL888-treated cells shows loss of S, some loss of 2N, and
4N accumulation. HC cell cycle analysis (right panel) similarly shows that XL888 treatment resulted in a loss of S and moderate loss of G1. However,
HC analysis additionally revealed that the increase in 4N (seen in the parallel FACS analysis) is due to not to accumulation of G2 or M cells, but to the
generation of 4N-pseudo-G1 cells, most likely by mitotic checkpoint slippage. Experiments were performed at least two times, and results from
independent trials were consistent.
doi:10.1371/journal.pone.0017692.g002
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involved in entry into M, mitotic exit, and cytokinesis, and its

depletion has been shown to result in an inability to complete

mitosis [23,26,27]. To determine if reduced PLK1 levels

correlated with M-phase accumulation, we used a modified

version of the cell cycle assay (Figure 7) to simultaneously track

PLK1 levels and cell cycle phase (G1, S, and G2/M) in a

timecourse analysis of two M-class lines (CHL-1, EBC-1), one G2-

class line (A549), and one G1-class line (A375). Because the G1

and S profiles in cells analyzed with this modified version of the

assay were extremely similar to those in the standard assay

(Figure 5), Figure 7 shows only PLK1 levels and the combined

G2/M profile, rather than the complete G1-S-G2/M data set.

After 4–12 h of treatment with XL888, PLK1 levels in the M-

class lines CHL-1 and EBC-1 (Figure 7A–B) decreased in a

concentration-dependent manner, although the depletion was

greater in CHL-1 (,65% decrease) than in EBC-1 (,40%

decrease). At early timepoints, there was no particular correlation

of PLK1 abundance with any phase, but after 24–36 h of treatment,

PLK1 levels in both CHL-1 cells and EBC-1 cells tracked with the

complex G2/M profile. Unexpectedly, after prolonged XL888-

induced M and G2 accumulation, PLK1 levels increased relative to

the same XL888 concentration at earlier timepoints—and in the

case of EBC-1, surpassed the basal (DMSO) level. In A549 (G2-

class) cells (Figure 7C), PLK1 was less sensitive to XL888—perhaps

because of a mutation in the HSP90-binding C-terminal portion of

PLK1 (see Figure 3), but PLK1 levels did correspond with the G2/

M profile at later timepoints. In A375 (G1-class) cells (Figure 7D)

there was clearly a concentration-dependent decrease in PLK1

Figure 3. Cell cycle analysis of 25 cancer cell lines treated with XL888 or 17-AAG. Cells were treated with 1–1.6 uM XL888 or 17-AAG for
24 h, and cell cycle profiles were analyzed by the HC cell cycle method. Cell cycle data is normalized to the DMSO value for a given phase and given
cell line and is represented as a fold-change vs. DMSO. The heat map color key is as follows: light blue, #0.56DMSO value; orange, $26DMSO value
for G2 and M and $1.26DMSO value for G1. Data is successively sorted in descending order of (1) accumulation in M, (2) accumulation in G2, and (3)
accumulation in G1. Mutations are highlighted in gray. EBC-1 is a MET-amplified line (‘‘MET AMP’’) and BT-474, UACC-812, and SK-BR-3 are ERBB2-
overexpessing lines (‘‘ERBB2 OE’’). Genotype data in this figure is derived from COSMIC [75] or from in-house sequencing. See Figure S1B for a version
of the heat map that includes apoptosis and proliferation data as well as cell cycle profile data. Figure S1B also shows cell cycle phenotypes of cells
treated with 0.4 uM XL888 or 17-AAG for 24 h, in comparison to the 1.1–1.67 treatment shown here. Chi-square analysis indicates that the probability
of the observed correlation of mutant p53 lines with M+/2G2 status being random is 0.0089; see legend to Figure S1 for details.
doi:10.1371/journal.pone.0017692.g003
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levels at 4–8 h of treatment with XL888. Interestingly, at 12 h (the

peak of G2+M accumulation) PLK1 levels no longer steadily

decreased with increasing XL888 concentration, but instead

reached a plateau at ,100 nM XL888, with no further notable

decrease at higher XL888 concentrations. However, at 24–36 h,

when G2+M accumulation was lost and G1 accumulation

predominated (see Figure 5D for G1 data), PLK1 levels again

decreased substantially with increasing concentrations of XL888.

We also detected PLK1 with a second antibody in all four cell lines;

both antibodies yielded similar trends (data not shown).

To investigate the relationship between PLK1 levels and cell

cycle phase, we used the data from Figure 7 to create DNA

distribution plots overlaid with PLK1 profiles that reflected the

abundance of PLK1 in a given cell (‘‘PLK1-high’’ and ‘‘PLK1-

low’’, see Figure 8). In the G2-class line A549, (Figure 8A) PLK1-

high cells tracked with the 4N-G2/M population at 12 h and 24 h

after XL888 addition, while the PLK1-low cells (although

extremely scarce) tracked with 2N-G1. The G1-class line A375

(Figure 8B) similarly showed a correlation between PLK1-high

cells and 4N-G2/M at 12 h (the peak of G2/M accumulation),

with very few PLK1-low cells. However, by 24 h, when G1 was

predominant, PLK1-low cells were abundant and tracked with the

2N-G1 population. Note that treatment of A375 cells with

123 nM XL888 (Figure 8B) yielded primarily 2N-G1 cells, while

treatment with 370 nM XL888 (Figure 2B) yielded a mix of 2N-

G1 and 4N-G1 cells; we will address this concentration-dependent

phenotype development in the Discussion. In the M-class lines

EBC-1 and CHL-1, phase correlations of PLK1-high (4N) and

PLK1-low (2N) cells mirrored the general patterns observed in

A549 and A375 (data not shown). These results are consistent with

a model in which initial XL888-induced depletion of PLK1

contributes to accumulation in M+/2G2, and that if this state of

4N accumulation is prolonged, PLK1 is somehow desensitized to

HSP90 inhibition.

Discussion

The data presented in this study illustrate the complex effects of

HSP90 inhibition on cell division: Cell cycle perturbation profiles

were dependent on the concentration of HSP90 inhibitor, cell line

genotype, and the duration of compound treatment. Previous studies

have shown that inhibition of HSP90 causes a variety of cell cycle

perturbations [10,12,15,28,29], and some reports have suggested

correlations between genotype and the cell cycle phenotype induced

by HSP90 inhibition [11,30,31]. However, such studies were often

limited in scope with respect to the number of cell lines analyzed and

to the extent of the tested concentration range of the HSP90

inhibitor. Therefore, we designed our analysis to include a genetically

diverse panel of 25 cancer cell lines that were exposed to a wide

concentration range of the HSP90 inhibitors XL888 and 17-AAG.

We found that the cell cycle perturbations induced by XL888

were remarkably similar to those of 17-AAG, indicating that the

observed effects are the result of targeting HSP90 and are not due

to scaffold-specific off-target activities. Cell cycle phenotypes of

HSP90 inhibition fell into three classes: accumulation of cells in

M+/2G2, in G2 alone, or in G1 (and/or 4N-pseudo-G1). M-

accumulation was the most common phenotype, and in the M-

class, cell cycle effects were highly concentration dependent: The

distinctive ‘‘G1 blip’’ occurred at lower inhibitor concentrations

(Figure 4, Figure 5), as did the IC50 for proliferation inhibition

(Figure S1B), while accumulation in M+/2G2 (with attendant loss

in G1) occurred at higher concentrations. The coincidence of the

‘‘G1 blip’’ and the proliferation IC50 at a similar concentration

range suggests that HSP90 inhibitor-induced destabilization of

growth-factor receptors disrupts downstream mitogenic signaling

and prevents cells from proceeding through the G1 restriction

point, leading to growth inhibition and G1 accumulation. This is

supported by the sensitivity of growth-factor receptors such as

MET, ERBB2, and mutant EGFR to relatively low concentrations

Figure 4. HC cell cycle analysis of HSP90 inhibitor-treated cells. MCF-7 cells were treated for 24 h with XL888 or 17-AAG at the indicated
concentrations. HC cell cycle analysis is presented (A) as a bar chart showing %G1, S, G2, and M and (B) as a DNA distribution plot showing both DNA
content and phase assignment. Note the ‘‘G1 blip’’ (see text) in the bar chart (A), and the loss of S and accumulation in M+G2 that is evident in both
(A) and (B). Experiments were performed at least two times, and results from independent trials were consistent.
doi:10.1371/journal.pone.0017692.g004
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of XL888 or 17-AAG ([32]; see also Figure S2). The degradation

of HSP90 clients that function at the G1/S transition (such as

CDK2, CDK4/6, and Cyclin D [17,32,33]) could also contribute

to G1 accumulation.

The concentration-dependent shift from G1 accumulation to

M+/2G2 accumulation in M-class lines likely reflects the

incremental destabilization of increasing numbers of client

proteins, with progressive loss of HSP90 function at increasing

Figure 5. Timecourse analysis of cell cycle perturbations in XL888-treated cells. Cells were treated with the indicated concentrations of
XL888 (14, 41, 123, 370, 1110, 1670 nM) at time = 0. Plates were then fixed at 4, 8, 12, 24, or 36 h and stained for HC cell cycle analysis. See text for
discussion. (A) CHL-1 (B) EBC-1 (C) A549 (D) A375. For all three cell lines, 17-AAG effects were similar to those of XL888 (data not shown). Experiments
were performed at least two times, and results from independent trials were consistent.
doi:10.1371/journal.pone.0017692.g005
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Figure 6. Timelapse analysis of XL888-treated cells. (A) Timelapse movie frames showing CHL-1 cells treated with DMSO, 123 nM XL888, or
100 nM taxol (paclitaxel) for 18 h. Note the different morphology of metaphase-arrested XL888-treated cells vs. prometaphase-arrested taxol-treated
cells. (B) Timelapse movie frames showing CHL1 cells treated with DMSO or 123 nM XL888 for the indicated times. In this panel (B) as well as in panels
(C) and (D), the same microscope field is shown at successive timepoints. In the 8 h and 18 h panels, some examples of XL888-treated cells displaying

Cell Cycle Effects of HSP90 Inhibition
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inhibitor concentrations. Many cell cycle-associated clients

demonstrate differential sensitivity to HSP90 inhibition [16,29,

34,35], so as the level of HSP90 inhibition increases, the integrity

of one checkpoint (G1) may be compromised, while other

checkpoints (M, G2) are triggered. HSP90 function has previously

been implicated in G2 and M by multiple studies showing that

HSP90 is involved in the dynamics of centrosomes, kinetochores,

and the mitotic spindle, and that inhibition of HSP90 causes

abnormalities in these structures [34,36,37,38,39,40,41]. In

addition, several proteins with roles in G2 or M are known to

be HSP90 clients [16,20,21,42] [43,44,45,46]: CDK1 is essential

for promoting entry into M-phase, CDC25 activates CDK1,

PLK1 is involved in M and in the G2/M transition, survivin has

roles in chromosome segregation and cytokinesis, and WEE1 and

CHK1 police entry into M phase by inactivating the CDK1-cyclin

B complex. Depletion of CDK1 or CDC25 would be predicted to

result in G2 accumulation, and reduced levels of PLK1 [47] or

survivin [48] generally result in M accumulation, while loss of

WEE1 and CHK1 would be predicted to reduce the stringency of

the G2/M checkpoint and promote inappropriate entry into M.

M-phase accumulation was the predominant phenotype of HSP90

inhibition in our study, and it is noteworthy that almost all cell

lines showing M+G2 accumulation were mutant for TP53, while

the majority of the G2-only lines were wt for TP53—consistent

with the requirement for p53 in activation of the G2 checkpoint

after DNA damage or mitogen deprivation [49].

Interestingly, in the majority of the cells that underwent mitotic

arrest in response to HSP90 inhibition, cells appeared to have

completed metaphase, but were unable to successfully transit into

anaphase. This implicated the HSP90 client PLK1 [23,38], since

its roles in mitotic exit and cytokinesis [27,45,50] are consistent

with its destabilization resulting in the inability to complete

mitosis. Depletion of PLK1 by RNAi leads to a variety of mitotic

arrest phenotypes [26,38,51,52], including some that mirror the

Figure 7. Timecourse analysis of cell cycle profiles and PLK1 levels. Cells were treated with the indicated concentrations of XL888 (14, 41,
123, 370, 1110, 1670 nM) at time = 0. Plates were then fixed at 4, 8, 12, 24, or 36 h and stained for a modified version of HC cell cycle analysis that
allows for simultaneous detection of cell cycle phenotypes and of an additional marker protein, PLK1. For a given cell line, profiles of %G1 and %S
were nearly identical to the %G1 and %S data shown in Figure 5, so those data are not displayed here; see Figure 5 for reference. See text for
discussion. (A) CHL-1 (B) EBC-1 (C) A549 (D) A375. For all three cell lines, 17-AAG effects were similar to those of XL888 (data not shown). Experiments
were performed at least two times, and results from independent trials were consistent.
doi:10.1371/journal.pone.0017692.g007

the linear, metaphase-like morphology are highlighted with white arrowheads; in the 32 h panel some examples of dead or dying cells are
highlighted with yellow arrowheads. (C) Timelapse movie frames showing A549 cells treated with DMSO or 370 nM XL888 for the indicated times. In
the 18 h panels showing XL888-treated cells, some examples of probable G2-arrested cells (based on cell size and lack of division) are highlighted
with white arrowheads; in the 32 h panel, some examples of dead or dying cells are highlighted with yellow arrowheads (D) Timelapse movie frames
showing A375 cells treated with DMSO or 123 nM XL888 for the indicated times. In the XL888-treated cells, some examples of the ‘‘linear quasi-
metaphase’’ morphology are highlighted with white arrowheads (8 h, 14 h); some examples of dead or dying cells are highlighted with yellow
arrowheads(32 h). For all three cell lines, 17-AAG effects were similar to those of XL888 (data not shown). Experiments were performed at least two
times, and results from independent trials were consistent.
doi:10.1371/journal.pone.0017692.g006
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Figure 8. Co-analysis of cell cycle phases and PLK1 levels. (A) A549, (B) A375. Cells were treated with 123 nM XL888 for 12 h or 24 h. Plates
were then fixed and simultaneously stained for PLK1 and for HC cell cycle analysis (in the same well). The plot shows the distribution of G1, S, and G2/
M, represented as DNA content bins vs. number of G1, S, or G2/M cells per bin. This data is overlaid with bars that represent the distribution of high or
low PLK1 levels, showing the ploidy and phase distribution of cells containing high or low levels of PLK1. The top panel in each section (A or B) shows
the distribution of PLK1-high cells; the bottom panel shows the distribution of PLK1-low cells. The ‘‘high’’ cutoff represents cells that have PLK1 levels
.1.5 times the median of the normal PLK1 distribution in DMSO-treated cells; the ‘‘low’’ cutoff is ,0.5 times the median value. For both cell lines, 17-
AAG effects were similar to those of XL888 (data not shown). Experiments were performed at least two times, and results from independent trials
were consistent.
doi:10.1371/journal.pone.0017692.g008
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metaphase-like chromosome morphology that we observed upon

HSP90 inhibition (see data supplement to [26]).

Our observation that PLK1—although initially destabilized by

XL888—could subsequently become desensitized to the continued

presence of an HSP90 inhibitor was unexpected. Our analysis of

PLK1 levels and cell cycle profiles in four cell lines showed a clear

reduction in PLK1 levels in three wt PLK1 lines (CHL-1 and

EBC-1, M-class; A375, G1-class) at early times after HSP90

inhibition. However, the A549 cell line (G2-class) was unusual in

that PLK1 was only minimally destabilized by XL888. This lack of

sensitivity is consistent with the finding by Simizu et al. [23] that

C-terminal PLK1 mutations in A549 (and in some other cell lines;

see [23]) interfere with HSP90 binding and result in lower basal

levels of PLK1, presumably via loss of the stabilization that would

normally result from the binding of HSP90 to PLK1. The A549

line used in our study had a heterozygous mutation in PLK1,

S595L (Figure 3). Although not identical to the D457G PLK1

mutation found in A549 cells by Simizu et al., the S595L mutation

does lie within the C-terminal HSP90-interaction domain [23],

suggesting that it might similarly render PLK1 unable to interact

strongly with HSP90, and lead to partial insensitivity of the mutant

PLK1 to HSP90 inhibition.

In both the G2-class A549 line and the two M-class lines (CHL-

1, EBC-1), the PLK1 abundance profile tracked with the G2+M

profile after .12 h of treatment with HSP90 inhibitors (Figure 7).

Prolonged persistence in M and/or G2 led to an apparent

stabilization of PLK1, and high levels of PLK1 were found

predominantly in cells with 4N DNA content (Figure 8), which is

consistent with the known peak of PLK1 expression at the G2/M

transition [50,53]. Although the basis for the apparent desensiti-

zation of PLK1 to HSP90 inhibition is not clear, perhaps PLK1 is

stabilized by protracted association with its mitotic binding

partners [54] during prolonged G2/M arrest. Therefore, PLK1

would not be stabilized in cell lines that have a relatively short

period of G2/M arrest (such as A375), consistent with our

observations (see Figure 5D, Figure 7D).

The phenotype of HSP90 inhibition in A375 cells was intriguing

because of the evolution of the XL888-induced G2+M accumu-

lation into G1 accumulation over time (Figure 5D). A375 (see

Figure 2B) and LOX-IMVI (data not shown) were the only two

lines in our analysis in which HSP90 inhibition led to the

generation of a population of 4N-pseudo-G1 cells, presumably via

mitotic checkpoint slippage. The mutational status of these two

lines is particularly relevant to interpretation of the data, since

BRAF in both A375 and LOX-IMVI is constitutively activated by

the V600E mutation [55]. Recent studies have linked BRAF to

mitotic checkpoint regulation [56,57], and BRAF also promotes

localization of the checkpoint proteins BUB1, MAD2, and TTK

(MPS1) to unattached kinetochores [58]. Interestingly, TTK,

which is essential for checkpoint signaling [59,60], is also directly

affected by the mutational status of BRAF: TTK is destabilized

when BRAF is depleted, but is stabilized by BRAF V600E,

resulting in checkpoint hyperactivation [61].

It is important to note that although wt BRAF is relatively

insensitive to HSP90 inhibition, BRAF V600E begins to be

destabilized after 8–12 h of treatment with 1 uM 17-AAG, with

nearly complete loss at 24 h [62,63] (see also Figures S3, S4).

Taken together, this suggests that the shift from G2+M to 4N-

pseudo-G1 accumulation in BRAF V600E lines might be

explained as follows (for supporting data, see Figure S4, a

timecourse immunoblot analysis of A375 and LOX-IMVI cells

treated with 370 nM XL888): At early timepoints (e.g. 4–12 h)

after treatment with HSP90 inhibitors, degradation of cell cycle-

associated clients such as CDK1 and PLK1 causes accumulation

in G2 (CDK1) and M (PLK1); whether a cell is trapped in G2 or

M would depend on its p53 status and on its position in the cell

cycle at the time at which CDK1 or PLK1 levels became limiting.

WEE1 and CHK1, which regulate the G2 exit checkpoint by

inactivating the CDK1-cyclin B complex [43,44] are maximally

destabilized at ,12–24 h in the V600E lines A375 and LOX-

IMVI, and this loss likely allows cells to exit G2 and

inappropriately enter M. This is consistent with our timecourse

data showing loss of G2 accumulation and an increase in M

accumulation between 12–24 h (Figure 5D, 7D). At this 12 h–

24 h timeframe, these cells are most likely not able to successfully

exit M because of the destabilization of clients such as PLK1

[23,38], which has roles in mitotic exit and cytokinesis [27,50] (see

Figure 7D for a timecourse analysis of PLK1 levels in XL888-

treated A375 cells).

However, at 24–36 h of XL888 treatment, A375 cells show a

loss of M accumulation and an increase in G1/4N-G1, which may

explained as follows: BRAF V600E is also maximally degraded

after 12–24 h of treatment with HSP90 inhibitors [62,63]; also see

Figure S4). Keeping in mind that the mitotic checkpoint kinase

TTK is destabilized when BRAF is depleted [61], and that loss of

TTK function impairs checkpoint control and leads to premature

mitotic exit [64], we suggest that at these later timepoints, the loss

of BRAF V600E and the consequent destabilization of TTK

contribute to mitotic checkpoint slippage of the pool of M-arrested

cells, generating 4N-pseudo-G1 cells. This model provides an

explanation for the shifting patterns of the A375 cell cycle profile

from G2+M at 4–12 h of XL888 treatment to 4N-G1 at 24–36 h

(see Figure 5D; see also Figure 2B for a DNA-distribution plot of

A375 cells treated with 370 nM XL888 for 24 h). The overall

scenario we propose is also consistent with our observation that of

the 25 lines analyzed in this study, a 4N-pseudo-G1 population

was found only in the BRAF V600E lines A375 and LOX-IMVI

(Figure 2 and data not shown).

The most prominent genotype/phenotype correlation that we

observed in this study was that of TP53 mutant status with the M

accumulation induced by HSP90 inhibition. The primary role of

p53 is to prevent the growth of cells that are not fit to replicate,

and it coordinates a response to DNA damage or mitogen

deprivation by imposing cell cycle blockades to prevent division

[49,65]. p53 functions in part through transactivation of its

transcriptional target p21, which inhibits cyclin/CDK complexes

and thereby controls the G1/S and G2/M transitions [66].

However, in cancer cells, p53 activity is frequently compromised,

and the majority of the known p53 mutations cause loss of function

and impair its transcriptional activity to varying extents [67]. One

consequence of the loss of p53 function is an ancillary loss of p21

function: Most loss-of-function p53 mutant cells are expected to

have intrinsically low levels of p21, as has been shown

experimentally for some tumors and cell lines (e.g. [68,69,70];

also data not shown). So in these TP53 mutant lines, the loss of

p53 function and subsequent reduction or loss of p21 activity

would undermine proper regulation of the G1/S and G2/M phase

transitions, resulting in weakened checkpoints even in an

unperturbed cell.

In this context, it is particularly notable that HSP90 is known to

be important in maintaining the functionality of mutated p53:

Several studies have shown that mutant p53 has greater reliance

on HSP90 than wt p53 and that the mutant form is destabilized by

HSP90 inhibition [31,71,72,73]. Sugimoto et al. [22] and Tse et

al. [35] have also shown that in p53 mutant cells (but not p53 wt

cells), HSP90 inhibition abrogated a DNA-damage-induced G2

checkpoint arrest and allowed cells to transit into M. This loss of

robust checkpoint control and subsequent escape from G2 arrest is
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likely due at least in part to destabilization of mutant p53,

combined with a cellular state in which there is insufficient p21

activity (both intrinsically and via the HSP90 inhibitor-mediated

loss of mutant p53) to enforce the checkpoints.

The correlation between M-phase accumulation and TP53

mutant status that we observed is consistent with this overall

model: Destabilization of mutant p53 combined with the

corresponding loss of p21 activity and the subsequent weakening

of G1/S and G2/M checkpoint surveillance could permit cells to

inappropriately enter M, as would destabilization of WEE1 and

CHK1. However, although TP53 mutant status would allow these

cells to elude the G1 and G2 checkpoints, they would be unable to

complete mitosis because of the degradation of PLK1 and/or

other cell cycle-associated clients. In contrast, we found that

HSP90 inhibition in wt TP53 lines generally resulted in G2 or G1

accumulation. This is consistent with a scenario suggested by Lin

et al. [31] that incorporates the following observations: MDM2, a

negative regulator of p53, is normally activated and stabilized by

AKT-mediated phosphorylation [74]. HSP90 inhibitor-induced

destabilization of the HSP90 client AKT [1] results in decreased

levels of MDM2, and subsequently, results in de-repression of wt

p53 and increased expression of the p53 target p21. p21 then

inhibits CDK/cyclin complexes, restricting G1-to-S and G2-to-M

transit and leading to accumulation in G1 and G2 [44]. The

AKT-p53-p21 axis is, of course, not the only means by which the

cell cycle is disrupted upon treatment with an HSP90 inhibitor—

the inhibitor-induced disruption of normal cell cycle transit is also

due to the destabilization of proteins such as EGFR, MET,

CDK1, PLK1, and others.

In summary, we propose the following overall model to

integrate our current observations with previous studies: In most

cell lines, relatively low levels of HSP90 inhibitors induce G1

accumulation through destabilization of sensitive growth-factor

receptors and subsequent loss of mitogenic signaling. At higher

concentrations of HSP90 inhibitors, TP53 status is an important

determinant of cell fate: HSP90 inhibition destabilizes mutant p53,

compromising the G1 and G2 checkpoints and allowing cells to

transit into M, although the ability to successfully complete M-

phase is compromised by degradation of cell cycle clients such as

PLK1, leading to M-phase accumulation. Conversely, in TP53 wt

cells, the G1 and G2 checkpoints remain relatively robust,

preventing inappropriate cell cycle progression and resulting in

G1 and G2 accumulation.

Materials and Methods

Materials
Cell lines were obtained from ATCC (Manassas, VA) and

maintained in ATCC-specified media containing 10% FBS. 17-

AAG and taxol (paclitaxel) were obtained from EMD Chemicals

(Gibbstown, NJ) and XL888 from Exelixis, Inc. (South San

Francisco, CA).

High-content cell cycle analysis
Cells were seeded 14–18 h prior to compound addition, and

cells were ,40–50% confluent and in log phase at the time of

treatment. Compounds were serially diluted in DMSO, then

diluted to 56 in serum-free medium and added to cells to yield a

16 final concentration. Final DMSO concentrations did not

exceed 0.5%. 20 uM EdU (A10044; Invitrogen, Carlsbad, CA)

was added for 30 min prior to fixation with 3.7% formaldehyde.

Cells were washed in PBS, permeabilized for 15 min with 0.5%

Triton X-100 in PBS, washed in PBS, and blocked for 10 min

with 3% BSA in PBS. To label incorporated EdU, cells were

incubated for 30 min with TBS, pH 7.2 containing 4 mM

CuSO4, 1.94 mg/ml sodium ascorbate, and 4.5 ug/mL Alexa-

fluor 488-azide (Invitrogen A10266), washed with PBS, and

incubated overnight at 4uC with primary antibodies in 1% BSA/

PBS (Cyclin A, ab16726, Abcam, Cambridge, MA; phospho-

histone H3, #3377, Cell Signaling Technology, Danvers, MA).

Cells were then washed with PBS and incubated 2–4 h with Alexa-

fluor-labeled secondary antibodies (Invitrogen A11010, A21244)

and Hoechst 33342 (Invitrogen H3570). Cells were then imaged

with a Cellomics Arrayscan VTI (Thermo, Pittsburgh, PA) (XF93

optical filter set) at 106magnification using the Target Activation

Bioapplication (with Boolean events designated by the Event

Wizard module). To generate DNA distribution plots, DNA

content data and cell cycle phase assignments were analyzed using

a custom Excel macro (see Text S1).

Combined PLK1 immunofluorescence/cell cycle analysis
An alternate method of cell cycle analysis omitted the phospho-

histone H3 antibody, allowing an additional marker protein of

interest (PLK1, Abcam ab47867) to be examined simultaneously

with the cell cycle staining. Cell cycle phases were defined as

follows: S-phase, positive for EdU incorporation; combined G2/

M-phase, positive for Cyclin A but negative for EdU; G1 phase,

negative for EdU and negative for cyclin A. PLK1 was also

detected with a second, independent antibody (Abcam ab17056) to

ensure that the observed results were not antibody-specific.

Fluorescence-activated cell sorting (FACS) analysis
Cells were treated with compound for 24 h or 48 h in complete

medium, then harvested, fixed in ethanol, and analyzed on the

Guava EasyCyte flow cytometer (Millipore, Billerica, MA) using

propidium iodide staining.

Live-cell timelapse analysis
Stable histone-H2B-GFP lines were generated by blasticidin

selection of cells transfected with the pBOS-H2B-GFP plasmid

(559241, BD Biosciences, San Jose, CA). Cells were imaged in a

96-well plate using the live-cell chamber of a Cellomics Arrayscan

VTI (XF100 optical filter set) at 106magnification.

Supporting Information

Figure S1 Cell cycle analysis and proliferation/apopto-
sis IC50/EC50 analysis of 25 cancer cell lines treated with
XL888 or 17-AAG. (a) Structure of XL888 (b) Cell lines were

treated for 24 h with either 0.4 uM or 1–1.6 uM XL888 or 17-

AAG and stained for HC cell cycle analysis; doubling time was

determined by cell counting. In a separate experiment, prolifer-

ation IC50 and apoptosis EC50 values were determined as noted in

Supplemental Materials and Methods. Cell cycle data is

normalized to the DMSO value for a given phase and given cell

line and is represented as a fold-change vs. DMSO. Heat map

color key is as follows: light blue, #0.56 DMSO value; orange,

$26 DMSO value for G2 and M and $1.26 DMSO value for

G1. Data is successively sorted in descending order of (1)

accumulation in M, (2) accumulation in G2, and (3) accumulation

in G1. Mutations are highlighted in gray. EBC-1 is a MET-

amplified line (‘‘MET AMP’’) and BT-474, UACC-812, and SK-

BR-3 are ERBB2-overexpessing lines (‘‘ERBB2 OE’’). Genotype

data in this table is derived from COSMIC [75] or from in-house

sequencing. A chi-square analysis of the apparent correlation of

p53 mutant status with the M+/2G2 phenotype revealed that the

probability that the observed distribution is the same as the

random distribution is 0.0089: In this case of 20 cell lines

Cell Cycle Effects of HSP90 Inhibition

PLoS ONE | www.plosone.org 12 March 2011 | Volume 6 | Issue 3 | e17692



characterized as having either an M+/2G2 phenotype (n = 14) or

a G2-only phenotype (n = 6), if the mutant p53 cell lines (14 of 20;

70%) were distributed randomly between the two groups, 9.8 of

the 14 M+/2G2 lines would have mutant p53 (vs. 13 of 14

observed to have mutant p53), and 4.2 of the G2-only lines would

have mutant p53 (vs. 1 of 6 observed to have mutant p53). The

chi-square value for the difference between the expected vs.

observed distribution is 11.61, with three degrees of freedom.

(TIF)

Figure S2 Client protein analysis: XL888-treated lung
and breast cancer cells. Cells were treated for 24 h with

XL888 at the indicated concentrations. Cell lysates were then

immunoblotted for EGFR, MET, and ERBB2. (a) A549 (EGFR

wt), EBC-1 (MET amplified), and NCI-H1975 (EGFR T790M/

L858R). (b) MCF-7, SK-BR-3 (ERBB2-overexpressed).

(TIF)

Figure S3 Client protein analysis: XL888-treated mela-
noma cells. (a) A375 and SK-MEL-2 cells were treated for 24 h

with XL888 at the indicated concentrations. Cell lysates were then

immunoblotted for CRAF, BRAF, p-ERK, and total ERK. (b)

The inset table shows calculated IC50 values for XL888-induced

degradation (BRAF, CRAF) or inhibition of phosphorylation (p-

ERK).

(TIF)

Figure S4 Timecourse of client protein analysis: XL888-
treated melanoma cells. The BRAF V600E mutant cell lines

(a) A375 and (b) LOX-IMVI were treated with 370 nM XL888,

and cells were harvested at the indicated timepoints. Cell lysates

were then immunoblotted for BRAF, CDK1, and CHK1, and the

resultant blots were quantified to assess XL888-induced protein

degradation, as shown in the corresponding graph.

(TIF)

Text S1 Supplemental Materials and Methods
(DOC)

Dataset S1

(XLS)
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