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Abstract
The placenta and its myriad functions are central to successful reproductive outcomes. These
functions can be influenced by the environment encountered throughout pregnancy. Such
influences can alter the appropriate genetic programming needed to allow for sustained pregnancy
and appropriate fetal development. This altered programming may result from epigenetic
alterations related to environmental exposures. Epigenetic alterations are now being linked to
several important reproductive outcomes, including early pregnancy loss, intrauterine growth
restriction, congenital syndromes (eg. Beckwith-Weidemann syndrome), preterm birth and
preeclampsia. The diversity of environmental exposures linked to adverse reproductive effects
continues to grow. Much attention has focused on the role of endocrine disruptors and other
xenobiotics in infertility, but recent work is demonstrating that these chemicals may have adverse
effects in pregnancy and development as well. Environmental oxygen is also critical in early
pregnancy success. There are clear links between altered oxygen levels and placentation amongst
other effects. As research continues to increase our understanding of the molecular processes
including epigenetic regulation that influence pregnancy, it will be critical to specifically examine
how the environment, broadly defined, may play a role at altering these critical functions.

2. Introduction
Pregnancy is characterized by dramatic changes in metabolism leading to physiologic
changes including a 40% increase in cardiac output and the development of insulin
resistance. While the mechanisms of these changes are under investigation, it is clear that
the placenta plays a crucial role. The placenta is the first complex mammalian organ to
develop. It is formed from trophoblast cells that can be identified early during blastocyst
formation and prior to implantation. Trophoblast cells are required to attach the embryo to
the uterus and invade the maternal vasculature to form the maternal-fetal interface. As
development continues, the placenta becomes a robust endocrine organ, producing a
spectrum of hormones that are unique to the pregnancy, such as human chorionic
gonadotropin, estriol, as well as hormones identical to those produced elsewhere, such as
estrogen and progesterone. This hormone production is intrinsically coupled to the
physiologic changes of pregnancy and is critical for pregnancy maintenance. Clearly,
alterations in placental function can have profound effects on pregnancy. Gene environment
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interactions have become a major focus of investigation in the post genome era. This review
will discuss three common ways that the placental function can be affected by the
environment.

3. Endocrine Disruptors
Endocrine disruptors are environmental pollutants that are biologically active in the
endocrine system and disrupt endogenous hormonal function. They include a variety of
classes of chemicals including pesticides, industrial by-products and chemicals used in
manufacturing-particularly plastics. The Centers for Disease Control reported on chemical
exposure in over 2000 people in the United States. More than 90% of individuals tested
positive for chemicals in their blood; the most common chemicals noted were
polybrominated diphenyl ethers and bisphenol A [1].

The endocrine disruptors most commonly associated with reproductive abnormalities are the
xenoestrogens such as Bisphenol-A (BPA), polychlorinated biphenyls (PCBs), and
antiandrogens such as phthalates. These compounds exhibit weak steroid-like activity and
therefore can affect reproductive development along multiple points including the
hypothalamus and the gonad.

3.1 Bisphenol-A
BPA is the most ubiquitous of the xenoestrogens. First described in 1891, this chemical was
initially developed as a pharmaceutical for estrogen replacement therapy. Today it is widely
used as a crosslinking chemical to form plastics. It is used in drinking bottles and epoxy
resin that coats the inside of food containers [2]. When substances containing BPA are
heated, the chemicals can leach into the food and ingested [3,4]. During the 2003–2004
NHANES survey, the CDC determined that BPA could be detected in the urine of more than
95% of Americans over the age of six. BPA can be measured in serum, saliva and urine [5–
8]. Remarkably, the amniotic fluid contains five times more BPA than corresponding
maternal serum [9]. This is likely due to the active transport of BPA across the placenta.

BPA is structurally similar to diethylstilbestrol (DES). Like DES, BPA has been associated
with reproductive teratogenicity in animal models [10]. BPA’s toxicity and reproductive
disruption has been linked to interference with endogenous estrogens which is mediated
through BPA’s binding of the estrogen receptor as well as nuclear-receptor independent
activation of key cellular signaling system [11]. Mice and primates exposed to BPA may
contain a variety of abnormalities of the breasts, uterus and ovaries [8,12–14]. The ovaries
may contain few or no follicles and may contain ova with a high rate of aneuploidy [15,16].
BPA can also target the placenta directly [17]. Mouse cytotrophoblast cells cultured in
physiologic doses of BPA demonstrate abnormal labyrinthine development and increased
rates of apoptosis [18]; in addition, BPA decreases placental aromatase activity leading to
lower levels of estrogen production and decreased the amount of estrogen and progesterone
receptor expression in the placenta [19,20]. The affect on birth weight and resorption in
animal models has been controversial with some data supporting a causal effect while other
suggesting a protective effect [21]. The association with abortion may be due to placental
failure or aneuploidy [22].

3.2 Polychlorinated Biphenyls
Recently, a novel mechanism has been described for PCB-induced premature and low birth
weight delivery in mice [23]. PCBs cause an increase in amniotic fluid and placental
anomalies by inhibiting placental aquaporin 1, a water channel family member. Aquaporin 1
is known to regulate fluid volume and angiogenesis at the maternal-fetal interface [23].
Subsequently, it was shown that PCBs impaired spiral artery remodeling in the mouse utero-
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placental tissue which could be reversed by interleukin (IL)-10 [23]. Further investigation
into the anti-angiogenic effects of PCBs unraveled the involvement of the novel dll4-
Notch1-VEGF R2 pathway which could also be reversed by IL-10 [24]. It is thus possible
that BPA elicits its effects at the maternal-fetal interface by deregulating aquaporins and
angiogenic pathways.

3.3 Phthalates
Phthalates are plasticizers used to increase the flexibility of polyvinyl chloride products.
Because they are weakly bound to the plastic, they are readily released in to the
environment. Human exposure occurs mainly by ingesting contaminated food and by
applying makeup. As noted with BPA, the CDC has detected widespread exposure;
however, because there are numerous metabolites, actual exposure levels have been difficult
to quantify. Nonetheless, it is clear that women have five-fold greater exposure when
compared to age-matched men and children have much larger concentrations per body
weight compared to adults [25].

Phthalates are potent reproductive teratogens in male and female animal models. They act
principally as antiandrogens and suppress testosterone production [26]. In males, phthalates
affect testicular development leading to abnormalities in the seminiferous tubules [27,28]. In
females, phthalates have been associated with uterine abnormalities and an ovarian toxic
defect; exposure leads to anovulation with polycystic appearing ovaries [29]. In addition,
phthalate exposure decreases the anogenital distance (AGD) in male mice suggesting
feminization [30]. AGD is a measure of intrauterine androgen exposure because in male the
AGD is twice that of females [31].

There are few studies associating phthalate exposure with reproductive developmental
abnormalities in humans. Small studies have correlated phthalate levels with abnormal
pubertal development [32,33]. However, these studies have been criticized because of
potential phthalate contamination from diesters in the laboratory equipment. Studies have
implicated urinary phthalate metabolites, which are less likely to represent contamination,
with sperm semen parameters and sperm DNA damage in men seeking infertility services
[34]. The most widely publicized evidence describing an effect of phthalate levels on sexual
development is the Swan Study [35]. The investigators measured the AGD in newborn
males and demonstrated an indirect correlation with urinary phthalate metabolites. This
study has been highly criticized because of the lack of clinical correlation with AGD in
humans.

There are no data currently available that suggest that phthalates have a direct effect on
implantation or placentation. However, phthalate metabolites are potent PPAR-gamma
agonists [36–38]. PPAR-gamma is a critical gene for normal trophoblast differentiation [39–
41]. PPAR-gamma null mice show embryonic lethality on day E.10, the time when
metabolism switches to the placenta. The placentas of these mice contain poorly developed
labyrinthine trophoblasts and thin cardiac muscle. Interestingly, these pathologies could be
alleviated based on the trophoblast chimeric models which restore normal PPAR-gamma
expression in the trophoblast but not epiblast [39].

3.4 Molecular biology of endocrine disruption
The mechanisms by which endocrine disruptors (EDs) affect cellular activity are unclear.
Several researchers have demonstrated that EDs can bind to hormone receptors resulting in
altered genomic response(s). However, the binding affinities of the phenol containing
xenoestrogens to the classical nuclear hormone receptors are at least 1000-fold lower than
that of endogenous estradiol. Therefore, it is more likely that small concentrations of these
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chemicals found in vivo mediate their activity via non-genomic mechanisms or through
different receptors and pathways as seen for certain congeners of PCBs [23]. There have
been several reports of xenoestrogens binding to cell membrane bound estrogen receptors
and subsequently activating secondary messenger kinases and affecting calcium influx
[3,42,43]. For example, the estrogen related receptor gamma (ERRg) protein has recently
been described as present in the placenta [44]. This receptor has been shown to exhibit a
strong affinity for BPA, and thus it may be through binding and activation of this receptor
and its downstream signaling that BPA can exert its influence [45–46]. Clearly, more
functional and mechanistic studies are needed to more clearly define the modes through
which BPA can adverse impact pregnancy.

4. Environmental oxygen
The level of oxygen in the intrauterine environment plays a critical role in pregnancy by
affecting embryo development and placentation. Maternal residence at high altitude exerts a
profound affect in many pregnant women on pregnancy outcome and growth; the probability
of preeclampsia, placental abruption and/or preterm delivery increases at higher altitude
[47–51]. There is a profound inverse relationship between altitude and fetal growth. It is
estimated that fetal growth decreases by 100g for each 1000m gained [52]. While this results
in a five-fold increased probability of small for gestational age delivery, the majority of
babies born at high altitude have normal growth. Nonetheless, the risk of fetal morbidity at
high altitude is at least two-fold greater than matched pregnancies at lower altitudes [53].
These data, however, need to be interpreted with caution because women at high altitudes
may have poorer access to health care services.

4.1. Oxygen tension and development
Early embryo development occurs at low oxygen (Fig. 1). The oocyte is fertilized in the
fallopian tube and the embryo undergoes rapid growth as it traverses the tube and enters the
uterus on post-conception day 2–3. The embryo remains in the uterus for an additional three
days prior to implantation. This intrauterine environment is in continuum with the peritoneal
cavity and is, therefore, at an oxygen tension of less than 5% [54]. Several lines of evidence
demonstrate that the human embryo remains at low oxygen tension. Hustin and Schaaps
injected human pregnant hysterectomy specimens with barium sulfate and demonstrated that
there is little vascularization of the first trimester decidua. Further, extravillous trophoblast
cells occlude the spiral arteries of the uterus, further separating the intervillous space from
the maternal circulation [55]. Several investigators have used Doppler ultrasound to
demonstrate that blood flow within the intervillous space is not present before ten weeks of
gestation [56–58]. The direct measurement of oxygen content in the first trimester with a
small probe proved that, prior to 10 weeks, the intervillous oxygen tension is less than
20mm Hg which is equivalent to less than 3% dissolved oxygen [59].

4.2. Oxygen and the placenta
There are few data with in vitro models that have investigated the molecular mechanisms
underlying the differentiation pathway of the cytotrophoblast cell. Genbacev and colleagues
have suggested that hypoxia promotes extravillous trophoblast proliferation and inhibits
differentiation in first trimester placental explant cultures [60,61]. Similar data were
obtained by Caniggia et al [62,63]. Low oxygen has also been shown to promote
extravillous differentiation in a highly purified cytotrophoblast cell culture [64]. This is very
relevant data to current practices of culturing embryos for in vitro fertilization. The ideal
oxygen environmental conditions for optimal embryo development are under investigation.
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Placental hypoxic stress beyond the first trimester is associated with preeclampsia. There are
several mechanisms proposed for this phenomenon. In vitro experiments illustrate that
severe hypoxia can lead to trophoblast apoptosis, shedding of microparticles and elevated
expression of sFlt-1, a critical factor in preeclampsia development [65,66]. Data further
suggests that hypoxia can lead to the inflammatory milieu of preeclampsia. The hypoxia
inducible factors (HIFs) promote the release cytokines including IL-10, which plays a
critical role in placental function and preeclampsia. HIF also promotes the release of VEGF,
TLR and NOS expression [67].

5. Epigenetics
Research in human reproduction, development, fetal programming and many other
disciplines is now focusing on the paradigm that gene regulation occurs beyond the DNA
sequence and that it is this epigenetic regulation, the mitotically and meiotically heritable
control of gene expression not related to DNA sequence that plays a critical role in human
health and disease. As epigenetic regulatory mechanisms control gene expression and can be
responsive or altered by the environment, including xenoestrogens and environmental
oxygen, they may represent the mechanistic basis of gene-environment interactions and their
synergistic effects. Figure 2 provides a summary of key epigenetic programming which
occurs throughout gestation, and the potential fetopathic exposures whose phenotypic effects
may be mediated through alteration of the appropriate epigenetic programming during
development.

Epigenetic regulatory mechanisms include post-translational histone modifications, DNA
CpG methylation, imprinting, and small-RNA mediated control. In general, these
mechanisms delineate the chromatin structure of a gene and control its transcriptional
activity. These processes play key roles in many cellular processes, and are absolutely
critical for development, differentiation, and as is becoming increasingly clear, adaptation to
the environment throughout life, thereby contributing to disease risk throughout the life
course.

5.1. DNA Methylation
The most thoroughly study of the epigenetic mechanisms is that of DNA methylation,
specifically methylation of the 5′-carbon of cytosine in the context of CpG dinucleotides
[68]. The circumstance of multiple methylated cytosines within a particular CpG island is
often associated with total transcriptional silencing of the downstream gene. The presence of
the methyl group alone is not sufficient for transcriptional silencing. Instead gene silencing
usually requires the recruitment of component proteins related to gene repression and
creation/maintenance of a silenced chromatin conformation, complete with the appropriate
post-translational modification of histone tails. These methyl groups are added
enzymatically through de novo DNA methyltransferases (DNMT3A and DNMT3B) which
act to establish DNA methylation patterns in development and possibly later in life in
response to environment. In contrast, maintenance methyltransferase (DNMT1) act
specifically on hemi-methylated DNA during replication to faithfully recapitulate the pattern
through cell division [69].

5.1.1. Reprogramming of methylation during early development—Marks of DNA
methylation are thought to remain relatively stable and heritable throughout life, although
these marks are entirely reprogrammed during two periods, gametogenesis and pre-
implantation embryonic period. This reprogramming, during the pre-implantation period,
necessitates a rapid de-methylation of the genome, thought to be accomplished through an
active process [70,71], followed by appropriate, cell and tissue specific methylation of
genome. The exact mechanism through which this reprogramming occurs remains a central
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question in epigenetics, as no demethylation enzymes have been identified which can carry
out the rapid demethylation in-vivo [72–74]. This demethylation occurs asynchronously,
with the male pronucleus losing its genomic methylation within a few hours after conception
through an active process and prior to that of the female, which is thought to occur only
passively [75]. The protamine to histone exchange has been posited to explain the
asynchronicity [76], and in general chromatin dynamics and changes to histone methylation
patterns are tightly linked to this process [77]. Animal models have suggested that this
appropriate demethylation can be altered through superovulation, and in-vitro fertilization,
and results in developmental failure [78].

Similarly, the reprogramming of the DNA methylation marks and particularly, the
appropriate targeting of enzymes responsible for establishing those marks remains a
mystery. The de novo methyltransferase DNMT3A along with DNMT3L, a homologous
protein which stimulates the activity of DNMT3A and DNMT3B but does not bind DNA
[79], are required for appropriate imprinting of primordial germ cells [80]. PiRNAs and their
associated Piwi proteins, in addition to their role in transposon control and methylation have
also been implicated as specific determinants of DNA methylation in germ cells. The
oocyte-derived maintenance methyltransferase DNMT1o plays an important role in
preventing epigenetic mosaicism and allowing for appropriate inheritance of imprinted
methylation patterns in a developing embryo [81,82]. DNMT3B is also critical for
appropriate genomic methylation re-establishment, and its deficit is linked to ICF syndrome
(OMIM:242860) [83]. DNMT3A and DNMT3B have also been implicated as important in
mediating trophoblast invasion, as knockdown experiments have demonstrated decreased
migration of BeWo cells, possibly related to de-methylation and increased expression of E-
cadherin and Plakoglobin [84].

5.1.2. Methylation and cellular differentiation—The earliest markers of
differentiation are controlled through epigenetic processes which allow for sustained and
heritable expression of genes necessary for tissue development and differentiation.
Totipotent stem cells comprising the morula are marked by the expression of OCT4 and
CDX2, while the blastocyst is marked by differential expression of these key factors, with
the now pluripotent stem cells of the inner cell mass maintaining OCT3/4 expression and
downregulated CDX2, and the cells comprising the trophectoderm epigenetically
downregulating of OCT4 expression [85] while maintaining CDX2 [86–88]. CDX2 acts
through binding of an FGF4-responsive enhancer element in the promoter of BMP4, leading
to BMP4 expression, which is critical for trophoblast differentiation from the trophectoderm
[89].

Epigenetic regulation is also thought to play a critical role in further differentiating the
placenta into regions with known associated functions. Genome-wide scanning of rat
placenta tissues identified specific sites of DNA methylation differentiating the placenta’s
junctional and labyrinth zones [90]. In addition, differential DNA methylation patterns were
observed following differentiation of cultured rat Rcho-1 cells to differentiated giant cells
[91].

5.1.3. DNA methylation and poor pregnancy outcome—Links have also been made
between fetal DNA methylation and recurrent spontaneous abortion. A study by Park, et al.
in a South Korean population, observed that abortuses demonstrated a reduced prevalence of
the MTHFR codon 677 CT or TT genotype, which are thought to be related to altered folate
metabolism and S-adenosyl methionine availability, although there were no associations
observed between these genotypes and methylation of two genes examined [92]. There were
no associations observed, though, between MTHFR genotype and measures of embryo
quality or spontaneous abortion rates amongst women undergoing IVF procedures,
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suggesting that appropriate folate supplementation may negate any associations between
genotype and pregnancy outcome [93]. A recent study by Pliushch et al. established that 4%
of spontaneous abortions and 18% of stillbirths demonstrated hypermethylation of normally
imprinted genes and suggested that altered expression patterns of these genes may play a
role in pregnancy loss [94].

Examination of circulating nucleic acids, and particularly methylated DNA, in maternal
serum is a promising new, non-invasive tool for diagnosis of fetal abnormalities [95]. Muller
et al. demonstrated that maternal first-trimester serum derived DNA exhibited a greater
prevalence of methylation of the tumor suppressor APC in women who later developed
preeclampsia, eclampsia, or HELLP syndrome, compared to healthy pregnant women who
did not develop these conditions, and further that this pattern of methylation was similar to
that observed in women with advanced breast cancer [96]. Tsui et al examined RASSF1A
hypermethylation in third trimester maternal plasma and term placenta tissues, comparing
women experiencing preeclampsia and healthy gestational age-matched controls [97]. They
found a significantly greater concentration of RASSF1A methylation in the plasma-derived
DNA from preeclamptic women, but did not observe any difference in RASSF1A
methylation in placental tissues, leaving open the question of the source of this methylated
DNA [97]. Yuen et al recently completed a study utilizing an array-based approach to
identify CpG loci differentially methylated in placental tissues, and demonstrated that the
TUSC3 gene exhibits an increased prevalence of promoter methylation in preeclamptic
placentas [98].

5.2. Genomic imprinting
Genomic imprinting refers to the monoallelic expression of a subset of 200 genes in a
conserved parent-of-origin fashion orchestrated by the timely placement of epigenetic
signals including DNA methylation and histone modification [99]. Based on their key
functions in placental and fetal development, the imprinted genes can be classified into three
board categories [100]: 1) genes that control the allocation of maternal resources to the
fetus; 2) genes that regulate metabolism in the early postnatal period; and 3) prenatal
determinants of the metabolism of developing metabolic organs such as the pancreas,
muscle, fat cells and the hypothalamus. Alterations to the imprinting status of genes, through
both genetic and epigenetic mechanisms, are causally associated with a number of well
characterized human syndromes, including, Beckwith-Wiedemann, Angelman, Silver-
Russel, and Prader-Willi syndromes [101,102]. Alterations to imprinting, are thought to be
susceptible to environmental influences, with the most publicized example being the loss of
imprinting of the IGF2/H19 locus and subsequent increased risk of Beckwith-Wiedemann
syndrome associated with the use of assisted reproductive technologies [103–105].
Alterations to imprinting may also be implicated in pregnancy loss, as chorionic villous
samples from ART-related pregnancy losses revealed increased level of DNA methylation
of the imprinted genes LIT1 and H19 compared to spontaneously conceived pregnancy
losses [106].

The Mash2 gene, which is paternally imprinted and in linkage to other critically imprinted
genes including Igf2 and H19, is required for further trophoblast development, and
expression of the paternal allele is detected in early post-implantation embryos [107], and is
required for formation of spongiotrophoblast [108,109]. A number of other genes involved
in critical functions of the placenta and its development have been reported to exhibit
imprinting. The alpha-T-catenin gene, necessary for cell-cell adhesion complexes and an
important mediator of cell invasion, during the first trimester exhibits preferential expression
of the maternal allele in villous cytotrophoblasts and biallelic expression in extravillous
trophoblasts, but following the epithelial-mesenchymal transition expression is lost in both
villous syncytiotrophoblasts and extravillous trophoblasts, a pattern similar to that observed
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for p57(KIP2) [110,111]. The paternally imprinted p57(KIP2) gene has also been utilized in
a mouse model of preeclampsia [112]. The imprinted MEST gene is expressed in human
villous and invasive cytotrophoblasts and is thought to play a role in angiogenesis [113].

6. Conclusions
As we strive to further understand the mechanisms of reproduction and placentation, we are
recognizing the complexity and inefficiency of the processes and their susceptibility to
environmental stressors. International health groups are recognizing the increasing
importance of environmental toxicants. Despite the dearth of literature on women’s health
outcomes, it is clear that many of these toxicants and changing environmental landscape can
affect healthy reproduction. Further studies are urgently needed to better identify the
molecular basis of these effects, and develop strategies to modify or counteract the
environment to improve birth outcomes.
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Figure 1.
Gestational age-dependent relationship of oxygen tension with fetal development and levels
of progesterone and estrogen.
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Figure 2.
Model of appropriate epigenetic programming throughout gestation and the potential
epigenetic effects of environmental factors and their downstream consequences.
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