Skip to main content
. Author manuscript; available in PMC: 2011 Mar 8.
Published in final edited form as: Child Neuropsychol. 2009 Sep;15(5):417–424. doi: 10.1080/09297040802603661

Table 2.

Decomposition of Variance for the Higher Order Four-Factor Model of the WISC-IV in a Neuropsy-chology Clinic Sample (N = 344)

Subtests g
VC
PR
WM
PS
h2 u2
B var B var B var B var B var
Similarities 0.72 52 0.41 17 0.68 0.32
Vocabulary 0.79 63 0.45 20 0.83 0.17
Comprehension 0.69 47 0.39 15 0.62 0.38
Block Design 0.67 44 0.28 8 0.52 0.48
Picture Concepts 0.68 46 0.28 8 0.55 0.46
Matrix Reasoning 0.73 53 0.30 9 0.62 0.38
Digit Span 0.69 48 0.11 1 0.49 0.51
Letter-Number 0.73 53 0.11 1 0.54 0.46
Digit Symbol Coding 0.60 36 0.54 29 0.65 0.35
Symbol Search 0.65 42 0.59 34 0.76 0.24
% Total Var 48.3 5.2 2.5 0.2 6.4 62.6 37.4
% Common Var 77.2 8.3 4.0 0.4 10.2

Note. Loadings and variances for first-order factors are after accounting for the indirect effects of the higher order general intelligence factor. g = general intelligence factor; VC = verbal comprehension factor; PR = perceptual reasoning factor; WM = working memory factor; PS = processing speed factor; B = loading of the subtest on the factor; var = percent variance explained in the subtest; h2 = communality; u2 = uniqueness.