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Abstract
Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become
increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs
are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust
the context (and hence the outcome) of antigen presentation in response to a plethora of
environmental inputs that signal the occurence of pathogens or tissue damage. Such signals
generally boost DC maturation, which promotes their migration from peripheral tissues into and
within secondary lymphoid organs and their capacity to induce and regulate effector T cell
responses. Conversely, more recent observations indicate that DCs are also crucial to ensure
immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a
fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs).
Tregs are specialized T cells that exert their immuno-suppressive function through a variety of
mechanisms affecting both DCs and effector cells. Here, we review recent advances in our
understanding of the relationship between tolerogenic DCs and Tregs.

1. Introduction
Dendritic cells (DCs) are a family of leukocytes that have mostly been studied as potent
stimulators of adaptive immunity, but there is mounting evidence that DCs also establish
and maintain immunological tolerance (1). Indeed, DCs can prevent, inhibit or modulate T
cell-mediated effector responses through a variety of mechanisms, ranging from the
production of pleiotropic anti-inflammatory factors that exert broadly attenuating effects to
the induction of antigen-specific T cell responses resulting in anergy, deletion or instruction
of regulatory T cells (Tregs, Figure 1). Here, we will focus on the mechanisms by which
DCs induce and control tolerance, particularly the function and differentiation of Tregs,
which are crucial to contain autoimmunity and chronic inflammation. Failure of Treg
function has been implicated in the development of many autoimmune processes, whereas
cellular therapy by adoptive transfer of Tregs has shown efficacy in these disorders (2). On
the other hand, Treg-mediated suppressive activity can also contribute to the immune escape
of pathogens or tumors. Indeed, elimination of Tregs in mice carrying malignancies can
improve anti-tumor immune responses and survival (3). Therefore, understanding the role of
DCs in Treg activation and differentiation is critical for the development of therapeutic
strategies in many disease settings.

At steady-state, tissue-resident DCs are immature (henceforth called iDCs); these cells are
poised to acquire antigenic material from their environment but they are poorly
immunogenic because they express only modest levels of MHC molecules and little or no
costimulatory molecules and proinflammatory cytokines. iDCs sense the presence of
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infectious microbes using specific receptors that detect pathogen associated molecular
patterns (PAMPs) or damage associated molecular patterns (DAMPs) that are released
within tissues as a consequence of cellular distress. These “danger” signals trigger signaling
cascades in iDCs that result in their maturation, a profound phenotypic and functional
metamorphosis driven by changes in gene expression (4,5). During the maturation process,
DCs loose their capacity to acquire soluble antigen but gain T cell stimulatory capacity due
to increased antigen processing and upregulation of MHC, costimulatory molecules and
cytokines (6). Maturation signals also trigger in iDCs a profound change in their repertoire
of traffic molecules, such as the upregulation of CCR7, a chemokine receptor that enables
DCs in peripheral tissues to access local lymph vessels and migrate to the draining lymph
nodes (7). Here, the now fully mature DCs (mDCs) report the inflammatory and antigenic
status of their source tissue to recirculating lymphocytes (6). Whereas newly generated
mDCs are generally believed to possess primarily immunogenic functions, the role of iDCs
is less well defined as they are not in a final differentiation state and can give rise to both
immunogenic, pro-inflammatory mDCs as well as semi-mature DCs that share some
phenotypic features of mDCs, such as CCR7 expression, but possess the capacity to
establish and maintain tolerance.

Clues that iDCs themselves can either convert conventional naïve T cells (Tns) to assume a
Treg phenotype and/or promote the function of existing Tregs have been gleaned from
experiments in which antigen was administered to mice without a concomitant maturation
signal (8–14). Under these conditions, antigen accumulated on DCs in secondary lymphoid
organs (SLOs) and triggered the differentiation and/or proliferation of Tregs resulting in
antigen-specific tolerance that could prevent or reverse autoimmune processes (Table 1).
Animals that lack functional iDCs develop severe autoimmunity possibly due, at least in
part, to reduced numbers of circulating Tregs (15–18). Similarly, a DC-restricted genetic
deficiency in αvβ8 integrin, which activates TGFβ, a key cytokine for the induction and
maintenance of Tregs (19), or disruption of DC-expressed TGFβ receptor (TGFβR) impairs
the tolerogenic function of DCs and fosters autoimmunity (20). On the other hand, increased
DC numbers are accompanied by a concomitant increase in Tregs, whereas elimination of
Tregs elevates the number of DCs (16,21,22), suggesting that DCs and Tregs regulate each
other’s homeostasis.

It must be noted that neither iDCs nor mDCs are homogenous cell populations. Several
distinct subsets that express discrete surface markers have been identified nearly two
decades ago (23). The phenotypic diversity of the DC family is reflected in distinct
functional properties that are rooted, in part, in the expression of different PAMP and
DAMP receptors, divergent antigen presentation and crosspresentation capacities, as well as
differential propensities to induce tolerance and Treg differentiation.

It is thus apparent that DCs encompass a heterogeneous mix of antigen presenting cells that
differ not only with regard to phenotype, differentiation and maturation status but also with
regard to tolerance-inducing capacity. For the purpose of this article, we will functionally
(rather than phenotypically) define two subsets of DCs based on their net effect on T cells:
one subset is represented by immunogenic DCs that induce effector responses, while the
other subset induces or enhances tolerance (Figure 2). We will refer to the former as
stimulatory DCs (sDCs) and the latter as tolerogenic DCs (tDCs). tDCs not only comprise
most iDCs, but also include other DCs covering a spectrum of different maturation states.
This review will summarize current knowledge of the origins and phenotypes of tDCs, the
factors maintaining or inducing their tolerogenicity and how these cells promote the
expansion, function or differentiation of Tregs.
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2. What is the origin of Treg-inducing tDCs?
2.1 Tregs induction sites

Mammals, including humans, that lack functional Tregs succumb to fatal autoimmune
disorders (24), highlighting the importance of Tregs in controlling immune responses. In
general, we discriminate between two major types of Tregs based on their origin (25).
Natural Tregs (nTregs) originate during thymic development and first appear in the fetal
circulation (26–28). The phenotype and suppressive program of CD4+ nTregs is controlled
by the transcription factor Foxp3, which is upregulated in developing T cells upon
recognition of self-antigens in the thymus (29–31). Innocuous self and non-self antigens that
appear postnatally (like hormones, food and commensal flora) can drive the differentiation
of additional Tregs (32). Some of these antigens may be transported into the thymus by
migratory iDCs (33) that may then induce new nTregs. In addition, conventional Tns can be
converted to so-called adaptive Tregs (aTregs) in extrathymic sites such as SLOs. aTregs are
phenotypically heterogeneous and include both CD4+ and CD8+ T cells most (but not all) of
which also express Foxp3 (Table 1). A common trait of all Tregs is the expression of one or
more anti-inflammatory molecules, such as IL-10, TGFβ or IL-35 and/or inhibitory
receptors, such as cytotoxic T-lymphocyte antigen 4 (CTLA4), lymphocyte-activation gene
3 (LAG-3), Glucocorticoid-induced tumor necrosis factor receptor (GITR), CD39 or CD73,
among others (34,35).

2.2. The phenotype of tDCs
The mechanisms by which tDCs exert their activity are varied and incompletely understood.
As mentioned above, iDCs are typically tolerogenic (1), so the maturation status, or rather,
the absence of maturation provides a hint for the tolerogenic capacity of DCs. However,
iDCs are comprised of several different subsets that possess distinct abilities to present
antigen, secrete cytokines and induce tolerance (36). Thus, the various subsets of iDCs and
mDCs do not fill a well-defined functional niche, but cover a spectrum of immunological
properties, wherein iDCs primarily maintain tolerance, whereas mDCs initiate and control
predominantly (but not exclusively) effector responses (Figure 2).

Maturation phenotype—DCs receive maturation signals by a variety of inputs, including
PAMP and DAMP receptors that sense certain microbial and tissue damage signatures. Such
sensors include toll-like receptors (TLRs), NOD like receptors (NLRs), RIG-I–like receptors
(RLRs) and others (37–40). Additionally, inflammatory cytokines (e.g. TNFα and IL-1β) or
the ligation of surface-expressed activating receptors such as CD40 can trigger DC
maturation (41–43). One key consequence of DC recognition of “danger” signals is the
activation of members of the nuclear factor kappa B (NFκB) and interferon responsive factor
(IRF) families (38,44,45). Upon maturation, DCs upregulate a plethora of gene products
involved in antigen presentation and costimulation including MHC-II, CD40, CD80, CD86,
OX40L and inducible T cell co-stimulator ligand (ICOSL or CD275), as well as cytokines
that promote and modulate inflammation and effector cell functions, including IL-1β, IL-2,
IL-6, IL-8, IL-12 and IL-18 (6). These changes are necessary for DCs to initiate T cell
responses because Tns require three concomitant inputs to differentiate into full-fledged
effector cells (Teffs): signal 1 is the antigenic stimulus provided by MHC molecules
displaying a cognate peptide; signal 2 is provided by costimulatory molecules; and signal 3
is provided by cytokines produced by DCs or other microenvironmental sources (46). Since
many tDCs have an immature phenotype (Tables 1,2,Figure 2) it has been suggested that a
major mechanism of their tolerogenicity is a consequence of their presentation of an antigen
(signal 1) to T cells without concomitant costimulation or cytokines (signal 2 and 3).
However, when iDCs are subjected to certain in vitro manipulations, such as exposure to
TNFα or IFNγ or inhibition of E-cadherin, they assume phenotypic features of mDCs,
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including high levels of MHC and costimulatory molecules [(47,48) and our unpublished
results]. Nevertheless, Tns that are exposed to such treated DCs preferentially differentiate
into aTregs (Table 3). Moreover, although CCR7 is usually considered an indicator of DC
maturation, some iDCs in peripheral tissues can also upregulate CCR7, which allows them
to migrate to lymph nodes without assuming a fully mature phenotype. These migratory
DCs favor the induction of aTregs rather than effector cells (49–52). CCR7 deficiency
impairs lymphatic migration of iDCs and compromises the induction of inhaled and oral
tolerance (53,54).

Thus, while immaturity appears to be a good indicator of DC tolerogenicity, phenotypically
mature DCs not always induce immunity but, depending upon prior exposure to certain
differentiation signals, may retain their tolerogenic function. This suggests that tolerance is
not always a mere consequence of T cells perceiving insufficient signals 2 or 3, but
additional DC-derived tolerance-promoting factors are likely to play a role. A case in point
are so-called exhausted DCs (exDCs), which were observed to arise in vitro following an
extended interval after exposure to maturation signals, such as bacterial lipopolysaccharide
(LPS). The term ‘exhaustion’ was proposed because exDCs, unlike freshly activated mDCs,
have lost their initial capacity to induce Tn differentiation into T helper (Th)-1 cells. Instead,
exDCs secrete immunosuppressive IL-10 and elicit nonpolarized memory cells and/or Th2
responses (55,56). Whether exDCs can also induce Tregs in vivo remains to be determined.

tDC subsets—In mice at least seven different DC subpopulations can be identified, which
are distinguishable by both surface and intracellular markers that govern their function
(36,57–64). Murine lymphoid tissue-resident DC subsets include CD8α+, CD4+, CD8α−
CD4− (DN) and plasmacytoid DCs (pDCs). Migratory DCs that carry antigen from
peripheral organs to SLOs include CD103+DCs that have been identified in the lung, the
gastrointestinal tract and the skin, CD11b+ “myeloid DCs” and epidermal Langerhans cells
(LCs). In vitro assays suggest that there may be a hierarchy of tolerogenic potential that is
highest for pDCs followed by CD103+ DCs and CD8α+ DCs with CD11b+ DCs having low
activity in most assays.

It should be cautioned, however, that the tolerogenicity of DC subsets is context dependent.
For instance, CD8α+DCs preferentially promote aTreg differentiation in the presence of
TGFβ (58,65), although it should be noted that addition of TGFβ to activated Tns induces
aTreg differentiation even in absence of DCs (66). pDCs are key participants in the
establishment of oral and transplant tolerance (59,67,68), presumably owing to their
expression of indoleamine 2,3-dioxygenase (IDO), an enzyme that inhibits effector T cell
proliferation (69). Intestinal CD103+ DCs also express IDO and secrete all-trans retinoic
acid (RA), which promotes Tn differentiation into aTreg (57,70). Some skin-derived
CD103− DCs and other DCs can also produce RA (71) while IDO expression is inducible in
DCs by a variety of signals, including TGFβ, interferons (69,72) and engagement of GITR
(73), among others. Therefore, although DCs subpopulations have different tolerogenic
capacities a priori, they can adapt their function according to environmental inputs.

3. Instructive signals for Treg-inducing tDCs
In addition to the fact that immature tDCs present little or no signals 2 and 3 (see above),
they can receive tolerance-promoting molecular ‘reminders’ that counteract sDC
differentiation in response to maturation stimuli (Figure 3). These signals can be mimicked
in vitro to induce tDCs under tissue culture conditions. Thus, we can differentiate between
tDCs that arise naturally from hematopoietic precursors and tDCs that have received
instructive signals that may cement or modulate their tolerogenic phenotype. To facilitate
discussion, we will refer to natural versus induced tDCs as ntDCs and itDCs, respectively.
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(Figure 1). While ntDCs maintain tolerance constitutively within a steady-state environment,
itDCs have received inputs from their environment, such as experimental or
pharmacological interventions, infectious agents or other pathophysiological conditions. It
should be emphasized that this terminology is merely meant to offer a conceptual frame of
reference and does not imply that ntDCs and itDCs are strictly separate populations. Both
subsets overlap and likely coexist and cooperate within tissues, making a real-life distinction
between them often difficult.

3.1. Natural tolerogenic DCs
As discussed above, nTreg and aTreg originate from different anatomic compartments and
in response to distinct immunological processes. The rules governing the function of tDCs in
the thymus where central tolerance is established by selection of Tns and generation of
nTregs and in peripheral tissues where tDCs convert Tns into aTregs are only beginning to
be understood.

Central suppressive tolerance—Although thymic epithelial cells contribute to self
antigen-reactive nTreg commitment (31,74,75), thymic DCs and, in particular, thymic pDCs
also promote the induction of Foxp3+ nTreg (Table 1, (76–79)). The mechanism(s) by which
the thymic environment promotes this capacity on DCs involves IL-7-related thymic stromal
lymphoietin (TSLP) produced by Hassall’s corpuscles in the thymic medulla (80–84). By
contrast, in extra-thymic sites, such as the lung and skin (85), TSLP biases DCs and Tns
toward a Th2 response, suggesting that other, as yet unknown, factors may contribute to tDC
instruction or function in the thymus.

Peripheral suppressive tolerance—Oral intake of antigenic material, such as food and
commensal microorganisms, efficiently generates antigen-specific systemic tolerance (10).
Recent reviews have summarized the current knowledge of intestinal tract-associated Tregs
and DCs and their role in oral tolerance (57,62,86,87). DCs within the intestinal mucosa
directly sample the lumen of the intestinal tract (88) and transport antigen to mesenteric
lymph nodes (MLNs) in a CCR7-dependent manner. Here, the antigen-laden DCs promote
the differentiation of Tns into Foxp3+ aTregs (89–92). DCs from the lamina propria (LP) are
also thought to induce Foxp3+ aTregs (93). This tolerogenic ability of intestinal DCs is
presumably controlled by the mucosal environment, which is rich in anti-inflammatory
factors such as TGFβ, retinoic acid (RA), IL-10, vasoactive intestinal peptide (VIP), TSLP
and hepatocyte growth factor (HGF). When these agents are added to iDCs in vitro, they
promote the differentiation of itDC, which elicit more efficient Tn-to-aTreg conversion than
iDCs (Table 3 (94–98)). Intestinal tDCs with the most potent aTreg inductive capacity
express CD103 (aE), an integrin chain whose expression is regulated by TGFβ signaling
(99). In addition, TGFβ and RA also act directly on activated Tns and promote aTreg
differentiation, even in the absence of DCs (100–102).

Intestinal epithelial cells (IECs) are central for the local milieu that fosters tolerogenic
responses by both DCs and activated T cells. IEC are not only a rich source of TSLP, TGFβ
and RA (103–107) but also IEC-derived RA induces in DCs the expression of retinal
dehydrogenases (RALDH). This presumably enables intestinal DCs to metabolise food-
derived vitamin A to produce RA by themselves. However, RA- and/or TGFβ-conditioned
splenic DCs fail to promote significant Foxp3+ aTreg differentiation in vitro (our
unpublished results), suggesting that other instructive elements are necessary for full-fledged
tDC induction in the intestine.

Like intestinal DCs, lung DCs, which capture antigens from the airways, are tasked with
balancing immune responses to pathogens with those to the regular microbial flora and
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harmless inhaled antigens (8). Pulmonary DCs traffic continuously from the lungs to the
draining mediastinal and peribronchial LNs, but to do so they are thought to require subtle
maturation signals presumably from the local flora (108). Thus, DCs surveilling the airways
acquire a semi-mature phenotype whereby they upregulate CCR7, which enables their
migration to lymph nodes (51) and induction of aTregs that control pulmonary tolerance and
homeostasis (9,109–111). Similar to IECs, resting pulmonary stromal cells promote TGFβ-
dependent differentiation of tDCs that promote the differentiation of Tregs in vitro (112). On
the other hand, upon exposure to TLR ligands, lung stroma cells are critical initiators of
inflammatory responses to infections by generating cytokines that instruct immunogenic
sDCs (113).

In the skin, DCs function is influenced by vitamin D3, which is activated by ultraviolet
radiation and then enzymatically converted to 1,25-dihydroxyvitamin D3 (1,25D3). Ex-vivo
treatment of DCs with vitamin D receptor agonists elicits Treg-inducing tDC (114–122). Of
note, vitamin D signaling appears to engage an autonomous transcriptional program in DCs
that is distinct and independent from the transcriptional pathways that underlie DC
maturation (123,124). Some DCs in skin-draining lymph nodes induce Foxp3+ aTregs
through the production of RA (71), but dermal lymph nodes contain much fewer RA-
producing DCs (which are CD103−) than the intestinal tract (125).

The liver arguably provides the quintessential tolerogenic environment for T cells and DCs
(126). Thus, liver allografts typically require much less immunosuppression for long-term
survival (127), and targeted expression of antigens in the liver can establish tolerance by
inducing antigen-specific Foxp3+ Tregs (128–130). Although the liver is a major reservoir
for RA, vitamin D3 and TSLP (131), the role of these factors in hepatic tDC function is
unclear. Liver sinusoidal endothelial cells elicit tolerogenic functions in cocultured DCs in
vitro (132), and they are also implicated in the conversion of adoptively transferred DC
precursors into hepatic tDCs in vivo (133). Hepatic DCs can induce both T cell anergy and
deletional tolerance (67). They also regulate inflammatory processes during liver fibrosis
and hepatic ischemia by producing cytokines, such as TNFα or IL-10 (134–137).

In summary, while the factors implicated in DC instruction to promote Treg differentiation
seem to possess organ-specific flavors, TGFβ, RA and vitamin D3 appear to play a major
role. Moreover, the balance of tDCs and sDCs in peripheral organs is the result of
continuous intimate crosstalk between iDCs and their local surroundings. Stromal, epithelial
and endothelial cells are particularly well positioned to perceive homeostatic changes at
body surfaces, the extracellular environment and the blood stream. Therefore, it makes sense
that these cells communicate with DCs through cytokines and direct contact and apparently
contribute to the regulation of DC function and tolerance.

3.2. Induced tolerogenic DCs
A variety of inputs have been implicated in the induction of tDCs, including pathological
conditions and specific molecular manipulations of iDCs or DC precursors. For example,
many pathogens and tumors can mimic or produce tolerogenic factors and instruct tDCs as
an immune escape mechanism. Pre-existing Tregs can also educate iDCs to become
tolerogenic and induce more Tregs, a phenomenon termed “infectious tolerance”. The
tolerogenic potential of DCs has also been harnessed by modifying their biology using
compounds and introducing genetic alterations.

3.2.1 Disease-induced tolerogenic DC
Pathogen-induced tolerogenic DC: Certain pathogens have evolved immune escape
mechanisms that exploit Tregs (138–140). In most cases, the contribution of tDCs to these
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infectious settings is still unclear, although different modalities have been described by
which pathogens can modify DCs. For example, products from F. hepatica, C. albincans, S.
japonicum, S. mansoni, B. pertussis and V. cholerae all promote DC tolerogenicity and
induce Treg differentiation (Table 2), but the molecular basis for their recognition and
signaling remain largely unknown. One mechanism involves microbial and parasite
byproducts or toxins that prompt DCs to produce anti-inflammatory cytokines, like IL-10
and TGFβ. Examples for these compounds include cyclosporin, FK506 (Tacrolimus),
FK520, ISA247 (voclosporin) and rapamycin (Sirolimus), which have been harnessed as
immunosuppressive drugs to treat immune disorders and transplant rejection (141,142).
Cholera toxin (CTx), an exotoxin secreted by V. Cholerae, is a multimeric complex of six
protein subunits recognized and internalized by membrane-bound gangliosides. Within the
cell it increases cytosolic cyclic AMP levels (143). DC treatment with CTx B subunit (CTB)
inhibits their maturation and production of IL-12 while increasing IL-10 secretion and aTreg
differentiation (144,145). Other pathogens, such as helminths, also release factors that
mimic immunosuppressive molecules like TGFβ and promote itDCs, thereby staging a
permissive microenvironment. Helminth infection in vivo is associated with increased
numbers of Tregs whose depletion enhances parasite clearance (140,146). However, whether
and how helminth-derived products act on DCs to induce Tregs has not been determined.
Similarly, some viruses encode analogs of IL-10 that are produced by infected cells (147–
149) and attenuate DCs immunogenicity (150,151), however, a direct effect on Treg
differentiation remains to be demonstrated.

Tumor-induced tolerogenic DC: Cancer cells as well as the associated tumor stroma can
confer tolerogenic properties on DCs resulting in differentiation and accumulation of aTregs
within the tumor mass and in the draining lymph nodes (Table 2, (152–158)). Remarkably,
the presence of DCs is crucial for the vascularization of some tumors, and DC depletion can
enhance the elimination of malignant cells in animal models (159,160). The mechanisms by
tumors instruct DCs to become itDCs involve the production of IL-10, vascular endothelial
growth factor (VEGF), prostaglandin E2, TGFβ and other tolerogenic factors by cancerous
cells (152,161–165).

Treg-induced tolerogenic DC: Even immune challenges that induce a potent effector
response can trigger concomitant differentiation of aTregs (21,110,166,167). The role of
these inflammation-induced aTregs remains unclear but might limit immunopathology,
suppress autoaggressive responses and/or promote restitution of tissue homeostasis (via
TGFβ) or T and B cell memory generation (via IL-10). Antigen-specific Tregs, either
activated nTregs that expand when exposed to cognate antigen (168) or newly converted
aTregs, can spread their tolerance-promoting message to local DCs and Tns through a
mechanism termed “infectious tolerance”. This has been elegantly demonstrated by
Waldmann and colleagues who transferred CD4+ T cells from tolerized animals to new
recipients which, in turn, developed tolerance. Tregs contributed directly to Tn
differentiation into aTreg by producing IL-10 and TGFβ and retained this capacity during
multiple transfers to successive hosts (169–173). Similarly, McGuirk et al. showed that
conditioning of DCs by Tregs confers them the ability to induce Tregs in an IL-10-
dependent manner (174), suggesting that tDCs may be key players during Treg-induced
“infectious tolerance”.

3.2.2. Experimentally-induced tolerogenic DC—Given their potent activity,
researchers have attempted to emulate the conditions leading to tDC differentiation and
function in order to understand the underlying biology and to utilize tDCs for immune
therapy (1,175–177). Indeed, tDCs have be induced in vitro by 1) anti-inflammatory
biologicals, 2) pharmacologic agents and 3) genetic modification (Table 3). Reports on this
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subject are dominated by work with murine or human DCs that were differentiated in vitro
from blood or bone marrow progenitors (178) or blood monocytes (179), respectively.

Induction of tolerogenic DCs using biologics: A number of biomolecules that are
physiologically encountered in tolerogenic situations can induce tDC differentiation in vitro
(Figure 4). For example, incubation of murine splenic or bone marrow-derived DCs
(BMDCs), or of human monocyte-derived DCs (huMoDC) or rat BMDC with IL-10 alone
or in combination with other cytokines confers a certain capacity to induce suppressive
lymphocytes, including CD4+CD25+, CD8+ and Valpha24+ invariant natural killer T
(iNKT). The suppressive capacity of these cells has been extensively tested in models
allograft rejection, allergies and xenogeneic, acute and chromic allogenic graft-versus-host
disease (Table 3). Signaling through the IL-10 receptor (IL10R) maintains iDCs in their
immature state even in the presence of maturation signals (180,181). IL10R ligation triggers
janus kinases (JAK)-mediated phosphorylation of Stat3 (signal transducer and activator of
transcription 3 (182)). Activated phospho-Stat3 is translocated to the nucleus where it
represses genes associated with DC maturation and immunogenicity (181,183). A few genes
are specifically induced by IL-10, including suppressor of cytokine signaling 3 (SOCS3) and
signaling lymphocytic activation molecule (SLAM (184)). SOCS3 negatively regulates Stat-
dependent signaling of inflammatory cytokines (185), particularly IL-6, which can inhibit
Tregs-mediated suppression (186). SLAM signaling activates src homology 2 domain-
containing protein tyrosine phosphatase 1 (SHP-1), which inactivates costimulatory
receptors by dephosphorylating their cytoplasmic tail (187,188). More studies will be
necessary to elucidate the effects of IL-10 on DCs in vivo.

TGFβ, a cytokine produced by Tregs and other sources in many tissues, has also profound
effects on DCs in vitro. Using animals that express a dominant negative form of the TGFβ
receptor complex (dnTGFβR) specifically on DCs, the Flavell group has shown that the
action of TGFβ allows DCs to attenuate the neuropathology associated with EAE (20).
Functional TGFβR (and TGFβ-producing Tregs (189)) is also required on NK cells to
restrain their pro-inflammatory activity (190). Thus, the TGFβ pathway is a major
mechanism by which Tregs control both NK cells and DCs. Ligation of TGFβR leads to
heterodimerization of Smad2 and Smad4, which regulate gene expression in the nucleus
(191,192). The downstream consequences appear similar to those of IL-10 and include
inhibition of DC the maturation through blockade of NFκB signaling. However, in contrast
to IL-10, TGFβ signaling induces a much larger set of genes in DCs (193). The TGFβ-
induced transcriptional program in tDCs includes TGFβ production itself as well as TGFβR,
CXCL14, IL-18, the transcription factors peroxisome proliferator-activated receptor γ
(PPARγ) and plasminogen activator inhibitor 1 (194,195). The specific role of each of these
factors in tDC function remains to be analyzed.

Other bioderivatives instructing itDCs are HGF and the vitamin D3 metabolite, 1,25D3.
When treated in vitro with these compounds DCs initiate the expression of gene products
that have been implicated immune tolerance, including indoleamine 2,3-dioxygenase (IDO),
C5R1, CCL2, IL-10, TGFβ, TRAIL, inhibin and the inhibitory receptors CD300LF and
CYP24A1 (124,196). Several other factors, such as estrogen, vasoactive intestinal peptide
(VIP), binding immunoglobulin protein (BiP), TSLP, GM-CSF, G-CSF, IFNα/β/γ, IL-6,
PGE2 and TNFα, may also promote Treg-inducing capacities on tDCs.

Antibodies and synthetic soluble ligands of specific surface receptors have also been used to
produce itDCs. For example, human MoDC treated with HLA-G, a non-classical
histocompatibility molecule associated with tolerance, induced suppressive autologous T
cells that expressed CD25 and cytotoxic T-lymphocyte antigen 4 (CTLA-4), two markers
commonly found on Tregs (197,198). Similarly, the antibody-mediated activation of the
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suppressive receptor CD200R boosts the tolerogenicity of mouse BMDCs by activating
Tregs in vivo (199–202).

Pharmacologically-induced tolerogenic DCs: The use of immunosuppresive drugs has
been crucial for the treatment of many diseases. Not surprisingly, immunosuppressants
frequently affect DC immunogenicity often by intervening with their maturation, although
the specific contribution of such drug effects on DCs relative to their influence over other
target cells is not known. Nevertheless, immunosuppressive compounds have been
successfully employed to manipulate DC function in many disease models (175).

Glucocorticoids (GCs) were the first immunosuppressants to be used in a clinical setting
(203). Treatment of human MoDC or mouse BMDC with prednisolone or dexamethasone
conditions these cells for tolerogenic instruction of aTregs (Table 3). GC binding to the
glucocorticoid receptor (GR) regulates DC activation through nuclear glucocorticoid
response elements (GRE) that negatively regulate promoters for members of the canonical
NFκB pathway, inflammatory cytokines, chemokines, their receptors and antigen
presentation molecules (203). In addition to repressing DC maturation, dexamethasone also
induces a discrete set of anti-inflammatory gene products and chemoattractants, including
IL-10, GITRL, IDO, CCL2 (MCP-1), CCL8 (MCP-2), CCR2, CCL9 (MIP-1c) and CCLl2
(MIP-2) (73,204). This impairs the DCs’ ability to migrate and provokes them to assume a
tolerogenic phenotype capable of instructing Tns to express CD25, Foxp3 and IL-10.

Many maturation signals for DCs induce phosphorylation and proteolysis of the inhibitor of
NFκBα (IκBα) by the inhibitor kinase-β (IKKβ), thereby releasing Rel-A (or p65; a subunit
of NFκB) for nuclear translocation. In contrast, the non-canonical pathway operational
during tolerogenic instruction activates NFκB-inducing kinase (NIK) and IKKα resulting in
the formation of Rel-B dimers (69,205). The inhibitory effect of GCs on the canonical NFκB
pathway likely plays a key role in the conversion of DCs to itDCs. Accordingly, inhibition
of NFκB or IKKβ by small molecule antagonists produces itDCs with the capacity to
stimulate Foxp3+CD25+ aTregs that alleviate disease symptoms in EAE, heart allograft
rejection, and intestinal bowel disease (IBD (206–211)).

Recent observations suggest that cellular metabolism also plays a role in DC
immunogenicity. For example, treatment of human MoDCs with resveratrol induces tDCs
that stimulate IL-10-secreting aTregs (212,213). Resveratrol activates sirtuin 1 (SIRT-1) and
PPARγ coactivator (PGC)-1α, which are involved in energy metabolism (214). Another
pathway affecting metabolism and DC immunogenicity is represented by the serine/
threonine kinase mammalian target of rapamycin (mTOR). This kinase forms signaling
complexes that sense oxygen supply, free amino acids, ATP levels, growth factors,
cytokines and cellular stress (215). Inhibition of mTOR by rapamycin, a macrolide from
Streptomyces hygroscopicus, exerts immunosuppressive effects in humans and animals
(216) and has shown efficacy in both clinical and preclinical settings of autoimmunity and
inflammatory disease (217–225). Treatment of DCs with rapamycin stimulates Treg
expansion in vivo and in vitro (226–230). We will further discuss this subject in section 4.2
below,

Genetically-induced tolerogenic DCs: Various genetic manipulations have been used,
including gene knock-out, knockdown and transgenic over-expression of active or dominant
negative mutants of molecules involved in DC maturation to enhance or inhibit DC
tolerogenicity (176). Genetically induced tDCs can induce hyporesponsiveness and prolong
allograft survival when transferred to transplant recipients, but a mechanistic role for tDC-
induced Treg differentiation has only been established in a few cases. For instance, RelB
deficient DCs induce CD40+ Tregs that suppressed delayed-type hypersensitivity (DTH)

Maldonado and von Andrian Page 9

Adv Immunol. Author manuscript; available in PMC 2011 March 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and experimental autoimmune myasthenia gravis (EAMG)(231–233). This provides yet
another example for the importance of NFκB (and presumably CD40) activation in a DC’s
decision on whether to exert immunogenic or Treg-inducing effects. Similarly, BMDCs that
over-expressed dominant negative IKKβ were refractory to maturation and prone to induce
Tregs that enhanced kidney allograft survival (234). Another approach to target NFκB-
dependent effects in maturing DCs is to eliminate the expression of downstream target
genes. Silencing of IL-12, CD80, CD86 and/or CD40 results in DCs that stimulate Treg
differentiation and alleviates disease symptoms in collagen-induced arthritis (CIA) and
EAMG (231,235).

An alternative approach to silencing immunogenic molecules is the forced expression of
tolerogenic factors. For example, treatment with IL-10-transduced DCs prevents the
development of experimental asthma (EA) by boosting CD4+CD25+Foxp3+ IL-10 secreting
Tregs that effectively transfer tolerance to naïve animals. IL-10 produced by recipient cells
is required to establish this infectious tolerance demonstrating that Tregs require other
supporting cell populations to suppress immune responses (236). Remarkably, transduction
of DCs with ectopic Foxp3 also results in itDCs that stimulate CD4+Foxp3+ aTregs (237).
The mechanism by which Foxp3 controls the tolerogenic potential of DCs remains unknown
but likely involve pathways similar to those that induce Tregs (29).

4. How are tDCs inducing Tregs?
tDCs can induce Tregs by several different pathways that may act either alone or in
combination. As discussed above (section 2.2), a relatively simple Treg promoting condition
involves presentation of modest levels of a cognate antigen in the absence of signals 2 and 3,
which is thought to be employed by iDCs but probably applies also to tDCs (Figure 2). In
addition, tDCs can produce anti-inflammatory molecules that may be secreted, membrane
bound, or both. Such signals may act directly on T cells and/or modify environmental
conditions, such as the metabolic state of a tissue to fine-tune T cell differentiation.

4.1. Influence of the maturation status of DC in the induction of Tregs
Studies by several laboratories have shown that presentation of very low levels of antigen in
the absence of other stimuli promotes Treg differentiation in vitro and in vivo (11,12,238–
240). Another key factor for efficient differentiation of aTregs and function of nTregs is a
milieu containing little or no inflammatory cytokines, such as IL-6 and IL-12, or
costimulatory membrane receptors (CD80/86/40), which counteract the tolerogenic effect of
iDCs and enhances effector differentiation of Tns (186,241,242). TCR signals in
conjunction with costimulation precipitates a signaling cascade resulting in intracellular
calcium (Ca2+) flux and the activation of the transcription factors nuclear factor of activated
T cells (NFAT), activator protein 1 (AP-1) and NFκB that coordinate gene expression in
nascent Teffs (243). While activated T cells that acquire effector functions express IL-2,
IL-4, IL-17, T-bet, Edg3 and CD69 among others (244), differentiating Tregs present a
different transcriptional signature (244–247) driven by NFAT, Foxp3 and runt-related
transcription factor 1 (Runx-1 or myeloid leukemia factor, AML1 (240,248,249)). Indeed,
the Treg transcriptome is enriched with gene products implicated in their suppressive
function like IL-10, CD103, Killer cell lectin-like receptor subfamily G member 1 (Klrg1),
Neuropilin 1 (Nrp1), GITR, ICOS (CD278), Fibrinogen-like protein 2 (Fgl2), Probable G-
protein coupled receptor 83 (Gpr83) and CTLA-4. However, it is still unclear how exactly
iDCs or tDCs skew the TCR signaling cascade in Tns to accomplish the subsequent
selection of Treg-associated transcription factors. Furthermore, as discussed above, some
mature and semi-mature DC expressing high levels of costimulatory molecules can also
induce suppressive function on T cells (47). Thus, the magnitude of antigen presentation/
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costimulation or activating cytokines alone can not fully explain the function of all tDCs
subsets.

4.1 Tolerogenic factors produced by tDC
The presence of IL-10 has been identified in numerous settings of tolerance (Tables 1–3).
Indeed, secretion of IL-10 by tDCs is necessary for tolerance in a variety of models of Treg
differentiation (174,250,251). IL-10 can initiate a powerful anti-inflammatory positive
feedback loop because can both modify and be produced by leukocytes and structural cells
within tissues (e.g. IECs, AECs and LSECs). Thus, when tDCs are induced by IL-10 in
peripheral tissues they acquire the ability to secrete IL-10 themselves and migrate to
lymphoid organs where tDC-derived IL-10 then contributes to Treg differentiation and
proliferation. Having been instructed by tDCs, the activated Tregs enter the blood stream
and home to the peripheral organ where antigen recognition triggers their production of even
more IL-10 (252–255). In the presence of this cytokine proliferation, cytokine production
and migratory capacities of effector T cells are impaired (181). Mechanistically, the Akdis
and Blaser groups have shown that ligation of IL10R overrides costimulatory signaling via
activation of SHP-1, which dephosphorylates the cytoplasmic tails of CD28, ICOS and CD2,
thus inhibiting the recruitment of phosphatidylinositol 3-kinase (PI3K (188,256–259)).
Additionally, IL-10 signaling is also required for the stabilization of the suppressive
phenotype of Tregs in the face of strong inflammatory signals (260).

TGFβ is unique among cytokines in that it can induce Foxp3 expression and aTreg
differentiation in the absence of DCs (102). However, it is not clear whether and to what
extent the tolerogenic capacity of tDCs relies on TGFβ production. Exploring this question
is complicated by the fact that TGFβ effects are highly pleiotropic, and genetic mutants
present complex phenotypes with multiple immune disorders and poor survival (192). A
strong argument for the importance of TGFβ production by tDCs has come from animals
with a DC-restricted deletion of the TGFβ-activating integrin, αvβ8. These mutant mice
develop autoimmunity similar to animals in which DCs are chronically depleted or TGFβR
signaling is dysfunctional in T cells, suggesting that DCs are important to ensure the
bioavailability of active TGFβ (17–19,261,262). Antigen presentation by DCs in the
presence of TGFβ results in the differentiation of Foxp3+ aTregs (65), which present a
transcriptional signature that is similar to, but distinct from that of nTregs (192,245,263). A
recent study has shown that activation of Foxo3a and Foxo1 by TGFβ signaling precedes
Foxp3 expression in aTregs (264). However, we are only beginning to understand how Treg
differentiation is controlled upstream of Foxp3.

Some DCs can synthesize RA, a metabolite of vitamin A that is generated by RALDH. Most
intestinal DCs express at least one of the three isoforms of this enzyme, while most DCs in
other lymphoid tissues express little or no RALDH (125). When T or B cells are activated in
the presence of DC-derived RA, they are “imprinted” to express gut homing receptors
(125,265). In addition, exposure of activated CD4 T cells to RA promotes their
differentiation into Foxp3+ aTregs (57,87,100,101,122,266–268). RA binds the nuclear RA
receptor α (RARα) and regulates the expression of Foxp3 and Smad3 in T cells (101,269),
but whether RARα is necessary for differentiation of Tregs in vivo is unclear. It has been
suggested that RA is particularly relevant in aTreg differentiation in mucosal environments
because the continuous exposure to commensal antigens requires a fine balance between
tolerance and immunity (270). Recent observations suggest that some DCs in the skin also
express RALDH and may produce RA for dermal Treg differentiation (71). More
experimentation will be necessary to evaluate the exact role of RA-producing DCs for
tolerance versus immunity in vivo.
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tDCs also express several membrane receptors that may instruct antigen-specific Tns during
their activation. Among these are the immunoglobulin-like transcript (ILT) receptors, which
are found on tDCs that stimulate Treg differentiation (271–273). The proximal signaling
cascade for ILTs is not known and the impact of ILT recognition by T cells is also not well
established. However, multiple groups have shown an important role for these molecules in
cancer, transplantation and autoimmunity by using animals deficient for the expression of
ILTs, blocking antibodies and recombinant ILT3 (272,274,275). DCs also express
programmed death-1 ligands (PD-Ls), PD-L1 and PD-L-2, which control T cell activation
through engagement of PD-1 and (in case of PD-L1) CD80 (276). PD-1 is a critical
determinant of “exhausted” T cells that arise during chronic viral infections, and it also
contributes to Treg differentiation (276–279). The effects of PD-1 signaling resemble those
of the IL10R by limiting PI3K activation and shutting down costimulatory signaling through
SHP-1. However, PD-1 is not thought to be expressed by Tns, but is only upregulated during
activation, so its role (if any) in the initial phase of Treg education is uncertain.

4.2. DCs and metabolism
Immune responses precipitate dramatic changes in the metabolic state of many cells.
Changes in intra- and extracellular metabolites are becoming increasingly recognized as
integral part of the ‘information content’ of tissues in which immune responses are induced.
For example, differentiation of inflammatory cells and the induction of T cell memory in
vivo can be modified by the dietary abundance of amino acid and fatty acid metabolism
(280–282). DCs also modulate T cell differentiation by modifying metabolic parameters
surrounding T cells. DCs can release IDO and heme oxygenase-1 (HO-1) to control the
abundance of environmental tryptophan and carbon monoxide (CO), respectively. In the
presence of extracellular IDO, T cells proliferation is compromised and aTregs
differentiation is enhanced, although the precise molecular basis for this effect is unclear
(171,283–286). IDO expression by DCs is induced by IFNγ and TGFβ suggesting that this
enzyme may represent a feedback mechanism by which DCs modulate their own
immunogenicity during inflammation (287,288). HO-1 degrades heme, thereby producing
CO which inhibits DC immunogenicity (289). Indeed, HO-1 has a potent anti-inflammatory
effect that may be mediated through Treg activity (290,291), but the mechanisms are still
incompletely understood.

The serine/threonine kinase mTOR plays a pivotal role in DC immunogenicity and the
control Treg differentiation. Activation of TLR signaling stimulates mTOR and promotes
sDC function (292,293), whereas blockade of mTOR activity by hypoxia, amino acid
starvation or rapamycin enhances Tregs (226,294–297). mTOR is involved in the regulation
of numerous essential cellular processes, such as cell cycle progression, protein synthesis,
lipid metabolism and mitochondrial biogenesis (226,298,299). Treatment of DCs with the
mTOR inhibitor rapamycin interferes with antigen processing and presentation, partly by
regulating autophagy and production of MHC complexes, and also alters the response to
cytokines, chemokines, growth factors and TLRs agonists (226). It has been reported that
rapamycin-treated DCs do not directly induce aTreg differentiation (230), however, DC
exposure to a combination of rapamycin and TGFβ effectively potentiates the capacity of
DCs to induce aTreg differentiation (our unpublished results). It will be important to assess
whether and how maturation and differentiation signal alter the metabolic state (e.g.
oxidative versus glycolytic) of iDCs that give rise to either sDCs or tDCs, and how such
metabolic changes may be linked to the phenotypic and functional characteristics of these
versatile cells.
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5. Concluding remarks
It is becoming increasingly clear that both mature and immature DC subsets can support
immunological tolerance through Tregs and other mechanisms. A variety of environmental
cues that may arise naturally or by pharmacological or experimental intervention can coerce
iDCs to acquire a stable tolerogenic disposition that is preserved even in the face of
concomitant maturation signals. These tDCs can induce or enhance the suppressive function
of existing Tregs and convert activated Tns into aTregs. At present, we have only
rudimentary knowledge of the rules that govern tolerogenic versus immunogenic functions
of DCs, and the signals that tDCs use to transmit their suppressive message to T cells are
also still incompletely understood. A better understanding of these issues may offer new
opportunities for the treatment of autoimmunity, allograft rejection, allergy, asthma and
various forms of hypersensitivity. Therapeutic applications of tDCs, either by cellular
therapy or by targeting of endogenous DCs with novel drugs, could accomplish effects that
elude traditional strategies for immune suppression. Specifically, while systemic
immunosuppressants exert broadly paralyzing effects on immune cells, tDCs can induce
tolerance to the specific antigens that elicit pathologic immune responses in a patient
without compromising the immune defense against pathogens or tumors. While the prospect
of clinical translation is exciting and seems almost within reach, substantial gaps in our
knowledge remain to be filled before we will be able to exploit the full potential of tDC-
based therapy.
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Figure 1. Types of tolerogenic DCs and their mechanisms of action
Tolerogenic DCs (tDCs) participate to the establishment of T cell tolerance by a variety of
mechanisms, including the induction of anergy, deletion of antigen-reactive T cells,
stimulation of suppressive regulatory T cells (Tregs) either by activation of existing Tregs or
de novo differentiation of Tregs from Tns and production of anti-inflammatory cytokines
and other factors. Depending on the differentiation state of the DC and the site of
tolerogenic instruction, tDCs can be separated in natural tolerogenic DCs (ntDCs) and
induced tolerogenic DCs (itDCs). The steady state environment instructs ntDCs (and
includes iDCs) while itDCs arise during pathologies or after manipulation.
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Figure 2. Relationship of maturation status, tolerogenicity and immunogenicity among DC
subsets
Immature DCs (iDCs) receive activation signals from microbial byproducts or tissue distress
to acquire a mature phenotype, including the ability to migrate to lymph nodes and enhanced
antigen presentation and costimulatory capacities. These mature DCs are highly stimulatory
(sDC) and induce effector responses. Tolerogenic DCs (tDCs) include most iDCs but also
comprise some cells with advanced maturation status. Only iDCs can give rise to mDCs.
mDCs may loose their immunostimulatory capacity to become exhausted (exDC), however,
their role in the induction of Tregs remains uncertain.
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Figure 3. Education of immunogenic or tolerogenic DCs by environmental signals
Immature DCs (iDCs) perceive a myriad of inputs leading to their differentiation into sDCs
or tDCs. Upon engagement of danger signal receptors by microbes or cellular distress, the
presence of activating cytokines or changes in the abundance of certain metabolites, these
cells mature and become sDCs that migrate to the draining secondary lymphoid organs
(SLOs) using CCR7. Through presentation of cognate antigen and costimulatory surface
receptors as well as production of cytokines and the regulation of metabolites, sDCs coerce
naïve T cells (Tns) to become effector cells (Teffs). On the other hand, at steady state,
commensals and structural cells produce anti-inflammatory cytokines that in combination
with regular levels of metabolites and minute quantities of danger signals imprint tDCs to
migrate to SLOs using CCR7. Upon contact with antigen specific cells, tDCs induce the
differentiation of regulatory T cells (Tregs) through a variety of mechanisms. Toll-like
receptors (TLR), Nod-like receptors (NLR), RigI-like receptors (RLR), mammalian target of
rapamycin (mTOR), 1,25-dihydroxyvitamin D3 (1,25D3), thymic stromal lymphoietin
(TSLP), hepatocyte growth factor (HGF), vasoactive intestinal peptide (VIP),
Glucocorticoid (GC), all-trans retinoic acid (RA), prostaglandin E2 (PGE2), vascular
endothelial growth factor (VEGF), programmed death-1 ligand (PDL), carbon monoxide
(CO), Commensal (Comm).
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Figure 4. Induced-tolerogenic DCs
DCs progenitors (preDCs) and immature DCs (iDCs) from multiple sources are susceptible
to tolerogenic instruction by multiple strategies. These cells can be used as therapeutic tools
for the induction of antigen specific tolerance.
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