Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Dec 24;67(Pt 1):m117–m118. doi: 10.1107/S1600536810052530

Dicarbonyl­chlorido(phen­oxy­thio­carbonyl-κ2 C,S)bis­(triphenyl­phosphane-κP)molybdenum(II)

Gene-Hsiang Lee a,*, Hsiao-Fen Wang b, Kuang-Hway Yih b,*, Shou-Ling Huang a
PMCID: PMC3050204  PMID: 21522529

Abstract

In the title complex, [Mo(C7H5OS)Cl(C18H15P)2(CO)2], the geometry around the metal atom is a capped octa­hedron. The phen­oxy­thio­carbonyl ligand coordinates the MoII atom through the C and S atoms. A one-dimensional structure is formed by π–π inter­molecular inter­actions and a supra­molecular aggregation is determined by inter­molecular C—H⋯O, C—H⋯Cl, C—H⋯π(arene) hydrogen bonds and CO⋯π(arene) inter­actions [O⋯centroid distances = 3.485 (4) and 3.722 (3) Å].

Related literature

For the use of metallocarb­oxy­lic acids as inter­mediates in the homogeneous catalysis of the water gas shift reaction, see: Yoshida et al. (1978). For O-Aryl thio­carbonate, benzoxazoline-2-thione, chromene-2-thione and N,N-dimethyl­thio­carb­amate metal complexes, see: Chen et al. (1978); McFarlane et al. (1998); Zheng et al. (2006) and Zhang & Shi (2004), respectively. For phen­oxy­lcarbonyl metal complexes, see: Anderson et al. (2001). We are inter­ested in the synthesis of dithio­carbamate, pyridine-2-thio­nate (Yih et al., 2010) and N,N-dimethyl­dithio­carbarmoyl (Yih & Lee, 2010) metal complexes. For a phen­oxy­thio­carbon­yl–palladium complex, see: Yih & Lee (2004). For C—H⋯O inter­actions, see: Strasser et al. (2009); Arumugam et al. (2010). For C—H⋯π inter­actions, see: Suresh et al. (2007). For π–π inter­actions, see: Bartholomä et al. (2009); Hu et al. (2009). For the C—H⋯Cl inter­actions, see: Shawkataly et al. (2010); Qi et al. (2009). For C—H⋯S inter­actions, see: Asad et al. (2010); Goh et al. (2010). For C–H⋯acceptor inter­actions, see: Steiner (1996). For typical C—O and C—S bond lengths, see: Huheey (1983). For Mo—CO and C—O bond lengths in other molybdenum–carbonyl complexes, see: Yih & Lee (2008) and references therein.graphic file with name e-67-0m117-scheme1.jpg

Experimental

Crystal data

  • [Mo(C7H5OS)Cl(C18H15P)2(CO)2]

  • M r = 849.12

  • Triclinic, Inline graphic

  • a = 10.5685 (10) Å

  • b = 12.5224 (11) Å

  • c = 16.3983 (14) Å

  • α = 82.088 (2)°

  • β = 77.476 (2)°

  • γ = 67.212 (2)°

  • V = 1949.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 150 K

  • 0.16 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.913, T max = 0.944

  • 25423 measured reflections

  • 8942 independent reflections

  • 6714 reflections with I > 2σ(I)

  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.128

  • S = 1.00

  • 8942 reflections

  • 478 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810052530/bg2377sup1.cif

e-67-0m117-sup1.cif (26.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052530/bg2377Isup2.hkl

e-67-0m117-Isup2.hkl (437.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg7 are the centroids of the C4–C9, C10–C15, C16–C21 and C40–C45 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O3 0.95 2.31 3.208 (5) 157
C24—H24⋯O1i 0.95 2.58 3.199 (5) 123
C39—H39⋯Cl1 0.95 2.80 3.573 (4) 139
C9—H9⋯Cg3 0.95 2.97 3.896 (5) 165
C14—H14⋯Cg7ii 0.95 2.83 3.663 (5) 147
C20—H20⋯Cg1iii 0.95 2.97 3.802 (4) 147
C27—H27⋯Cg2 0.95 2.84 3.636 (5) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank the National Science Council of the Republic of China for financial support (NSC98–2113-M-241–011-MY2).

supplementary crystallographic information

Comment

The interest in the M—C(S)OPh moiety is due to its analogy with metallocarboxylic acid esters (M—C(O)OR) and metallocarboxylic acids themselves. Metallocarboxylic acids have been proposed to be the key intermediates in the homogeneous catalysis of the water gas shift reaction (Yoshida et al., 1978). O-Aryl thiocarbonate (Chen et al., 1978), benzoxazoline-2-thione (McFarlane et al., 1998), chromene-2-thione (Zheng et al., 2006), and N,N-dimethylthiocarbamate (Zhang et al., 2004) metal complexes have been reported but few phenoxylcarbonyl metal complexes have been studied (Anderson et al., 2001). We are interested in the synthesis of dithiocarbamate, pyridine-2-thionate (Yih et al., 2010) and N,N-dimethyldithiocarbarmoyl (Yih & Lee, 2010) metal complexes. To our knowledge, no chelating phenoxythiocarbonyl crystal structure has been described so far.

The molecular structure of the title compound [Mo(CO)2(SCOPh)(PPh3)2Cl], (I),is shown in Fig. 1. The geometry around the metal atom is midway a capped trigonal prism and a capped octahedron. The capped trigonal prism consist of a phosphorus atom, P2, in the unique capping position [Mo1—P2 = 2.5509 (10) Å]. Two carbonyl groups, C1-O1 and C2-O2, Cl1, and the sulfur atom S1 of the phenoxythiocarbonyl ligand are present in the capped quadrilateral face [Mo—C1 = 1.938 (4) Å; Mo—C2 = 1.998 (4) Å; Mo—Cl1 = 2.5160 (9) Å; Mo—S1 = 2.6553 (10) Å] and the phenoxythiocarbonyl ligand is at the unique edge [Mo—S1 = 2.6553 (10) Å; Mo—C3 = 2.025 (4) Å]. In contrast the capped octahedron is made up of C3 in the capping position, C1, S1, and P2 in the capped face, and P1, C2, and Cl1 in the uncapped face. Two PPh3 ligands are in trans position: P1—Mo—P2, 173.19 (3)°, while the sulfur atom of the phenoxythiocarbonyl ligand, chloride and two carbonyl groups are trans to each other: C2—Mo—S1, 170.67 (11)°, C1—Mo—Cl1, 154.93 (12)°. The mean Mo—C—O angle of (I) ( 176.4 (3)° ) shows the group to be essentially linear, similarly to other terminal carbonyls of Mo. The Mo—CO (1.938 (4), 1.998 (4) Å) and C—O (1.163 (4), 1.146 (4) Å) distances are both consistent with the range of values reported for the other molybdenum carbonyl complexes (Yih & Lee, 2008 and references therein). The Mo—C1 bond distance is clearly shorter than that of Mo—C2 due to the larger trans influence of the sulfur atom of phenoxythiocarbonyl ligand than that of the chlorine ligand.

Within the SCOPh ligand, the C—S (1.650 (4) Å) and SC—O (1.319 (4) Å) bond distances are typical for C—O and C—S bonds having partial double bond character and are certainly much shorter than typical C—O (1.43 Å) and C—S (1.82 Å) single bonds (Huheey, 1983). The S1—C3—O3 group shows a geometrical environment characteristic of sp2 hybridization of the carbon atom. In addition, the S1—C3—O3 angle of 129.0 (3)° is larger than that found in the palladium phenoxythiocarbonyl complex (125.2 (6)°) (Yih et al., 2004). To our knowledge, the title complex is the first chelating phenoxythiocarbonyl-metal complex in the literature.

Three weak intramolecular hydrogen bonds and one intermolecular hydrogen bond are present in the structure (Table 1, entries 1-4). In addition, the phenyl ring (C4—C9) of the phenoxythiocarbonyl ligand and a phenyl ring (C10—C15) from the triphenylphosphane are nearly parallel, with an intercentroid distance of 3.938 (3)Å and a shortest inter-ring distance of 3.160 (2) Å. The resulting π-π interaction links molecules into a 1-D chain structure (Fig. 2).Finally, a supramolecular aggregation is determined by four C—H···π(arene) hydrogen bonds (Fig. 3 and Table 1, entries 5-8). The structure also presents some short CO···π(arene) contacts, O1···Cg5: 3.485 (4) and O2···Cg2iv:3.722 (3)Å, ( iv = -x + 2,-y_2,-z + 1)

In the 1H NMR spectrum of (I), 35 protons of the seven phenyl exhibit multiple resonances in the region of δ 7.12–7.73. In the 13C{1H} NMR spectrum of (I), two triplet resonances appear at δ 229.3 and δ 238.6 with 2JP—C = 12.95, 11.95 Hz couplings for the two inequivalent carbonyl groups, respectively. The 31P{1H} NMR spectrum of (I) shows one resonance at δ 34.2.

It is also noted that the IR spectrum of the title complex (I) shows four stretching bands, two at 1965, 1891 cm-1 for C=O and two at 1483, 1434 cm-1 for C-OPh groups. In the FAB mass spectra, the base peak with the typical Mo isotope distribution is in agreement with the [M+] molecular mass of (I).

Experimental

The synthesis of the title compound (I) was carried out as follows. PhOCSCl (0.135 g, 1.1 mmol) was added to a flask (100 ml) containing CH2Cl2 (10 ml) and [Mo(CH3CN)2(CO)2(PPh3)2] (0.758 g, 1.0 mmol) at room temperature. The color of the solution was changed from yellow to red immediately. The solution was concentrated under vacuum and n-hexane (10 ml) was added to initiate a yellow-brown precipitation. The resulting bright-yellow solid was isolated by filtration (G4), washed with diethyl ether (2 x 10 ml) and subsequently dried under vacuum, yielding [Mo(CO)2(SCOPh)(PPh3)2Cl] (0.764 g, 90%). Further purification was accomplished by recrystallization from 1/10 CH2Cl2/n-hexane. The orange crystals of (I) for X-ray structure analysis were obtained by slow diffusion of n-hexane into the CH2Cl2 solution of the title compound at room temperature for 3 days. Spectroscopic analysis: 1H NMR (CDCl3, 298 K, δ, p.p.m.): δ 7.12–7.73 (m, 35H, Ph). 31P{1H} NMR (CDCl3, 298 K, δ, p.p.m.): δ 34.3. 13C{1H} NMR (CDCl3, 298 K, δ, p.p.m.): δ 127.9- 134.2 (m, C of Ph), 159.7 (s, O—Ph), 229.3, 238.6 (t, CO, 2JP—C = 12.95, 11.95 Hz). MS (m/z): 850 (M+). Anal. Calcd for C45H35ClO3P2SMo: C, 63.65; H, 4.16. Found: C, 63.50; H, 4.05.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and the 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing diagram of (I), showing the π-π interaction and 1-D chain structure.

Fig. 3.

Fig. 3.

The packing diagram of (I), showing the intermolecular C—H···O, C—H···π(arene) hydrogen bonds and CO···π(arene) interactions.

Crystal data

[Mo(C7H5OS)Cl(C18H15P)2(CO)2] Z = 2
Mr = 849.12 F(000) = 868
Triclinic, P1 Dx = 1.446 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.5685 (10) Å Cell parameters from 2285 reflections
b = 12.5224 (11) Å θ = 2.2–20.7°
c = 16.3983 (14) Å µ = 0.58 mm1
α = 82.088 (2)° T = 150 K
β = 77.476 (2)° Block, orange
γ = 67.212 (2)° 0.16 × 0.15 × 0.10 mm
V = 1949.7 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 8942 independent reflections
Radiation source: fine-focus sealed tube 6714 reflections with I > 2σ(I)
graphite Rint = 0.075
ω scans θmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −13→13
Tmin = 0.913, Tmax = 0.944 k = −16→16
25423 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0566P)2] where P = (Fo2 + 2Fc2)/3
8942 reflections (Δ/σ)max = 0.001
478 parameters Δρmax = 1.02 e Å3
3 restraints Δρmin = −0.81 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 0.77982 (3) 0.84316 (3) 0.741327 (19) 0.01739 (10)
Cl1 1.00258 (9) 0.78068 (8) 0.79778 (6) 0.0237 (2)
P1 0.77983 (9) 1.04763 (8) 0.71651 (6) 0.0187 (2)
P2 0.80792 (10) 0.63059 (8) 0.77147 (6) 0.0218 (2)
S1 0.61369 (10) 0.87871 (8) 0.88984 (6) 0.0247 (2)
C1 0.6626 (4) 0.8368 (3) 0.6676 (2) 0.0246 (8)
C2 0.8831 (4) 0.8414 (3) 0.6237 (2) 0.0259 (8)
C3 0.5806 (4) 0.9314 (3) 0.7956 (2) 0.0212 (8)
C4 0.3344 (4) 1.0250 (3) 0.8332 (2) 0.0261 (9)
C5 0.2484 (4) 0.9681 (3) 0.8282 (2) 0.0284 (9)
H5 0.2768 0.9084 0.7905 0.034*
C6 0.1185 (4) 1.0009 (4) 0.8801 (3) 0.0338 (10)
H6 0.0563 0.9636 0.8782 0.041*
C7 0.0797 (4) 1.0870 (4) 0.9344 (3) 0.0381 (10)
H7 −0.0100 1.1102 0.9688 0.046*
C8 0.1699 (5) 1.1401 (4) 0.9392 (3) 0.0389 (11)
H8 0.1431 1.1980 0.9780 0.047*
C9 0.3002 (4) 1.1094 (4) 0.8875 (3) 0.0337 (10)
H9 0.3631 1.1458 0.8899 0.040*
C10 0.9438 (4) 1.0723 (3) 0.6985 (2) 0.0213 (8)
C11 1.0648 (4) 0.9969 (3) 0.6529 (2) 0.0260 (8)
H11 1.0672 0.9253 0.6382 0.031*
C12 1.1829 (4) 1.0261 (4) 0.6287 (3) 0.0362 (10)
H12 1.2651 0.9746 0.5970 0.043*
C13 1.1808 (4) 1.1293 (4) 0.6504 (3) 0.0367 (10)
H13 1.2611 1.1491 0.6332 0.044*
C14 1.0628 (4) 1.2033 (4) 0.6969 (3) 0.0390 (11)
H14 1.0618 1.2738 0.7129 0.047*
C15 0.9447 (4) 1.1748 (3) 0.7206 (3) 0.0317 (9)
H15 0.8631 1.2265 0.7526 0.038*
C16 0.6791 (4) 1.1418 (3) 0.8016 (2) 0.0190 (7)
C17 0.5762 (4) 1.2503 (3) 0.7907 (2) 0.0257 (8)
H17 0.5522 1.2773 0.7370 0.031*
C18 0.5087 (4) 1.3192 (3) 0.8585 (3) 0.0319 (9)
H18 0.4391 1.3936 0.8506 0.038*
C19 0.5411 (4) 1.2812 (3) 0.9366 (2) 0.0296 (9)
H19 0.4936 1.3285 0.9827 0.036*
C20 0.6439 (4) 1.1730 (3) 0.9479 (2) 0.0269 (9)
H20 0.6674 1.1465 1.0017 0.032*
C21 0.7121 (4) 1.1037 (3) 0.8810 (2) 0.0233 (8)
H21 0.7820 1.0296 0.8893 0.028*
C22 0.7063 (4) 1.1261 (3) 0.6235 (2) 0.0208 (8)
C23 0.5875 (4) 1.1172 (3) 0.6072 (2) 0.0258 (8)
H23 0.5432 1.0723 0.6451 0.031*
C24 0.5325 (4) 1.1720 (3) 0.5373 (2) 0.0292 (9)
H24 0.4511 1.1644 0.5274 0.035*
C25 0.5952 (4) 1.2384 (3) 0.4810 (2) 0.0293 (9)
H25 0.5569 1.2767 0.4328 0.035*
C26 0.7136 (4) 1.2480 (4) 0.4960 (3) 0.0349 (10)
H26 0.7577 1.2925 0.4577 0.042*
C27 0.7684 (4) 1.1931 (3) 0.5667 (2) 0.0298 (9)
H27 0.8495 1.2011 0.5766 0.036*
C28 0.6717 (4) 0.5957 (3) 0.7413 (2) 0.0262 (9)
C29 0.6950 (5) 0.5153 (3) 0.6840 (3) 0.0330 (10)
H29 0.7876 0.4705 0.6591 0.040*
C30 0.5822 (6) 0.5006 (4) 0.6631 (3) 0.0454 (13)
H30 0.5983 0.4467 0.6229 0.054*
C31 0.4482 (6) 0.5630 (4) 0.6998 (3) 0.0488 (14)
H31 0.3720 0.5528 0.6846 0.059*
C32 0.4239 (5) 0.6405 (4) 0.7588 (3) 0.0418 (12)
H32 0.3313 0.6822 0.7853 0.050*
C33 0.5353 (4) 0.6575 (4) 0.7793 (3) 0.0333 (10)
H33 0.5185 0.7115 0.8195 0.040*
C34 0.8098 (4) 0.5616 (3) 0.8780 (2) 0.0250 (8)
C35 0.7853 (5) 0.4590 (4) 0.8978 (3) 0.0403 (11)
H35 0.7664 0.4240 0.8563 0.048*
C36 0.7882 (5) 0.4078 (4) 0.9780 (3) 0.0437 (12)
H36 0.7733 0.3368 0.9908 0.052*
C37 0.8122 (4) 0.4579 (4) 1.0391 (3) 0.0352 (10)
H37 0.8138 0.4223 1.0941 0.042*
C38 0.8340 (4) 0.5609 (4) 1.0196 (2) 0.0317 (9)
H38 0.8488 0.5972 1.0619 0.038*
C39 0.8346 (4) 0.6120 (3) 0.9393 (2) 0.0267 (8)
H39 0.8522 0.6819 0.9264 0.032*
C40 0.9734 (4) 0.5414 (3) 0.7104 (3) 0.0301 (9)
C41 1.0837 (4) 0.4694 (4) 0.7479 (3) 0.0394 (11)
H41 1.0720 0.4585 0.8072 0.047*
C42 1.2122 (5) 0.4129 (4) 0.6989 (4) 0.0572 (16)
H42 1.2880 0.3632 0.7251 0.069*
C43 1.2308 (6) 0.4275 (5) 0.6144 (4) 0.0636 (18)
H43 1.3191 0.3879 0.5816 0.076*
C44 1.1228 (6) 0.4992 (5) 0.5763 (4) 0.0601 (16)
H44 1.1361 0.5092 0.5169 0.072*
C45 0.9937 (5) 0.5577 (4) 0.6235 (3) 0.0417 (11)
H45 0.9194 0.6087 0.5967 0.050*
O1 0.5958 (3) 0.8323 (3) 0.62133 (18) 0.0408 (8)
O2 0.9334 (3) 0.8416 (3) 0.55439 (18) 0.0425 (8)
O3 0.4605 (3) 0.9978 (2) 0.77308 (16) 0.0340 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.01565 (16) 0.02145 (17) 0.01619 (16) −0.00996 (12) −0.00020 (11) 0.00036 (12)
Cl1 0.0189 (4) 0.0264 (5) 0.0288 (5) −0.0124 (4) −0.0075 (4) 0.0054 (4)
P1 0.0146 (4) 0.0212 (5) 0.0189 (5) −0.0077 (4) 0.0006 (4) 0.0003 (4)
P2 0.0221 (5) 0.0220 (5) 0.0231 (5) −0.0111 (4) −0.0021 (4) −0.0015 (4)
S1 0.0223 (5) 0.0310 (5) 0.0189 (4) −0.0107 (4) −0.0001 (4) 0.0018 (4)
C1 0.025 (2) 0.034 (2) 0.0206 (19) −0.0184 (17) −0.0052 (14) 0.0052 (16)
C2 0.026 (2) 0.033 (2) 0.0200 (13) −0.0162 (17) 0.0028 (13) −0.0023 (16)
C3 0.0212 (19) 0.0235 (19) 0.0226 (19) −0.0149 (16) −0.0007 (15) 0.0014 (15)
C4 0.0122 (17) 0.039 (2) 0.022 (2) −0.0074 (16) 0.0004 (15) 0.0017 (17)
C5 0.023 (2) 0.033 (2) 0.028 (2) −0.0094 (17) −0.0037 (17) −0.0026 (17)
C6 0.023 (2) 0.047 (3) 0.034 (2) −0.020 (2) −0.0021 (18) 0.002 (2)
C7 0.023 (2) 0.048 (3) 0.037 (3) −0.014 (2) 0.0089 (19) −0.005 (2)
C8 0.040 (3) 0.037 (2) 0.040 (3) −0.017 (2) 0.003 (2) −0.012 (2)
C9 0.029 (2) 0.042 (3) 0.035 (2) −0.022 (2) 0.0000 (18) −0.0013 (19)
C10 0.0200 (19) 0.0242 (19) 0.0209 (19) −0.0115 (16) −0.0033 (15) 0.0044 (15)
C11 0.0203 (19) 0.033 (2) 0.027 (2) −0.0147 (17) 0.0024 (16) −0.0052 (17)
C12 0.021 (2) 0.043 (3) 0.039 (3) −0.0114 (19) 0.0069 (18) −0.006 (2)
C13 0.027 (2) 0.044 (3) 0.043 (3) −0.024 (2) 0.0030 (19) 0.005 (2)
C14 0.034 (2) 0.031 (2) 0.056 (3) −0.021 (2) 0.002 (2) −0.006 (2)
C15 0.021 (2) 0.030 (2) 0.043 (3) −0.0130 (17) 0.0035 (18) −0.0036 (18)
C16 0.0162 (17) 0.0236 (19) 0.0172 (18) −0.0119 (15) 0.0047 (14) −0.0001 (14)
C17 0.022 (2) 0.025 (2) 0.027 (2) −0.0099 (16) 0.0016 (16) 0.0030 (16)
C18 0.027 (2) 0.026 (2) 0.035 (2) −0.0070 (17) 0.0031 (18) −0.0023 (18)
C19 0.029 (2) 0.031 (2) 0.027 (2) −0.0135 (18) 0.0081 (17) −0.0092 (17)
C20 0.025 (2) 0.036 (2) 0.0205 (19) −0.0168 (18) 0.0035 (16) −0.0015 (17)
C21 0.0209 (19) 0.0223 (19) 0.028 (2) −0.0113 (16) −0.0017 (16) 0.0010 (16)
C22 0.0177 (18) 0.0218 (19) 0.0194 (18) −0.0062 (15) 0.0018 (14) −0.0017 (15)
C23 0.0180 (19) 0.032 (2) 0.026 (2) −0.0099 (16) −0.0023 (16) 0.0037 (17)
C24 0.023 (2) 0.034 (2) 0.028 (2) −0.0105 (18) −0.0026 (17) 0.0015 (17)
C25 0.036 (2) 0.029 (2) 0.0159 (19) −0.0071 (18) −0.0046 (17) 0.0042 (16)
C26 0.039 (3) 0.036 (2) 0.030 (2) −0.021 (2) −0.0022 (19) 0.0094 (19)
C27 0.027 (2) 0.035 (2) 0.027 (2) −0.0164 (18) 0.0008 (17) 0.0050 (17)
C28 0.033 (2) 0.028 (2) 0.024 (2) −0.0200 (18) −0.0096 (17) 0.0094 (16)
C29 0.046 (3) 0.031 (2) 0.033 (2) −0.025 (2) −0.013 (2) 0.0047 (18)
C30 0.074 (4) 0.042 (3) 0.041 (3) −0.040 (3) −0.029 (3) 0.015 (2)
C31 0.068 (4) 0.049 (3) 0.056 (3) −0.048 (3) −0.039 (3) 0.030 (3)
C32 0.036 (3) 0.044 (3) 0.054 (3) −0.027 (2) −0.016 (2) 0.018 (2)
C33 0.033 (2) 0.036 (2) 0.038 (2) −0.022 (2) −0.0061 (19) 0.0023 (19)
C34 0.023 (2) 0.025 (2) 0.025 (2) −0.0087 (16) −0.0032 (16) −0.0002 (16)
C35 0.054 (3) 0.035 (2) 0.041 (3) −0.024 (2) −0.017 (2) 0.008 (2)
C36 0.052 (3) 0.035 (3) 0.048 (3) −0.027 (2) −0.013 (2) 0.019 (2)
C37 0.031 (2) 0.040 (3) 0.030 (2) −0.013 (2) −0.0043 (19) 0.0127 (19)
C38 0.028 (2) 0.040 (2) 0.024 (2) −0.0104 (19) −0.0035 (17) −0.0001 (18)
C39 0.022 (2) 0.026 (2) 0.028 (2) −0.0077 (16) −0.0016 (16) 0.0017 (16)
C40 0.030 (2) 0.029 (2) 0.035 (2) −0.0169 (18) 0.0023 (18) −0.0126 (18)
C41 0.024 (2) 0.037 (2) 0.062 (3) −0.0143 (19) −0.005 (2) −0.015 (2)
C42 0.026 (2) 0.042 (3) 0.112 (5) −0.017 (2) −0.002 (3) −0.030 (3)
C43 0.037 (3) 0.052 (3) 0.102 (5) −0.027 (3) 0.032 (3) −0.046 (3)
C44 0.066 (4) 0.056 (3) 0.061 (4) −0.039 (3) 0.036 (3) −0.037 (3)
C45 0.048 (3) 0.039 (3) 0.038 (3) −0.023 (2) 0.011 (2) −0.012 (2)
O1 0.052 (2) 0.056 (2) 0.0298 (17) −0.0332 (17) −0.0188 (15) 0.0068 (14)
O2 0.0468 (19) 0.059 (2) 0.0250 (16) −0.0300 (16) 0.0082 (14) −0.0066 (14)
O3 0.0160 (14) 0.0525 (18) 0.0246 (15) −0.0089 (13) −0.0003 (11) 0.0103 (13)

Geometric parameters (Å, °)

Mo1—C1 1.938 (4) C20—C21 1.381 (5)
Mo1—C2 1.998 (4) C20—H20 0.9500
Mo1—C3 2.025 (4) C21—H21 0.9500
Mo1—Cl1 2.5160 (9) C22—C23 1.387 (5)
Mo1—P1 2.5368 (10) C22—C27 1.397 (5)
Mo1—P2 2.5509 (10) C23—C24 1.373 (5)
Mo1—S1 2.6553 (10) C23—H23 0.9500
P1—C16 1.819 (4) C24—C25 1.391 (5)
P1—C10 1.831 (4) C24—H24 0.9500
P1—C22 1.845 (4) C25—C26 1.378 (6)
P2—C40 1.829 (4) C25—H25 0.9500
P2—C28 1.834 (4) C26—C27 1.383 (5)
P2—C34 1.840 (4) C26—H26 0.9500
S1—C3 1.650 (4) C27—H27 0.9500
C1—O1 1.163 (4) C28—C29 1.388 (5)
C2—O2 1.146 (4) C28—C33 1.394 (6)
C3—O3 1.319 (4) C29—C30 1.392 (6)
C4—C9 1.365 (6) C29—H29 0.9500
C4—C5 1.375 (5) C30—C31 1.372 (7)
C4—O3 1.427 (4) C30—H30 0.9500
C5—C6 1.390 (5) C31—C32 1.379 (7)
C5—H5 0.9500 C31—H31 0.9500
C6—C7 1.374 (6) C32—C33 1.389 (5)
C6—H6 0.9500 C32—H32 0.9500
C7—C8 1.376 (6) C33—H33 0.9500
C7—H7 0.9500 C34—C39 1.377 (5)
C8—C9 1.392 (6) C34—C35 1.390 (5)
C8—H8 0.9500 C35—C36 1.382 (6)
C9—H9 0.9500 C35—H35 0.9500
C10—C15 1.385 (5) C36—C37 1.367 (6)
C10—C11 1.389 (5) C36—H36 0.9500
C11—C12 1.395 (5) C37—C38 1.380 (6)
C11—H11 0.9500 C37—H37 0.9500
C12—C13 1.378 (6) C38—C39 1.383 (5)
C12—H12 0.9500 C38—H38 0.9500
C13—C14 1.372 (6) C39—H39 0.9500
C13—H13 0.9500 C40—C41 1.377 (6)
C14—C15 1.391 (5) C40—C45 1.392 (6)
C14—H14 0.9500 C41—C42 1.389 (6)
C15—H15 0.9500 C41—H41 0.9500
C16—C17 1.391 (5) C42—C43 1.354 (8)
C16—C21 1.393 (5) C42—H42 0.9500
C17—C18 1.391 (5) C43—C44 1.364 (8)
C17—H17 0.9500 C43—H43 0.9500
C18—C19 1.372 (5) C44—C45 1.386 (6)
C18—H18 0.9500 C44—H44 0.9500
C19—C20 1.388 (5) C45—H45 0.9500
C19—H19 0.9500
C1—Mo1—C2 71.73 (15) C17—C18—H18 119.6
C1—Mo1—C3 73.73 (15) C18—C19—C20 119.5 (4)
C2—Mo1—C3 132.98 (15) C18—C19—H19 120.3
C1—Mo1—Cl1 154.93 (12) C20—C19—H19 120.3
C2—Mo1—Cl1 91.25 (11) C21—C20—C19 120.3 (4)
C3—Mo1—Cl1 130.01 (10) C21—C20—H20 119.9
C1—Mo1—P1 104.78 (11) C19—C20—H20 119.9
C2—Mo1—P1 78.19 (11) C20—C21—C16 120.4 (3)
C3—Mo1—P1 80.87 (10) C20—C21—H21 119.8
Cl1—Mo1—P1 88.95 (3) C16—C21—H21 119.8
C1—Mo1—P2 81.36 (11) C23—C22—C27 117.9 (3)
C2—Mo1—P2 101.33 (11) C23—C22—P1 119.9 (3)
C3—Mo1—P2 103.97 (10) C27—C22—P1 122.2 (3)
Cl1—Mo1—P2 84.26 (3) C24—C23—C22 121.3 (4)
P1—Mo1—P2 173.19 (3) C24—C23—H23 119.3
C1—Mo1—S1 104.16 (11) C22—C23—H23 119.3
C2—Mo1—S1 170.67 (11) C23—C24—C25 120.4 (4)
C3—Mo1—S1 38.38 (10) C23—C24—H24 119.8
Cl1—Mo1—S1 95.19 (3) C25—C24—H24 119.8
P1—Mo1—S1 95.15 (3) C26—C25—C24 119.1 (4)
P2—Mo1—S1 86.06 (3) C26—C25—H25 120.4
C16—P1—C10 100.80 (16) C24—C25—H25 120.4
C16—P1—C22 104.60 (16) C25—C26—C27 120.4 (4)
C10—P1—C22 101.17 (16) C25—C26—H26 119.8
C16—P1—Mo1 114.53 (11) C27—C26—H26 119.8
C10—P1—Mo1 120.45 (12) C26—C27—C22 120.9 (4)
C22—P1—Mo1 113.17 (12) C26—C27—H27 119.5
C40—P2—C28 106.39 (18) C22—C27—H27 119.5
C40—P2—C34 104.36 (18) C29—C28—C33 119.2 (4)
C28—P2—C34 100.80 (17) C29—C28—P2 125.1 (3)
C40—P2—Mo1 108.48 (13) C33—C28—P2 115.7 (3)
C28—P2—Mo1 113.81 (12) C28—C29—C30 119.7 (4)
C34—P2—Mo1 121.70 (12) C28—C29—H29 120.1
C3—S1—Mo1 49.67 (13) C30—C29—H29 120.1
O1—C1—Mo1 177.8 (3) C31—C30—C29 120.7 (5)
O2—C2—Mo1 175.0 (3) C31—C30—H30 119.6
O3—C3—S1 129.0 (3) C29—C30—H30 119.6
O3—C3—Mo1 138.8 (3) C30—C31—C32 120.1 (4)
S1—C3—Mo1 91.95 (16) C30—C31—H31 120.0
C9—C4—C5 123.6 (4) C32—C31—H31 120.0
C9—C4—O3 120.1 (3) C31—C32—C33 119.8 (5)
C5—C4—O3 116.1 (3) C31—C32—H32 120.1
C4—C5—C6 117.7 (4) C33—C32—H32 120.1
C4—C5—H5 121.2 C32—C33—C28 120.4 (4)
C6—C5—H5 121.2 C32—C33—H33 119.8
C7—C6—C5 120.2 (4) C28—C33—H33 119.8
C7—C6—H6 119.9 C39—C34—C35 119.2 (4)
C5—C6—H6 119.9 C39—C34—P2 120.0 (3)
C6—C7—C8 120.5 (4) C35—C34—P2 120.7 (3)
C6—C7—H7 119.7 C36—C35—C34 120.0 (4)
C8—C7—H7 119.7 C36—C35—H35 120.0
C7—C8—C9 120.4 (4) C34—C35—H35 120.0
C7—C8—H8 119.8 C37—C36—C35 120.9 (4)
C9—C8—H8 119.8 C37—C36—H36 119.5
C4—C9—C8 117.6 (4) C35—C36—H36 119.5
C4—C9—H9 121.2 C36—C37—C38 119.0 (4)
C8—C9—H9 121.2 C36—C37—H37 120.5
C15—C10—C11 118.5 (3) C38—C37—H37 120.5
C15—C10—P1 120.0 (3) C37—C38—C39 120.9 (4)
C11—C10—P1 121.0 (3) C37—C38—H38 119.6
C10—C11—C12 120.2 (4) C39—C38—H38 119.6
C10—C11—H11 119.9 C34—C39—C38 120.0 (4)
C12—C11—H11 119.9 C34—C39—H39 120.0
C13—C12—C11 120.3 (4) C38—C39—H39 120.0
C13—C12—H12 119.9 C41—C40—C45 119.0 (4)
C11—C12—H12 119.9 C41—C40—P2 121.7 (3)
C14—C13—C12 120.1 (4) C45—C40—P2 118.7 (3)
C14—C13—H13 120.0 C40—C41—C42 119.8 (5)
C12—C13—H13 120.0 C40—C41—H41 120.1
C13—C14—C15 119.7 (4) C42—C41—H41 120.1
C13—C14—H14 120.1 C43—C42—C41 120.9 (5)
C15—C14—H14 120.1 C43—C42—H42 119.5
C10—C15—C14 121.2 (4) C41—C42—H42 119.5
C10—C15—H15 119.4 C42—C43—C44 120.0 (5)
C14—C15—H15 119.4 C42—C43—H43 120.0
C17—C16—C21 119.1 (3) C44—C43—H43 120.0
C17—C16—P1 123.5 (3) C43—C44—C45 120.4 (5)
C21—C16—P1 117.4 (3) C43—C44—H44 119.8
C18—C17—C16 119.8 (4) C45—C44—H44 119.8
C18—C17—H17 120.1 C44—C45—C40 119.8 (5)
C16—C17—H17 120.1 C44—C45—H45 120.1
C19—C18—C17 120.9 (4) C40—C45—H45 120.1
C19—C18—H18 119.6 C3—O3—C4 120.2 (3)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg7 are the centroids of the C4–C9, C10–C15, C16–C21 and C40–C45 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C23—H23···O3 0.95 2.31 3.208 (5) 157
C24—H24···O1i 0.95 2.58 3.199 (5) 123
C39—H39···Cl1 0.95 2.80 3.573 (4) 139
C39—H39···S1 0.95 2.87 3.361 (4) 114
C9—H9···Cg3 0.95 2.97 3.896 (5) 165
C14—H14···Cg7ii 0.95 2.83 3.663 (5) 147
C20—H20···Cg1iii 0.95 2.97 3.802 (4) 147
C27—H27···Cg2 0.95 2.84 3.636 (5) 141

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y+1, z; (iii) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2377).

References

  1. Anderson, S., Cook, D. J. & Hill, A. F. (2001). Organometallics, 20, 2468–2476.
  2. Arumugam, N., Abdul Rahim, A. S., Osman, H., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1214–o1215. [DOI] [PMC free article] [PubMed]
  3. Asad, M., Oo, C.-W., Osman, H., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2861–o2862. [DOI] [PMC free article] [PubMed]
  4. Bartholomä, M. D., Ouellette, W. & Zubieta, J. (2009). Acta Cryst. E65, o61. [DOI] [PMC free article] [PubMed]
  5. Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chen, H. W., Fackler, J. P., Schussler, D. P. & Thompson, L. D. (1978). J. Am. Chem. Soc. 100, 2370–2375.
  7. Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66, o1233–o1234. [DOI] [PMC free article] [PubMed]
  8. Hu, D.-Y., Chu, X.-W. & Qu, Z.-R. (2009). Acta Cryst. E65, o2463. [DOI] [PMC free article] [PubMed]
  9. Huheey, J. E. (1983). Inorganic Chemistry: Principles of Structure and Reactivity, 3rd ed., p. A-37. New York: Harper & Row.
  10. McFarlane, W., Akrivos, P. D., Aslanudis, P., Karagiannidis, P., Atzisymeon, C., Numan, M. & Kokkou, S. (1998). Inorg. Chim. Acta, 281, 121–125.
  11. Qi, Z.-P., Wang, A.-D., Zhang, H. & Wang, X.-X. (2009). Acta Cryst. E65, m1507–m1508. [DOI] [PMC free article] [PubMed]
  12. Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m90–m91. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Steiner, Th. (1996). Crystallogr. Rev 6, 1–57.
  15. Strasser, C. E., Cronje, S. & Raubenheimer, H. G. (2009). Acta Cryst. E65, m914. [DOI] [PMC free article] [PubMed]
  16. Suresh, J., Kumar, R. S., Perumal, S. & Natarajan, S. (2007). Acta Cryst. E63, o1375–o1376.
  17. Yih, K. H. & Lee, G. H. (2004). J. Chin. Chem. Soc. 51, 265–270.
  18. Yih, K. H. & Lee, G. H. (2008). J. Organomet. Chem. 693, 3303–3311.
  19. Yih, K. H. & Lee, G. H. (2010). Organometallics, 29, 3397–3403.
  20. Yih, K.-H., Wang, H.-F. & Lee, G.-H. (2010). Acta Cryst. E66, m1189–m1190. [DOI] [PMC free article] [PubMed]
  21. Yoshida, T., Ueda, Y. & Otsuka, S. (1978). J. Am. Chem. Soc. 100, 3941–3942.
  22. Zhang, W. & Shi, M. (2004). Tetrahedron Lett. 45, 8921–8924.
  23. Zheng, Z., Chen, J., Luo, N., Yu, Z. & Han, X. (2006). Organometallics, 25, 5301–5310.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810052530/bg2377sup1.cif

e-67-0m117-sup1.cif (26.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810052530/bg2377Isup2.hkl

e-67-0m117-Isup2.hkl (437.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES