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Abstract
Neurological complications after cardiac arrest (CA) can be fatal. Although hypothermia has been
shown to be beneficial, understanding the mechanism and establishing neurological outcomes
remains challenging because effects of CA and hypothermia are not well characterized. This paper
aims to analyze EEG (and the α-rhythms) using multiscale entropy (MSE) to demonstrate the
ability of MSE in tracking changes due to hypothermia and compare MSE during early recovery
with long-term neurological examinations. Ten Wistar rats, upon post-CA resuscitation, were
randomly subjected to hypothermia (32 °C–34 °C, N = 5) or normothermia (36.5 °C–37.5 °C, N =
5). EEG was recorded and analyzed using MSE during seven recovery phases for each
experiment: baseline, CA, and five early recovery phases (R1–R5). Postresuscitation neurological
examination was performed at 6, 24, 48, and 72 h to obtain neurological deficit scores (NDSs).
Results showed MSE to be a sensitive marker of changes in α-rhythms. Significant difference (p <
0.05) was found between the MSE for two groups during recovery, suggesting that MSE can
successfully reflect temperature modulation. A comparison of short-term MSE and long-term
NDS suggested that MSE could be used for predicting favorability of long-term outcome. These
experiments point to the role of cortical rhythms in reporting early neurological response to
ischemia and therapeutic hypothermia.
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I. INTRODUCTION
Cardiac arrest (CA) is the leading cause of deaths in the United States [1]. In United States,
about 460 000 sudden cardiac deaths were reported in 1999 [2]. The survival rate after CA is
generally low: only 2%–9% following out-of-hospital CA [3]. Poor functional outcomes,
such as coma or persistent vegetative state, are prevalent among survivors, with only 3%–
7% survivors resuming normal functioning [4]. Devastating neurological complications
induced by CA and early reperfusion are recognized as the main causes of short-term and
long-term mortality and morbidity [5]. While various neuroprotective strategies have failed
to improve the outcome statistics for CA [6]–[10], the neuroprotective effect of mild
hypothermia was confirmed in animal models of global ischemia [11], [12] and human
clinical trials [13], [14]. In 2005, the International Liaison Committee on Resuscitation and
the American Heart Association recommended the use of therapeutic hypothermia in
comatose survivors from CA [15]. Yet, therapeutic hypothermia is still underutilized, partly
because there is no established method to track and verify the benefits of hypothermia
during post-CA recovery [16].

Recent studies have suggested that different brain regions have different sensitivity to
hypothermia [11], [17]. Previous pathological studies revealed that hypoxic-ischemic insult
predominantly affects the cerebral cortex, basal ganglia, thalamus, hippocampus, and brain
stem. The thalamus plays an important role in regulating states of arousal and the level of
awareness. Damage to the thalamus may lead to permanent coma [18]. However, there is no
definite conclusion about the effects of hypothermia on the thalamus [17], [19]. Therefore,
we are interested in investigating the effect of therapeutic hypothermia on the thalamus, as
well as the relationship between the status of the thalamus and post-CA recovery outcomes.
Recent research reported in several animal models and human clinical trials suggests that the
α-rhythm is strongly influenced by the thalamus [20], [21]. The thalamic lesions can lead to
pronounced disorganization or even complete suppression of α-rhythms [22], [23].
Therefore, we may infer the evidence of thalamic lesions through the monitoring and
analysis of α-rhythms.

EEG is a noninvasive global measure of electrical activity in the brain, and is commonly
employed for neuromonitoring [24]. It is influenced by various interacting mechanisms in
the brain. Living organs, including the brain, can be seen as a system with high complexity,
allowing for adaptive responses to a broad range of stimuli [25]. A reduction in complexity
is often interpreted as an unhealthy state for a biological system [26]–[28]. Given that the α-
rhythm (a pattern of 8–12 Hz oscillations in EEG) is attributed to synchronous activity in
thalamic pacemaker cells [18], the changes in complexity of α-rhythms may reveal different
degrees of function. These changes in complexity can be tracked using an appropriate
entropy analysis.

Our first objective is to analyze the changes in the complexity of EEG (and the component
α-rhythms) before, during, and after CA using MSE; our second objective is to demonstrate
the ability of MSE in tracking changes in EEG due to temperature modulation
(normothermia and hypothermia); our third objective is to compare MSE during early
recovery (within 3 h) with long-term (72 h) NDSs to examine the relationship between these
two numerical measures.

II. MATERIALS AND EXPERIMENTS
Ten male Wistar rats (325 ± 25 g, Charles River, Wilmington, MA) were used in our
experiments. The animals were divided into two groups of five each. All rats in both groups
were subjected to asphyxia-induced CA for 7 min, resuscitated, and subjected to therapeutic
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hypothermia (32 °C–34 °C) or normothermia (36.5 °C–37.5 °C). The protocol described
shortly [41], [42] was approved by the Institutional Animal Care and Use Committee of the
Johns Hopkins Medical Institutions.

A. Globally Ischemic Rat Model of CA
Rats were ventilated with 1.5% halothane and N2/O2 (1:1). The femoral artery and vein were
cannulated for sampling arterial blood gas (ABG) and monitoring arterial blood pressure.
EEG was recorded for the first 5 min as baseline (BL) with halothane and the following 5
min without halothane to wash out the possible residual effects of halothane on EEG [42].
Seven minute CA was initiated with cessation of mechanical ventilation. The
cardiopulmonary resuscitation (CPR) was performed by chest compression until return of
spontaneous circulation (ROSC), which was defined as mean arterial blood pressure
(MABP) higher than 60 mmHg [41]–[46]. During the experiments, ABG was sampled
during BL, 10, 20, and 40 min after resuscitation.

B. Temperature Modulation Immediately After ROSC
Core temperature of the animals was monitored by an intraperitoneal sensor (G2 E-mitter
870-0010-01, Mini Mitter, Sun River, OR) implanted one week before experiments [41]–
[46]. Therapeutic hypothermia (32 °C–34 °C) was induced immediately after ROSC through
surface cooling with misted water in hypothermia group. The temperature transition duration
was approximately 16 min. Therapeutic hypothermia was maintained for 6 h, and then, the
rats were rewarmed to 37 °C over another 2 h [41]–[46]. In the normothermia group,
normothermia (36.5 °C–37.5 °C) was maintained for 8 h after ROSC. All rats in two groups
were kept inside a neonatal incubator (Isolette infant incubator model C-86, Air-Shields,
Hatboro, PA) for the first day after temperature modulation in case of temperature
fluctuation.

C. EEG Recording
Two channels of EEG using epidural screw electrodes (Plastics One, Roanoke, VA) were
recorded continuously for 3 h from the beginning of the experiments in the right and left
parietal areas of the rats. The sampling rate was 250 Hz and the cutoff frequency was 30 Hz
for low-pass filter. Serial 30-min EEG recordings were conducted at 6, 24, 48, and 72 h for
all rats.

D. Neurological Evaluation
NDS was evaluated at 6, 24, 48, and 72 h for all rats in order to test post-CA functional
recovery, such as the level of arousal, respiration, brain-stem function, and motor behavior
[41]. The NDS, similar to normal procedures for human neurological examination, is
established for functional recovery examination on animal models. NDS ranges from 0
(worst outcome) to 80 (best outcome). The evaluation was performed by an independent
trained observer blind to the experiments. Here, good neurological states were defined as 72-
h NDS ≥ 60, while poor neurological states were defined as 72-h NDS < 60 based on our
previous experience and observation [42]–[46].

III. METHODS AND QUANTITATIVE ANALYSIS
A. Preprocessing of EEG Signals

EEG was first checked for artifact contamination, such as mechanical artifacts induced by
CPR or AC power 60 Hz noise. Analysis was performed in both time domain with WinDaq
software (Data Instruments, Akron, OH) and in frequency domain with MATLAB
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(MathWorks, Natick, MA). The contaminated channels of EEG were excluded from further
analysis.

B. Sample Entropy (SampEn)
SampEn is defined as the negative natural logarithm of the conditional probability that two
sequences similar to each other for the first m points remain similar at the next m + 1 points,
while self-matches are excluded [33]–[35]. It measures the complexity in a time series on a
single time scale. There are two specified SampEn parameters: pattern length m(m ≥ 1) and
tolerance level r for similarity comparison. Given a 1-D time series X = {x(1), x(2),…,
x(N)}, SampEn is calculated as follows [33]–[35]: first, construct N − m + 1 vectors

(1)

and the distance between two vectors is defined as absolute maximum difference between
the corresponding scalar components

(2)

where 0 ≤ k ≤ m − 1. Given r,  is defined as 1/(N − m) times the number of vectors
Xm(j) falling within vector distance r of Xm(i), where 1 ≤ j ≤ N − m(j ≠ i)

(3)

Similarly,  is defined as 1/(N − m − 1) times the number of vectors Xm+1(j) falling
within vector distance r of Xm+1(i), where 1 ≤ j ≤ N − m − 1

(4)

SampEn is defined as

(5)

C. Multiscale Entropy (MSE)
MSE is designed to measure time-domain complexity in a signal over multiple time scales.
A time scale factor (λ) is set as the width of nonoverlapping time windows. The mean of all
the samples within each time window of the original time series Y = {y1, y2, …, yN } is
calculated and used to form a new coarse-grained time series. The coarse-grained time series

 obtained for a given λ is denoted by

(6)
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where ⌊⌋ denotes the integer part. Scalar entropy is calculated for each coarse-grain time
series. Since SampEn is used in the first introduction of MSE [29] and most commonly
applied in previous MSE analysis [36]–[40], SampEn was applied in our MSE analysis of
the complexity in EEG. We have tried different combinations of m (m = 1, 2) and r values
(0.1 ≤ r ≤ 0.25), and they gave similar results in the MSE analysis. Here, we used m = 2 and
r = 0.1 σY. SampEn is plotted against time scale factors to form MSE curves (Figs. 1 and 2).

We divided EEG obtained from each experiment in both groups into seven recording phases:
BL, CA, and five recording phases R1–R5 during postresuscitation recovery according to
our experimental protocol (Fig. 3). The recording phase CA is followed by electric silence
for approximately 15 min before the reappearance of continuous EEG bursting, and thus, the
first recovery period starts at 32 min. For a series of consecutive time scale factors λ ranging
from 1 to 40, 40 corresponding coarse-grained time series are generated for seven recording
phase, respectively.

Here, a typical MSE curve can be seen to saturate after a monotonic increase with the first
20 time scale factors λ (Figs. 1 and 2).We define the saturation value of each MSE curve,
which is the average of SampEn corresponding to time scale factors λ ranging from 20 to 30,
as MSEα here. Given the sampling rate of 250 Hz in our EEG recording system, the time
scale factors λ = 20 to λ = 30 approximately correspond to the α-rhythm (8–12 Hz) since

(7)

(8)

Therefore, MSEα mainly reflects the changes in the complexity in the α-rhythms.

D. Statistical Methods
In order to uncover the relationship between MSEα and 72-h neurological performance of
the rats, the Pearson correlation coefficients and the corresponding p-values out of bivariate
analysis between MSEα and NDS are calculated for the two groups. Because different SDs
are observed in the NDS and the MSEα between the normothermia and hypothermia groups,
data in the normothermia and hypothermia groups are compared to each other using two
sample t-test under the assumption of unequal population variances. p < 0.05 was treated as
significant. All the data are expressed as the mean ± SD.

IV. RESULTS
A. Recovery Outcomes Summary

The evaluation of NDS at 6, 24, 48, and 72 h in the normothermia and hypothermia groups
showed that the NDS of the hypothermia group was significantly higher than that of the
normothermia group at 6 and 24 h, indicating better functional recovery in the hypothermia
group during the acute stages of recovery (Table I). Moreover, the number of hypothermic
rats with better neurological recovery was greater than that of normothermic animals in
every NDS examination (Table II).
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B. MSE Curve
A single MSE curve was generated for each recording phase for every rat in the
normothermia and hypothermia groups (Figs. 1 and 2). Through the observation of MSE
curves in Figs. 1 and 2, we can see that good experimental outcomes (72-h NDS ≥ 60)
would appear when the MSE curve for R5 is either very close to or above the MSE curve for
BL over most of the time scales; and poor experimental outcomes (72-h NDS < 60)would
turn up when the MSE curve for R5 is far below the BL MSE curve over the same time
scales. In order to quantify the relationship, MSEα for each recording phase was calculated
and compared between the two groups (Table III). There was significant difference in MSEα
between the normothermia and hypothermia groups in R2–R4. We found that good recovery
outcomes was always associated with MSEα (R5/BL) greater than 0.85 (Table IV).

C. Correlation Between MSEα and NDS
In order to uncover the relationship between α-rhythms during the acute stages of recovery
and the recovery outcomes within three days, the Pearson correlation coefficients and the
corresponding p-values between NDS and MSEα were calculated for the two groups,
respectively. MSEα of the normothermia group in R3–R5 had high correlation with NDS at
24, 48, and 72 h. On the other hand, the correlation between MSEα of the hypothermia group
and NDS at four examination times (Table V) was low. Fig. 4 shows that the binary
classification of the 72-h recovery outcomes as good or poor with the threshold of 0.85 for
MSEα (R5/BL) and the threshold of 60 for NDS [42]–[46]. The good and poor recovery
outcomes are well separated into two distinct clusters, indicating that MSEα (R5/BL) can
classify the 72-h recovery outcomes as favorable and unfavorable.

V. DISCUSSION
EEG as a tool for neuromonitoring is easily accessible in clinics. Neurologists usually
inspect EEG to obtain the information about the patients’ neurological status. However, the
determination of neurological status of the brain from simple EEG inspection does not
provide enough information for early prediction of long-term outcomes. The first few hours
during the postresuscitation period constitutes the most critical time for therapeutic
interventions to minimize potential brain injury induced by CA and early reperfusion. Our
results suggest that 72-h recovery outcomes from global ischemia CA may be predicted
early and divided into two classes as favorable and unfavorable during the first 3-h
postresuscitation period using the MSE analysis. Neurologists may further adopt therapies
such as therapeutic hypothermia to improve recovery outcomes. The limitation is that MSEα
(R5/BL) needs the BL information, which may not be available in real clinical situations,
especially for patients suffering from out-of-hospital CA. Yet, according to our results in
rats, MSEα (BL) for both groups showed little variation: 2.37 ± 0.11. In real clinical
occasions, neurologists may define MSEα (BL)s from normal subjects in different age
groups and genders.

The beneficial effects of therapeutic hypothermia on post-CA recovery have been proved in
various animal models [47], [48] and human clinical trials [49], [50]. However, several
challenges and uncertainties persist in its application, including and not limited to the effects
of hypothermia on different EEG subbands as well as related brain structures, and the
understanding of basic mechanism. While MSE can show the change in the complexity of
each EEG subband over multiple time scales, MSEα can be considered as a measure of
complexity level within the α-rhythms. The significant difference in MSEα between the
normothermia and hypothermia groups in R2–R4 (Table III) indicates the significant
difference in the complexity of the α-rhythms under temperature modulation. Table III also
shows that in the normothermia group, MSEα (R5) is about 25% less than MSEα (BL), and it
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may indicate the decreased complexity level in the α-rhythms due to the ischemia in CA and
early reperfusion. In the hypothermia group, MSEα (R5) is 1% less than MSEα (BL), and it
shows that there is little decrease in the complexity of the α-rhythms under hypothermia. We
have previously shown that it is not the temperature (32 °C–34 °C) itself that causes the
change in EEG, but the response of the injured brain to hypothermia as manifested in the
quantitative EEG analysis [51]. The loss of complexity in the α-rhythms in the
normothermia group is in accordance with the “complexity-loss” theory in the unhealthy
organs [30], [31]. It may suggest that the neurological injuries induced by CA in the
thalamus reduce the thalamus’s capability to respond to various stimuli, and therapeutic
hypothermia has significant neuroprotective effect on the thalamus. Yet, further detailed
investigation is needed to confirm the projection.

The significant differences in NDS at 6 and 24 h between the normothermia and
hypothermia groups indicate that temperature modulation has significant effects on early
recovery outcomes (Table I). On the other hand, the loss of significant differences between
the normothermia and hypothermia groups in NDS at 48 and 72 h may indicate that 6-h mild
hypothermia has limited neuroprotective effects on the eventual recovery outcomes, and the
effects of mild hypothermia with longer duration on the neurological recovery outcomes
may be worth of further investigation.

We hypothesizes that the decreased complexity associated with the α-rhythms serves as
potential evidence of neurological injuries in the thalamus, and the results in Table IV
indicate that the degeneration in the thalamus may be a factor in poor recovery outcomes
during the acute stages of postresuscitation period under normothermia. The poor correlation
between MSEα and NDS in the hypothermia group (Table V), we hypothesize, may indicate
that recovery outcomes from CA may be the results of neurological injuries under
hypothermia in brain regions other than the thalamus under hypothermia. Histological
examination as well as experimentation with multichannel recording in the thalamus and
other related brain structures may be needed to confirm our hypotheses.

Limitations of this study include a small number of animals. The results of EEG analysis are
quite consistent and statistically significant with this cohort. However, mechanistic insight
on the cortical injury as well as reaching conclusions on hypothermia efficacy would require
larger cohorts. Another potential limitation of our study is the lack of corresponding
histopathological data to support our hypothesis. Though our group has previously
demonstrated that the histopathological markers for ischemic neuron death in various brain
regions correlate with quantitative EEG and NDS measures [41], we also realize that
postmortem histologic markers in rats are poor indicators of clinical significance in human
trials of the same therapies if used as the only method [52], and neurobehavioral studies
would be more predictive [53]. Consequently, in this paper, more attention is put on
biological complexity measures (MSE) and neurological recovery outcomes (NDS). Our
observation and analysis are based on EEG recorded during the first 3 h after resuscitation.
Additional experiments under different degrees and durations of hypothermia, followed by
signal analysis with a longer observation window for EEG, would be done to demonstrate
the utility of EEG analysis in long-term monitoring and prognosis.

VI. CONCLUSION
Our results suggest that the MSE analysis can be used to track and differentiate the changes
in complexity of each EEG subband over multiple time scales under hypothermia and
normothermia. Specifically, MSEα can characterize the complexity in α-rhythms in different
recording phases of the experiments, and is reflective of the benefit of hypothermia during
the acute stages of recovery. The ratio MSEα(R5/BL) may be used as a numeric index for
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early prediction and classification of late recovery outcomes (good/poor). Given that
decreased complexity of α-rhythms partially represents neurological injuries in the thalamus,
we hypothesized that therapeutic hypothermia may produce significant neuroprotective
effect on the thalamus early after resuscitation. These experiments have the potential to help
uncover the mechanism of early neurological response to therapeutic hypothermia and
produce major shift in brain recovery monitoring with clinical translation.
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Fig. 1.
MSE curves for the seven different recording phases in all five normothermia experiments.
(a)–(e), respectively, represent the results from MSE analysis for a normothermia
experiment. Take (a) for example, there are seven MSE curves within (a), and each MSE
curve corresponds to a recording phase in an experiment from BL to R5 defined in Fig. 3. In
each MSE curve, SampEn increases monotonically with time scale factor ranging from 1 to
19, and reaches a “plateau” or “saturation” when time scale factor ranges from 20 to 40. For
each MSE curve in CA, SampEn stays significantly low compared to those in other
recording phases. The results show that the saturation value of MSE curves is the highest in
BL and the lowest in CA except in (c), where the saturation value in R5 is the highest and
the saturation value in BL is the second highest. In (a) and (b)–(e), the saturation value in R5
is always lower than that in BL, along with poor recovery outcomes (72-h NDS < 60).
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Fig. 2.
MSE curves for the seven different recording phases in all five hypothermia experiments.
(a)–(e), respectively, represent the results from MSE analysis for a hypothermia experiment.
Take (a) for example, there are seven MSE curves within (a), and each MSE curve
corresponds to a recording phase in an experiment from BL to R5 defined in Fig. 3. In each
MSE curve, SampEn increases monotonically with time scale factors ranging from 1 to 19,
and reaches a “plateau” or “saturation” when time scale factor ranges from 20 to 40. Unlike
the conditions in the normothermia group, most of the MSE curves in R5 are very close to or
above the MSE curves for BL, along with good recovery outcomes (72-h NDS > 60).
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Fig. 3.
Timeline for EEG recording in ischemia CA rodent experiments and the following
neurological evaluation. BL lasts from the start of the experiment to 5 min, while ischemia
CA lasts from 10 to 17 min. The recovery period includes five recording phases R1–R5,
lasting from 32 to 179 min relative to the beginning of the experiment. NDS evaluation
follows the EEG recording at 6, 24, 48, and 72 h after CA.
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Fig. 4.
Binary classification of 72-h recovery outcome represented by NDS as good (circles) or
poor (squares) with MSEα (R5/BL). Good recovery outcome is defined as 72-h NDS ≥ 60
(horizontal line corresponding to NDS = 60) and vice versa [41]–[45]. The result indicates
that with the threshold of 0.85 for MSEα (R5/BL) (vertical line corresponding to MSEα
x(R5/BL) = 0.85), 72-h recovery outcomes can be well classified into two clusters without
any overlap. Point A is an outlier, representing a rat with MSEα (R5/BL) = 0.81 died before
72-h NDS examination.
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TABLE I

NDS (mean ± SD) for normothermia and hypothermia groups at different stages of post-CA recovery

NDS(6H) NDS(24H) NDS(48H) NDS(72H)

Normothermia (N = 5) 43.2±5.31 55.8±11.69 57.75±11.56 55.8±11.69

Hypothermia (N = 5) 55.8±6.38 71.6±3.58 73.2±1.10 71.6±3.58

p-value <0.01 0.03 0.09 0.07
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TABLE II

Number of animals with favorable outcomes at different stages of post-CA recovery in normothermia and
hypothermia groups

6H 24H 48H 72H

Normothermia (N = 5) 0 2 1 1

Hypothermia (N = 5) 2 5 5 5
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TABLE IV

MSEα (BL/R5) and corresponding 72-h NDS for all rats

ID MSEα(BL/R5) 72-hr NDS Condition

rat #1 0.81 0 Normothermia

rat #2 0.60 46 Normothermia

rat #3 0.48 50 Normothermia

rat #4 0.82 59 Normothermia

rat #5 1.04 72 Hypothermia

rat #6 1.07 74 Normothermia

rat #7 1.01 74 Hypothermia

rat #8 0.96 75 Hypothermia

rat #9 1.07 78 Hypothermia

rat #10 0.88 80 Hypothermia
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