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Abstract
Burst suppression (BS) activity in EEG is clinically accepted as a marker of brain dysfunction or
injury. Experimental studies in a rodent model of brain injury following asphyxial cardiac arrest
(CA) show evidence of BS soon after resuscitation, appearing as a transitional recovery pattern
between isoelectricity and continuous EEG. The EEG trends in such experiments suggest varying
levels of uncertainty or randomness in the signals. To quantify the EEG data, Shannon entropy and
Tsallis entropy (TsEn) are examined. More specifically, an entropy-based measure named TsEn
area (TsEnA) is proposed to reveal the presence and the extent of development of BS following
brain injury. The methodology of TsEnA and the selection of its parameter are elucidated in detail.
To test the validity of this measure, 15 rats were subjected to 7 or 9 min of asphyxial CA. EEG
recordings immediately after resuscitation from CA were investigated and characterized by
TsEnA. The results show that TsEnA correlates well with the outcome assessed by evaluating the
rodents after the experiments using a well-established neurological deficit score (Pearson
correlation = 0.86, p ⪡ 0.01). This research shows that TsEnA reliably quantifies the complex
dynamics in BS EEG, and may be useful as an experimental or clinical tool for objective
estimation of the gravity of brain damage after CA.
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I. Introduction
WITH THE advent of modern cardiopulmonary resuscitation (CPR) accompanied by
defibrillation, the mortality from cardiac arrest (CA) has been reduced. However,
neurological outcome after CA remains a major cause for concern with poor, long-term
neurological sequelae [1]. Cerebral cortex is very sensitive to generalized ischemia caused
by circulatory arrest. Presently, no clinically satisfied neurological diagnostic or monitoring
tools are available to assess the brain function and its recovery after CA. EEG reflects the
postsynaptic potentials generated from cortical neurons. It constitutes a valuable tool for
continuous evaluation of brain injury or dysfunction. Quantitative EEG measure may further
be useful for accurate injury stratification, and perhaps early prognostication [2]-[5].
Previous research has shown that remarkable EEG recovery patterns are observed following
cerebral circulatory deprivation as a result of dynamic changes in brain perfusion and
electrophysiological recovery. Moreover, these patterns are tightly correlated with
postischemic cerebral damage [6]-[10].

The term burst suppression (BS) is used to describe the EEG pattern characterized by θ and/
or δ waves, at times intermixed with faster waves, and intervening periods of relative
quiescence [11]. Such BS events often appear in survivors of cerebral circulatory arrest
subjected to life-sustaining treatments [12]. Although BS is also reported in anesthetic state
and neurosurgically isolated cerebral cortex, this paper focuses on the BS soon after cerebral
circulatory arrest. Our previous studies in an animal model of global ischemic brain
demonstrated that timely emergence of bursts, leading to a continuous or fused EEG rhythm
was associated with a good neurological outcome. On the other hand, persistent BS pattern
with lower burst frequency occurred in animals with bad recovery [8], [10]. Thus, although
BS observations provide valuable diagnostic and predictive information on the eventual
neurological outcome, objective evaluation of the complex data is essential. Developing a
quantitative measure that defines this sequence of events will help in the rigorous evaluation
of injury severity and the extent of recovery in these subjects.

Among the techniques used to analyze BS EEG, burst count has previously been accepted as
a simple method [10], [13]. However, manual burst count is time consuming, and it excludes
some important discriminative information such as the shape of burst waveform and the
duration of each burst or suppression epoch. Besides burst count, measures such as EEG
amplitude in suppression epochs and the duration of BS period are also found to be
associated with neurological recovery after CA [10], [12], [14]. For all these measures, the
problem of subjectivity cannot be ignored despite established assessment criteria to maintain
consistency between different EEG examiners [10]. Given the close prognostic relationship
between electrical and neurological recovery from brain injury, and the putative role of BS
in the recovery, there is a need to develop objective and reliable methods to quantify the
characteristics of BS activity in EEG recordings.

Entropy is a measure of order and disorder in a dynamical system according to information
theory [15]. It shows promise in prognosticating the degree of brain injury after CA [3], [4],
[16]. Entropy may be an ideal technique for monitoring injury because BS pattern with its
rhythmicity or regularity would have low entropy compared with continuous EEG that is
more random. Tsallis entropy (TsEn) [17], [18] plays a central role in nonextensive
statistical mechanics. It is successful at describing systems with long-range interactions,
multifractal space-time constraints, or long-term memory effects [19]. TsEn also allows
incorporation of an entropy scaling parameter with which short- and long-range interactions
can be probed. EEG spikes, bursts, and continuous or fused rhythms may thus be
differentiated with the help of Tsallis statistics. The goal of this paper is to develop a
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quantitative estimation of BS activity based on Tsallis statistics. A measure called TsEn
Area (TsEnA) is proposed. It combines the aforementioned discriminative EEG features
during early recovery period after asphyxial CA into a single value. Then, this measure is
applied to comprehensively evaluate the incidences of BS events occurring throughout
recovery after resuscitation from CA. It is expected that TsEnA correlates closely with a
standardized neurological deficit score (NDS), which is a well-established estimation of
neurological outcome in clinic [2], [3], [13].

II. Mathematical Method and Physiological Foundation
A. TsEn and Nonextensivity of EEG System

Entropy, which is defined as a measure of uncertainty, could be used to reveal the
complexity of a dynamical system. The most basic entropy measure used to analyze system
complexity is Shannon entropy (ShEn), which is defined as [15]

(1)

where {pi} are the probabilities associated with W microscopic configurations with

. ShEn is based on Boltzmann–Gibbs statistical mechanics and standard
thermodynamics in which the effective microscopic interactions and the microscopic
memory are of short range [18]. ShEn has extensivity (additivity) as

(2)

where A and B are two independent systems in the sense that

In spite of its great success in analysis of extensive systems, ShEn could not properly
describe systems with long-range interactions, long-term memory effects, or abrupt changes
[20]. A nonextensive statistics, known now as TsEn, was proposed by Tsallis [17], [18],
which was defined as

(3)

when q→1, TsEn in (3) recovers to the definition of ShEn as follows:

(4)

TsEn is nonextensive and holds the following pseudoadditivity rule [18]:
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(5)

where the parameter q measures the degree of nonextensivity [19], with q < 1, q = 1 (i.e.,
ShEn), and q > 1, respectively, corresponding to superextensive [TsEn(A∪B) > TsEn(A) +
TsEn(B)], extensive, and subextensive [TsEn(A ∪ B) < TsEn(A) + TsEn(B)] statistics. TsEn
is consistent with Laplace’s maximum ignorance principle, i.e., it is extreme at
equiprobability (pi = 1/W ∀i).This extremum is given by [18]

(6)

which, in the limit q→1, gives the extremum of ShEn as

(7)

Tsallis’ work establishes a generalization of Boltzmann–Gibbs statistics that can properly
describe the longstanding quasi-stationary state and weakly ergodic phenomenon in long-
range interacting systems [18]. Although the generalization of nonextensivity was
understood in the thermodynamical sense from earlier times, it now gets broader application
beyond thermodynamics, and TsEn has been widely used in biomedical signal processing
such as analysis of ECG [21] and EEG [22], [23] recently. Studies showed that the Tsallis
environment could provide more detailed information than the conventional Shannon
counterpart, especially when used as burst or spike EEG analysis [22], [24], [25].

EEG signals result from the temporal and spatial summation of postsynaptic potentials from
cortical pyramidal cells [26], which are eventually projected on the scalp. Nonextensivity is
inherent in EEG because of long-range interactions [27]: electrical information is
transmitted across different cortical areas and feedback loops that are composed of
corticothalamic and thalamocortical networks [28]. Therefore, it is rational and necessary to
use a nonextensive measure instead of Shannon one to get a grip on the long-range effects in
EEG. In addition, since mutual information exists among different neuron clusters, it is
reasonable to consider EEG as a subextensive system (i.e., q > 1) [22], [23]. For example,
there is TsEn(A ∪ B) < TsEn(A) + TsEn(B), where A and B are two neuronal clusters in
cortex that contribute to the EEG activity (see Fig. 1).

This paper analyzes sequential EEG segments with a sliding window of 3000 points (12 s)
and an overlap of 1500 points (6 s). At a data length of 3000 points, the entropy bias
introduced by the finite window can be neglected [29]. To properly estimate the probability
distribution {pi} and obtain a “smooth” histogram, the number W of microstates is fixed to
50 according to our previous work [22], [23], [25]. Although the parameter q plays an
important role in the result of TsEn computation, there has been no established method to
optimize its value. When analyzing EEG or other signals, most researchers try different q
values, and optimize the selection based on some criteria and their data characteristics [22],
[23], [30]. It has been shown previously that the value of TsEn decreases monotonically
with the parameter q [17] while “the spike-detection-power” grows gradually with q [22],
[23]. Therefore, the TsEn is calculated and compared with four empirically determined
values of q = 0.5, 1, 3, and 5 in this paper (TsEn recovers to ShEn when q = 1). In these
cases, TsEn/ShEn saturates at the extremum of 12.1, 3.91, 0.500, and 0.250 according to (6)
and (7).
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B. BS Features in EEG
BS is defined as bursts of variable duration separated by periods of generalized suppression
lasting at least 1 s [31]. The bursts may range from high-amplitude δ activity or polyspike
and slow-wave complexes [5], simultaneously appearing in all EEG channels. BS pattern is
generally accepted as a dissociation of the cortex from the intrinsic pacemaker neurons in
the reticular thalamic nucleus [26]. Bursts in EEG are a reflection of cortical excitability to
input from thalamocortical neurons [26], [32], while the suppression epoch is a reflection of
the refractory period of cortical neurons [31]. Our previous studies in animal model have
shown that: 1) burst frequency is higher in subjects with good neurological outcomes [10],
[13] and 2) the EEGs in poor outcome animals are rather flat during suppression period [9],
[14]. It seems that frequent bursts in EEG reveal less dysfunction in cortical neurons and/or
relatively unhindered pathway from thalamocortical neurons to cortical neurons. In addition,
higher amplitude of EEG background during suppression period very likely denotes that less
injury caused by asphyxia in cortical neurons for the generation of slow waves is the
intrinsic feature of normal cortical neurons in the isolated cortex [32], [33]. Finally, the time
latency of EEG recovery from cerebral circulation arrest also provides diagnostic and
prognostic information [6], [10], [12]. We name this discriminative factor as duration of BS
(i.e., the time from the first sign of bursts to establishment of continuous EEG). During early
recovery period after CA, plentiful oxygen and glucose drive cortical neurons back toward
their normal function—eliciting rhythmic potentials from thalamocortical activity [26].
Therefore, the faster the cortical neuronal function normalizes, the shorter the duration of BS
in EEG.

C. Relationship Between TsEn and BS Features
In this section, simulation data are used to illustrate the relationship between the
aforementioned BS features and TsEn statistics. Three-thousand-point simulated EEG is
composed of intermingled spikes and colored noise with the low-frequency band ranging
from 0.5 to 10 Hz (for EEG suppression). The effect of burst frequency on TsEn is shown in
Fig. 2. It is found that TsEn increases as more spikes are added to the background time
series. Concomitantly with the increase of burst frequency (i.e., suppression epochs with low
amplitude are replaced more and more by synthetic bursts), probability density function
(pdf) of data, which is estimated using the histogram method, tends toward a flatter and
more uniform distribution.

To quantify the relative amplitude of burst and suppression in EEG, a measure called BS
ratio of amplitude (BSRa) is defined as the amplitude ratio of burst to suppression. Then, the
amplitude of EEG suppression (simulated by low-frequency noise) is varied to test the effect
of BSRa on TsEn. Fig. 3 shows that increasing amplitude of suppression makes the pdf
broaden and flatten. In other words, larger BSRa leads to sharper pdf. As seen in Fig. 3,
TsEn decreases monotonically and significantly with increasing BSRa.

D. TsEn Area (TsEnA)
According to the illustrations in Section III-B and III-C, the three EEG features (i.e., burst
frequency, BSRa, and duration of BS) are combined into a measure based on TsEn statistics
to grade the BS EEG after CA. We define TsEnA as the area in TsEn-time (y–x) plane below
the extremum of TsEn and above the curve of TsEn, with the time duration that covers the
entire BS pattern period after CA. Mathematically, TsEnA is defined in the following
format:
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(8)

where t1 and t2 are the starting time and end time of BS duration. The hypothesized
relationships among BS features, TsEnA, and neurological outcomes are shown in Fig. 4.

III. Experiments and Statistical Methods
A. Animal Experiments

The Animal Care and Use Committee of the Johns Hopkins Medical Institutions approved
the experimental protocol used in this study. Fifteen adult male Wistar rats (300–350 g,
mean = 330 g) were randomly assigned to 7-min (ten rats) or 9-min (five rats) asphyxial
insults. CA and resuscitation protocol were performed as previously reported [9], [34].
Anesthesia was induced with 4.5% halothane, followed by tracheal intubation. The femoral
artery was cannulated for the monitoring of mean arterial pressure (MAP). After
preparation, baseline EEG was recorded for 5 min followed by 5 minutes washout. Then
global asphyxia was induced for 7 or 9 min by clamping the tracheal tube and disconnecting
the ventilator. After asphyxia, CPR was initiated. Return of spontaneous circulation (ROSC)
was defined as achievement of spontaneous MAP > 60 mmHg. To minimize the drug effect
on EEG, no anesthesia was provided postresuscitation. The core temperature of the subject
was maintained throughout the experiment at 36.5 °C–37.5 °C and for the first 24 h.

The neurologic functional outcomes were evaluated using NDS, which included subsores of
general behavioral deficit, brain-stem function, motor and sensory assessment, behavior, and
seizures [2]. NDS is scored in the range from 0 (worst outcome) to 80 (best outcome).The
NDS of rats was determined 72 h after ROSC by an independent observer. Good
neurological outcome is defined as NDS ≥ 60, while NDS < 60 is considered as poor
outcome [10].

Two channels of bipolar EEG were recorded using anterior versus posterior differential
montage in the right and left parietal areas (DI700 Windaq system). A ground electrode was
placed in the midline. Recording continued from baseline to postresuscitation period for a
total recording time of 400 min. The signals were digitized using the data acquisition
package CODAS (DATAQ Instruments, Inc., Akron, OH). Sampling rate was 250 Hz. A/D
conversion of 12 bit was used. EEGs were bandpass-filtered (0.5–70 Hz). The first burst was
defined by the following criteria: sharply contoured morphology, after-going slow wave, and
conspicuity from background [13].

B. Statistical Methods and Performance Estimation
Pearson correlation of bivariate analysis is used to evaluate the correlation between 72-h
NDS and TsEnA measurement. Large correlation coefficient with small p value (i.e., less
than 0.01) apparently provides a reliable estimation of neurological outcomes. To quantify
the dynamic range of TsEnA values obtained from different rats given certain q, we define a
parameter relative dynamic range (RDR, in decibels) as

(9)
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which gives an objective estimation of the dynamic range of TsEnA among the whole
population of subjects. TsEnA measurement with large RDR presents obvious differences
between poor-outcome rats and good-outcome rats, and thus provides a better
distinguishability in brain injury stratification. In this paper, Pearson correlation coefficient
(between TsEnA and NDS) and RDR are chosen as criteria to evaluate the performance of
TsEnA measure with q ranging from 0.5 to 5.

IV. Results
EEG becomes highly suppressed and quickly changes to an isoelectric tracing within
seconds after CA. About 16 min (16.4 ± 1.9) after ROSC, EEG visibly returns as a BS
pattern. Then, the bursts gradually merge into background activity, while the spontaneous
EEG recovers. TsEnA values are calculated with q = 0.5, 1, 3, and 5 in all EEG recordings,
and the results are averaged between left and right channels (see Table I). The time duration
of TsEnA is defined from 22 to 250 min (0 min is the start point of recording). The starting
time t1 in (8) is chosen as 22 min to avoid the artifact induced by CPR (5 min baseline +5
min washout + 7 or 9 min asphyxia + CPR within 2 min). The end time t2 is selected as 250
min to include almost all the BS activity in EEG. Fig. 5 shows two typical results from
animals with good (NDS = 74, rat 1) and poor outcomes (NDS = 46, rat 15), respectively (q
= 3). The results show that TsEn (q = 3) is stable during baseline and during the late period
of recovery, while it drops and fluctuates distinctly during early recovery due to the BS
pattern in EEG. This decrease of TsEn is more prominent in rodents with poor neurological
outcomes. In contrast, TsEn (q = 1) fluctuates a lot throughout the entire EEG recording,
thus giving less distinctive exhibition of BS pattern in each subject.

To reveal the effect of parameter q on the RDR, and the correlation of TsEnA and NDS, the
average TsEnA (averaged between left and right channels) in each rat is further calculated
using different q values ranging from 0.5 to 5 with step size of 0.1. The result is shown in
Fig. 6. It denotes that the Pearson correlation coefficient is satisfactorily high (above 0.85)
when q < 3 and reaches the maximum with q = 1.1 (p ⪡ 0.01). On the other hand, however,
RDR decreases rapidly with smaller q, and it drops below −10 dB when q < 1. Fig. 7
illustrates this effect with typical TsEnA plots from three rats. It shows that when q is too
small (e.g., q = 0.5 and 1 in the first two columns), although TsEnA correlates well with the
NDS, the differences between TsEnA measurements among rats with various NDS (i.e.,
NDS = 74, 67, and 52) are diminished because of low RDR. Therefore, a tradeoff should be
made between: 1) the linear correlation between TsEnA and NDS and 2) the
distinguishability of TsEnA among rats with different neurological outcomes. The results
shown in Figs. 6 and 7 suggest that the TsEnA exhibits high performance with q around 3,
giving large correlation coefficient and large RDR at the same time. Fig. 8 gives a better
illustration of the correlation between TsEnA (q = 3) and neurological outcome (i.e., NDS
estimated 72 h after ROSC) (Pearson correlation coefficient = 0.86, p ⪡ 0.01).

V. Discussion and Conclusion
A defining, but elusive, feature of physiologic systems is their complexity. The output of
healthy systems reveals a type of complex variability associated with long-range
correlations, along with distinct nonlinear interactions; yet, this complexity breaks down
with dysfunction [35].To understand the complexity of EEG, it is very much in the need for
quantitative tools, i.e., the ability to state clinical data in numerical form that simplifies the
analysis of EEG time series [36].We adapt the well-known entropy measure, TsEn, as the
TsEnA to demarcate the important period with extensive BS pattern. The sensitivity of
Tsallis measure to burst frequency and BSRa is illustrated by simulated data. The pdf of
EEG amplitude during isoelectricity and continuous activity holds the same feature, i.e., a
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flatter shape, while it sharpens during the BS period. In the latter case, the value of TsEn in
EEG is low, and therefore, an area is formed between TsEn curve and the extremum of
TsEn. This area could reflect the BS features in EEG after asphyxial CA. Our study applies
this measure to quantitative analysis of the BS pattern in EEG immediately after asphyxial
CA in rats. To evaluate the TsEnA performance with different q values, Pearson correlation
between TsEnA and NDS, and RDR of TsEnA are compared among EEG recordings from
15 rats. The results show that when q is around 3, TsEnA correlates well with neurological
outcome (Pearson correlation coefficient > 0.85) and gives high distinguishability among
rats with various NDS (RDR > 0dB). Thus, the TsEnA measurement calculated with q = 3
can reliably and effectively provide early prognostic information on cerebral functional
recovery.

In conclusion, in order to improve the “readability” of EEG recordings following brain
injury, we introduce a method that quantitatively interprets the BS pattern in EEG after CA.
Three discriminative BS features, i.e., burst frequency, BSRa, and the duration of BS are
combined to configure a simplified TsEn-based measure, namely TsEnA. This new measure
is computed and compared among animals with different neurological outcomes following
asphyxial CA. The results show that TsEnA computed with q = 3 could consistently and
distinguishably quantify the complex dynamics in BS EEG, and provide early prognostic
information on neurological outcomes. The measure proposed in this study may be of value
in an accurate and objective estimation of the gravity of post-CA cerebral damage.
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Fig. 1.
Entropy relationship between two systems A and B.
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Fig. 2.
Relationship between TsEn and burst frequency. pdf indicates probability density function
(as estimated using the histogram method).
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Fig. 3.
Relationship between TsEn and BS ratio of amplitude (BSRa ).
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Fig. 4.
Relationships among BS features, TsEnA, and neurological outcomes.
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Fig. 5.
BS pattern, ShEn, TsEn (q = 3), and TsEnA in EEGs from animals with different
neurological outcomes (NDS = 74 versus NDS = 46). EEG signals (left channel) recorded
during baseline (10 min), the entire asphyxial duration (7 or 9 min), and resuscitation and
recovery periods spanning 400 min are compressed in these plots. Stars denote the artifact
induced by CPR.
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Fig. 6.
Pearson correlation coefficient between TsEnA and NDS, and RDR of TsEnA with different
q values. p ⪡ 0.01 for all correlation coefficients estimated with q = 0.5–5.
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Fig. 7.
Typical TsEnA from three rats calculated with different q. The TsEnA results (left EEG
channel) from the same rat with q = 0.5, 1, 3, and 5 are plotted in a row. TsEnA is defined
between 22 and 250 min in the whole EEG recording. Subplots in each column hold a same
scale. Pearson correlation coefficient (corr) between TsEnA and NDS is also shown on the
top of each column.
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Fig. 8.
Correlation between TsEnA (q = 3) and NDS. Pearson correlation coefficient = 0.86, p ⪡
0.01.
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