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Abstract
We introduce a generative probabilistic model for segmentation of tumors in multi-dimensional
images. The model allows for different tumor boundaries in each channel, reflecting difference in
tumor appearance across modalities. We augment a probabilistic atlas of healthy tissue priors with
a latent atlas of the lesion and derive the estimation algorithm to extract tumor boundaries and the
latent atlas from the image data. We present experiments on 25 glioma patient data sets,
demonstrating significant improvement over the traditional multivariate tumor segmentation.

1 Introduction
Limited therapy options require a careful diagnostic for patients with brain tumors. A
multitude of available brain imaging sequences gives rise to patient data sets that include
multi-parametric, multi-modal, and multi-temporal volumes even in standard clinical
settings. Quantitative analysis of a lesion in these data poses a challenging computational
problem. In this paper, we present a fully automated method for channel-specific tumor
segmentation in such multidimensional images.

Generative probabilistic models of spatial tissue distribution and appearance have enjoyed
popularity for tissue classification as they exhibit good generalization to unseen images
[1,2,3]. Encoding spatial prior knowledge for a lesion, however, is difficult. Tumors may be
modeled as outliers relative to the expected shape [4,5] or image signal of healthy tissues
[2,6]. In [2], for example, a criterion for detecting outliers is used to generate a tumor prior
in a subsequent EM segmentation which is treating tumor as an additional tissue class.
Alternatively, the spatial prior for the tumor can be derived from the appearance of tumor-
specific bio-markers [7,8]. The tumor classification methods can be augmented with spatial
regularization using a Markov Random Field prior [9] or a boundary finding step [2,10] to
ensure spatial contiguity of the segmentation results.

Discriminative approaches directly learn the difference between the appearance of the lesion
and other tissues and do not rely on spatial priors [11,12,13,14,15,16]. They do, however,
often require substantial amounts of training data and typically come at the cost of manual
interaction for initialization and postprocessing. Most require the imaging protocol to be
exactly the same in the training set and in the novel images to be segmented. Discriminative
approaches proposed for tumor segmentation may use specific anatomical [13], but also
generic image features (e.g., wavelets [11]) as input to the classifier. A spatial regularization
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via boundary modeling [11,12,13] or Markov Random Fields [14,15,16] has proved useful
when used with discriminative methods as well.

Both generative and discriminative models face significant challenges when applied to
multi-modal data. Automatic discriminative approaches are limited to the image modalities
of the training set and are sensitive to missing data. Generative models may generalize
straightforwardly to multi-channel observations [8,7], but do not allow for modeling
differences between the biological processes observed in different modalities. By assuming
the same shape and extend of pathology in all modalities, the standard multi-channel
segmentation may ignore much of the information potentially available in images. Examples
include differences in tissue water (T2, Flair-MRI), enhancement of contrast agents (post-
Gadolinium T1-MRI), diffusion (DTI, DCE-MRI), or relative concentrations of selected
metabolites (MRSI). Delineating the tumor area in each of these modalities individually is
highly preferred for subsequent quantitative analysis of tumor shape and evolution.

We present a tumor appearance model for such multi-dimensional sequences and derive an
algorithm for a channel-specific segmentation of the tumor. The method shares information
about the spatial location of the lesion among channels while making full use of the highly
specific multi-modal signal of the healthy tissue classes for segmenting normal tissues in the
brain. In addition to tissue types, the model includes a latent variable for each voxel
encoding the probability of observing tumor at that voxel. We derive an estimation
algorithm for this model that generalizes the standard atlas-based EM segmentation. In our
experiment with 25 multi-modal image volumes, the proposed approach performs
significantly better than the traditional multivariate tissue classification method that assumes
a single tumor segmentation that is shared by all channels.

2 Generative Tumor Model
We use a generative modeling approach, in which we first build an explicit statistical model
of image formation and subsequently use this model to derive a fully automatic
segmentation algorithm. Fig. 1 illustrates our generative model.

We model the normal state of the healthy brain using a spatially varying probabilistic prior
πk for each of the K tissue classes (Fig. 1, blue). This prior (atlas) is estimated from prior
examples and is assumed to be known. At each voxel i, the atlas defines a multinomial
distribution for the tissue label ki:

(1)

The normal state ki is shared among all C channels at voxel i. In our experiments we assume
K = 3, representing gray matter, white matter and cerebrospinal fluid (CSF).

We model the tumor state using a spatially varying “latent” probabilistic atlas α, similar to
[10] (Fig. 1, red). At each voxel i, this atlas provides a scalar parameter αi that defines the
probability of observing tumor at that voxel. Parameter αi is unknown and is estimated as
part of the segmentation process. We define a latent tumor state  that indicates the
presence of tumor in channel c at voxel i and model it as a Bernoulli random variable with

parameter αi. We form a binary tumor state vector  indicating the tumor
presence for all c observations at voxel i, with probability
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(2)

Image observations  are generated by Gaussian intensity distributions for each of the K
tissue classes and the C channels, with mean  and variance , respectively (Fig. 1,
purple). In tumor tissue (i.e., if ) the normal observations are replaced by intensities
from another set of channel-specific Gaussian distributions with mean  and variance ,
representing the tumor class. Letting θ denote the set of all mean and variance parameters,

and  denote the vector of the intensity observations at voxel i, we define the
data likelihood:

(3)

where  (·; μ, v) is the Gaussian distribution with mean μ and variance v.

Finally, the joint probability of the the latent atlas and the observed variables

(4)

is the product of the components defined in Eqs. (1–3).

3 Maximum Likelihood Parameter Estimation
We seek Maximum Likelihood estimates of the model parameters {θ, α}:

where N is the number of voxels in the volume and

Observing that evaluating the objective function involves summing over values of ti and ki
in Eq. (4), we use Jensen’s inequality to perform the optimization using an iterative, EM-
style minorization technique [17]. Letting {θ̃, α̃} denote the current parameter estimates, we
can compute the posterior probability of any of the 2C tumor state vectors ti, writing out the
components of Eq. (4):

(5)
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and Σtiqi(ti) = 1. Based only on the intensity channels that do not show tumor ( ), we
also compute the posterior probability of tissue k at voxel i:

and Σk wik (ti) = 1 for all ti. Using qi(·) and wik(·), we arrive at closed-form update
expressions that guarantee increasingly better estimates of the model parameters. The
updates are intuitive: the latent tumor prior is an average of the corresponding posterior
estimates

and the intensity parameters are updated with the weighted statistics of the data for the
healthy tissues (k = 1, …, K)

and for the tumor class:

We iterate the estimation of the parameters {θ̃, α̃} and the computation of the posterior
probabilities {qi(·), wik (·)} until convergence.

4 Tumor Segmentation
Once we have an estimate of the model parameters {θ ̂, α ̂}, we can evaluate the probability
that tumor is visible in channel c of voxel i by summing over all the configurations ti for
which :

(6)

We then assign channel c of voxel i to tumor if .

5 Extensions
To augment the generative model outlined above with further physiological knowledge, we
derive and implement extensions considering the expected shape, multivariate signal and
structural appearance of the tumor.
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Little spatial context is used in the basic model, as we assume the tumor state ti in each
voxel to be independent from the state of other voxels (Eq. 6 and Eq. 3). It is only the atlas
πk that encourages smooth classification for the healthy tissue classes by imposing similar
priors in neighboring voxels. To encourage a similar smoothness of the tumor labels, we
extend the latent atlas α to include a Markov Random Field (MRF) prior:

Here,  denotes the set of the six nearest neighbors of voxel i, and β is a parameter
governing how similar the tumor states tend to be in neighboring voxels. When β = 0, there
is no interaction between voxels and the model reduces to the one described in Section 2.
For β ≠ 0, the posteriors qi(ti) are no longer given by Eq. (5), and their exact computation
becomes infeasible. However, relaxing the MRF to a mean-field approximation [18] we
derive an efficient approximate algorithm. We let

denote the currently estimated “soft” count of neighbors that show tumor in channel c. The
mean-field approximation implies

to replace the previously defined p(ti|αi) in Eq. (4), leading to smoothed estimates of the
tumor segmentations.

Moreover, we want to account for the non-homogeneity in the appearance of the tumor
class, as gliomas show characteristic substructures such as active and necrotic areas and
edema. We model this via a straightforward extensions of the tissue classes to include more
than one class for tumor in a second modification to our approach. Finally, to consider
higher-order interactions in the multivariate biological signal yi of healthy tissue, we can
relax the conditional independence of observations across channels by using multivariate
Gaussians in the data likelihood in Eq. (3). We report tests of these three extensions in the
next section.

6 Experiments
We evaluate our approach on a data set of 25 patients with glioma. The data set comprises
T1, T2, FLAIR-, and post-Gadolinium T1 MR images. Tumors were outlined by a rater in
three planes intersecting with the tumor center. We register all images of a patient to the
FLAIR volume by using affine registration and segment the volume into the three healthy
and an outlier class using a freely available implementation of the EM segmentation with
bias correction [1]. Outliers are defined as being more than three standard deviations away
from the centroid of any of the three normal tissue classes.
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We apply our algorithm to the bias field corrected volumes and initialize intensity
parameters with values estimated in the initial segmentation. When using multivariate
distributions  (·; μ; V), we initialize off-diagonal element in V to zero. When modeling the
tumor class with multiple Gaussian densities we initialize the means of additional subclasses
to random values. We use outliers in the initial segmentation to initialize the latent atlas α,
setting αi for pixels of the outlier class to 0.7 and otherwise to 0.3. We typically observe
convergence after 10 to 15 steps. For comparison, we also implement an EM segmentation
treating tumor as one of the tissue classes, with a weak MRF prior for spatial regularization,
similar to [2]. We use the same data and initializations as above, but augment the atlas by a
tumor prior obtained by smoothing the outlier class of the initial segmentation with a 3cm
kernel. This alternative segmentation is applied to every single image volume individually in
a first experiment, and to the multivariate features of the whole multi-modal volume in a
second experiment. To evaluate the classification maps we calculate Dice scores for both
methods [19].

Fig. 2 illustrates results for two different subjects. We note that the tumor boundaries change
across different modalities and the proposed method captures this variation well, even in
post-therapeutic images. The method produces few false positives which can be easily
eliminated in a post-processing step. We evaluate the robustness and accuracy of our method
in a series of experiments. First, we test the sensitivity of the performance to the MRF
parameter β that governs the smoothness of the resulting segmentations. It is the only
parameter to be adjusted in our model. We find the performance of the algorithm to be
relatively stable for a wide range of β values (Fig. 3), irrespective of size, location or shape
of the tumor (i.e., β ∈ [1; 50]). For simplicity, we set β = 1 in all further experiments. In the
second experiment, we test different model options for normal tissue and tumor classes. We
find little differences between approaches that use non-zero off-diagonal elements in the
covariance matrix of the intensity likelihood and those that do not. Modeling tumor by three
Gaussians improves the result for some cases, but leads to a somewhat lower performance
on average. In a third experiment, we compare our approach to the two alternative EM
segmentation methods (Fig. 4). Here, we find the proposed channel-specific segmentation to
always perform significantly better (p < 5 · 10−4, paired Cox-Wilcoxon test); it improves the
absolute value of the Dice score over all four modalities for nearly all data sets by 0.1 to 0.2
(Fig. 4, right).

7 Conclusions
We present a generative model for tumor appearance in multi-modal image volumes of the
brain that provides channel-specific segmentations. We derive an estimation algorithm and
demonstrate superior performance over standard multivariate EM segmentation. Unlike
discriminative tumor segmentation methods, our model is applicable to any set of multi-
modal image volumes, and is fully automatic. Further extensions of the model may consider
structure of the tumor, or temporal evolution in longitudinal data sets.
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Fig. 1.
Graphical model for the proposed segmentation approach. Voxels are indexed with i, the
channels are indexed with c. The known prior πk determines the label k of the normal,
healthy tissue. The latent atlas α determines the channel-specific presence of tumor t.
Normal state k, tumor state t, and intensity distribution parameters θ jointly determine the
multi-modal image observations y. Observed (known) quantities are shaded. The tumor
segmentation aims to estimate , along with the segmentation of healthy tissue p(ki|y).

Menze et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Examples of channel-specific segmentation results for four different modalities, in two

patients. The outlines of regions with  are shown in red. The proposed
method localizes the tumor reliably in post-therapeutic images (below), where surgery has
led to significant deviations from normalcy for healthy tissues.
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Fig. 3.
Sensitivity to the MRF parameter β. Indicated are the median (solid line) and the
interquartile ranges of the average Dice scores of all 25 data set. While some regularization
is beneficial, the segmentation performance is relatively insensitive to the choice of the only
model parameter β.
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Fig. 4.
Benefits of the channel-specific segmentation. Boxplots show median, quartiles and outliers
for the Dice scores of all 25 subjects, for all four modalities. Our channel-wise segmentation
(c, green) improves over both multiple univariate (u, blue) and multivariate (m, red)
segmentation, both in the absolute terms (left) and with respect to patient-specific
differences (right). The right figure shows c–u and c–m.
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