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Abstract

Diagnosis of human bladder cancer in untreated tissue sections is achieved by using imaging data
from desorption electrospray ionization mass spectrometry (DESI-MS) combined with
multivariate statistical analysis. We use the distinctive DESI-MS glycerophospholipid (GP) mass
spectral profiles to visually characterize and formally classify twenty pairs (40 tissue samples) of
human cancerous and adjacent normal bladder tissue samples. The individual ion images derived
from the acquired profiles correlate with standard histological hematoxylin and eosin (H&E)-
stained serial sections. The profiles allow us to classify the disease status of the tissue samples
with high accuracy as judged by reference histological data. To achieve this, the data from the
twenty pairs were divided into a training set and a validation set. Spectra from the tumor and
normal regions of each of the tissue sections in the training set were used for orthogonal projection
to latent structures (O-PLS) treated partial least-square discriminate analysis (PLS-DA). This
predictive model was then validated by using the validation set and showed a 5% error rate for
classification and a misclassification rate of 12%. It was also used to create synthetic images of the
tissue sections showing pixel-by-pixel disease classification of the tissue and these data agreed
well with the independent classification that uses histological data by a certified pathologist. This
represents the first application of multivariate statistical methods for classification by ambient
ionization although these methods have been applied previously to other MS imaging methods.
The results are encouraging in terms of the development of a method that could be utilized in a
clinical setting through visualization and diagnosis of intact tissue.
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Introduction

Mass spectrometry (MS) is a powerful technique in many scientific disciplines, and it is
playing an increasingly important role in the field of molecular imaging. Imaging MS allows
the direct investigation of the distribution of a variety of endogenous and exogenous
compounds in plant and animal tissues with high specificity and without the need for
fluorescent or radioactive labeling normally used in histochemical protocols.[1,2] In
particular, tissue MS-based molecular imaging has the potential to provide additional
histopathological information for the diagnosis and prognosis of many disease states,
including cancer. A range of ionization techniques is employed in imaging MS, each with its
own advantages and disadvantages. Secondary ion mass spectrometry (SIMS)[3] and
matrix-assisted laser desorption ionization (MALDI)[4] are the two most commonly used
methods. In addition, laser-based ionization techniques have been used in imaging MS at
atmospheric pressure, including electrospray-assisted laser desorption ionization (ELDI)[5]
and laser ablation electrospray ionization (LAESI).[2,6] Ambient ionization is a new family
of highly simplified ionization methods in which samples are examined in their native state
by mass spectrometry at atmospheric pressure. Here, we report on the application of a well-
known ambient ionization method, desorption electrospray ionization (DESI),[7] to generate
ion images of cancerous and adjacent normal human bladder tissue from the lipid profiles of
the samples. Our goal is to develop a method applicable to in situ diagnosis of intact tissue
in a clinical setting. One step to achieving this goal is to image tissue sections by DESI-MS
in conjunction with multivariate statistical analysis. We use a training set to establish the
best predictive features and a validation set to evaluate performance on representative
samples. This is the first application of multivariate statistical methods for classification to
DESI-MS imaging data although we have previously used principal component analysis
(PCA).

In a growing number of reports on imaging MS, images are based on the distribution of lipid
species, including glycerophospholipids (GPs). This choice is due to the ease of lipid
ionization and their important and diverse roles in cellular processes, including those
involved in various forms of cancer.[8] DESI-MS has been applied previously to the
analysis of multiple types of human and animal cancers: in canine bladder cancer GP
profiles allow distinction between tumor and normal tissues;[9] in human prostate cancer a
single molecule, cholesterol sulfate, is elevated in precancerous and cancerous tissue versus
normal tissue;[10] in human gliomas GP profiles allow the discrimination of tumor
subtypes.[11] Although principal component analysis (PCA) has been applied to single
patient DESI-MS data, no statistical analysis has been performed by using the DESI-MS
data from a set of human tissues. This study represents for the first time a complete
multivariate statistical approach that has been used in combination with DESI-MS data to
provide a predictive model for future analysis of human bladder tissue. As a step toward
developing a clinical tool for visualization and diagnosis of disease, we use distinctive
DESI-MS GP profiles to visually characterize and formally classify twenty pairs of
cancerous and adjacent normal human bladder tissue samples. We show that images derived
from the acquired profiles correlate with features of standard histological examination by
using hematoxylin and eosin (H&E)-stained serial sections. The profiles allow classification
of the disease status of the tissue samples with high accuracy; the resulting predictive model
can be validated and applied to unknown samples.

Results and Discussion

Bladder tumor and adjacent normal tissue sections were interrogated by using DESI-MS in
the negative ion mode. Figure 1 and Figure S1 in the Supporting Information show typical
negative ion mode full-scan mass spectra, and illustrate how a number of different ions in
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the spectra change in abundance between typical tumor and adjacent normal samples. The
data show significant changes in glycerophosphoinositols (PIs), glycerophosphoserines
(PSs) and fatty acids. Although chemical identification of the ions underlying each DESI-
MS image is not required for diagnostic purposes, the glycerophospholipid species present
in the tissue sections were identified based on collision-induced dissociation (CID) tandem
MS experiments and comparison with literature data.[12] The fatty acid were tentatively
identified based on the mass of the molecular anion, [M—H]". lons in the region from m/z
500-650 were identified as dimers of the free fatty acids.

Although individual ions can be used to distinguish tumor from normal tissue, the use of
multiple ions should improve the diagnosis. This requires the use of multivariate statistical
methods in order to reduce the high-dimensional data we acquire for each sample.[13] A set
of twenty tissue pairs was randomly divided in two 10-sample pairs—one a training set,
used to develop the predictive models, the second a validation set, used to test the predictive
accuracy of the methodology. The use of paired tissue samples ensures that differences
between cancerous and normal tissues are not due to differences inherent to individual
patients. The training tissue section set was used to manually acquire spectra that excluded
non-informative regions. The spectra of the training set were recorded from known tumor
and normal regions of the tissue samples, as determined by pathological examination,
allowing predictive models to be constructed by using well-understood data. In total, 53
spectra representative of either tumor or normal tissue were acquired for each tissue section
in the training set (a total of 20 tissue sections). The spectra were re-sampled to unit
resolution, background corrected, and scaled to the median area under the curve. The
validation set of ten independent tissue section pairs used the full mass spectral imaging
data, with no manual manipulation to construct synthetic images from the statistical models.
All synthetic images shown are from the validation set.

A series of DESI-MS images was used to visually represent the abundance of individual
ions in each tissue section, thereby characterizing the distribution of particular molecular
species across the set of tissue samples. From among all the lipid species identified, specific
ion species were selected from the training dataset to be shown in the DESI-MS ion images
of the validation dataset (Figure 2). The selected ions are m/z 788.7 (PS(18:0/18:1)), 885.7
(P1(18:0/20:4)), 281.5 (FA(18:1)), 563.5 (FA dimer), and 537.5 (FA dimer). The images
were visually compared to optically scanned images of the H&E-stained sections, which
were analyzed by the pathologist.

Principal component analysis (PCA) was applied to the spectra acquired from the training
dataset to generate a set of principal components (PCs). The principal components are
orthogonal linear combinations of DESI-MS peaks, that is, weighted averages of abundances
of individual ions with weights maximizing between-tissue variation. All spectra were then
projected onto the system of coordinates formed by the PCs, and the scores (i.e., the
coordinates of the spectra from the training set on each principal component) were recorded.
Figure 3a—d shows the input spectra, the score plots, and two representations of loadings of
the first two principal components, respectively. As can be seen in Figure 3b, PC1 accounts
for the largest proportion of between-group variation, and fatty acid dimer peaks have large
loadings in this PC. Therefore, PC1 was used to produce a synthetic image (termed the PCA
image, see for example, Figure 2g) for each tissue in the validation set. This was done by
using color-coded pixels to score the underlying spectrum on the coordinate represented by
PCL1. The image color indicates an approximate strength of prediction based on the first
principal component. Values are scaled over the range 0-100% to use the full color map.
PCA information from all of the ions summarized in a single image (Figure 2g) is expected
and found to perform better than simple visualization of individual ions (Figure 2a—e)).
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Although PCA images show the variation between tissues, they do not use information
concerning the disease state of the samples and do not yield a rule for classification of either
individual spectra or entire tissues. A second statistical method allowed a formal diagnostic
rule to be derived based on the acquired DESI-MS profiles. To this end, 53 spectra from the
tumor and normal regions of ten pairs of samples were used as the training set for
orthogonal projection to latent structures (O-PLS)[14] treated partial least-square
discriminate analysis.[15] PLS is a supervised multivariate procedure, which removes linear
combinations of peaks in the spectra that do not contribute to the separation of the disease
state of the samples, thereby yielding a model with better interpretability compared with
regular PLS. PLS-DA allowed us to formally classify the disease status of individual spectra
(i.e., image pixels).

Figure 3e—g shows the PLS score plots of the first three components, indicating that they
carry sufficient disease-related information and provide a separation between cancerous and
normal tissues. Figure 3h shows the loading plot of the first component, and the relative
importance of various m/z values. The visible peaks are the primary effects contributing to
the separation of cancerous and normal tissues. The classifier was developed on the training
set. However the true disease status of each pixel was not determined for each H&E-stained
section, as only the overall disease state for each tissue section could be reliably determined
by the pathologist. We therefore evaluated the performance of the method by classifying
entire sections as cancerous or normal by using a simple “majority rule”, where the entire
tissue sample is classified as cancer if the majority of the spectra are classified as cancerous
according to the model. The result was then compared to the pathologist3s diagnosis. This
approach allowed a determination of classification error rates. The PLS-DA model with ten
components achieved the best prediction performance (10-fold cross-validated Q?=0.727),
and produces a 0.052 error rate for classification. We then applied the model obtained from
the training set to the ten tissue pairs in the validation set, and obtained a misclassification
error rate of 0.119. The classification rule was visualized by using synthetic images, where
color intensity of each pixel shows the strength of evidence for cancerous tissue, with white
being the cut-off value between tumor and normal. This represents the first application of
PLS-DA to full imaging data and its first diagnostic use in imaging mass spectrometry.

For complete visualization, DESI-MS-generated ion images were compared to the synthetic
images from the validation set resulting from the PCA and PLS-DA analysis. The synthetic
images combine the qualitative information obtained from all of the ions seen in the mass
spectral GP profiles. Figures 2 and 4 show the overall results of the PCA and PLS-DA
visualization procedures. Figure 2a—e shows the negative ion mode imaging of tissue
samples for patient UH0103-23, whereas Figure 2f shows the corresponding H&E-stained
sections. Figure 2g—h shows the synthetic images. The tumor tissue appears on the left side
and the normal tissue on the right side of the images.

The tumor tissue exhibits increased intensity for the ions at m/z 788.7 (PS(18:0/18:1)), 885.7
(P1(18:0/20:4)), 281.5 (FA(18:1)), 563.5 (FA dimer), and 537.5 (FA dimer) when compared
to the normal tissue. These increased intensities of fatty acids and fatty acid dimers could
represent the presence of lipid droplets in the tissue, with the co-localization of increased
amounts of fatty acids contributing to dimer formation. These lipid droplets are known to be
increased in inflammation and cancer.[16] Both PCA and PLS-DA output a continuous
score, with a larger value indicating stronger evidence for tumor. PCA does not have a
natural score cutoff for classification. For PLS-DA, the color scheme was calibrated so that
“white” corresponds to the cutoff value, red indicates a stronger presence of tumor and blue
indicates greater presence of normal tissue.
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Figure 4 shows analogous images for two more tissue pairs, UH0005-30 and UH0003-15. In
the DESI-MS and PCA images both samples appear to have a border of tumor on the normal
tissue. In one sample, UH0005-30, the normal tissue does contain a border of carcinoma in
situ, as determined by pathological examination of the H&E-stained tissue. Therefore, the
correct diagnosis can be made on the basis of the lipid signals as seen in the DESI-MS
images. In the other sample, UH0003-15, pathological examination of the H&E-stained
tissue revealed that the border seen in the DESI and PCA images is that of normal urothelial
cells, which make up the transitional epithelium or urothelium layer lining the inside wall of
the bladder. These urothelial cells are the site of origin for transitional cell carcinoma
(TCC), which accounts for approximately 97% of bladder cancer cases and all but one
cancerous sample in this work. As the cancer progresses these urothelial cells proliferate
into the cell layers beyond the lining of the bladder, into the muscle of the bladder, to the
surrounding fatty tissue, and to other sites in the body. Seemingly normal urothelial cells
were detected as cancerous by DESI-MS, however, these samples are from a patient with
TCC. It is probable that the tissue appearing to be normal has some malignancy-associated
changes that are not apparent when visually examined by a pathologist. Early changes in the
tissue in accordance with the field effect theory on bladder cancer tumorigenesis are most
likely present resulting in increased signal for the normal tissue in the DESI-MS images.[17]
Further studies are necessary to investigate this possibility, including studies involving truly
normal urothelium from patients without bladder cancer.

In addition to the three sample pairs presented in Figures 2 and 4, Figures S2-S5 in the
Supporting Information present four more tissue pairs and their corresponding DESI-MS,
PLS-DA, PCA, and H&E-stained images. Figure S5 presents a single case in which the
DESI-MS images do not agree with the pathological diagnosis: based on the ion images the
normal tissue would be diagnosed as tumor. For this case the statistically generated synthetic
images show a more accurate picture with only select pixels in the normal tissue being
classified as tumor. This represents a much more likely scenario where the adjacent normal
tissue from a cancer patient contains a small number of tumor cells.

Conclusion

In total twenty sample pairs were visually characterized and statistically classified. For
fifteen matched tissue pairs the DESI-MS and PCA images agree with the pathological
diagnosis of cancer and normal tissue as determined from the H&E-stained tissue. There is
excellent agreement between the H&E stains, individual ion images, principal component
synthetic images (PC1), and PLS-DA synthetic images. In one case (Figure 4a—e€) a border
of tumor was detected on the normal tissue, demonstrating the utility of DESI-MS for
determination of surgical margins of the tumor. Overall, we successfully classified regions
and whole tissue sections as containing cancerous or normal tissue.

DESI-MS imaging shows great promise as a molecular pathology technique that uses the GP
profiles of tissues to visualize and diagnose cancerous and normal tissue. This is the first
large scale DESI-MS analysis of GP profiles of human tissue and it supports previous
literature in showing that alterations in the GP composition occur in cancerous tissues. The
study follows up and expands on the previous bladder studies conducted in animals.[9] Most
significantly, this is the first DESI-MS imaging study to include complete multivariate
statistical analysis and classification. Expansion of the current work will include searches for
other disease markers, examination of additional clinical samples to further validate this
classification method and to examine the possibility of assigning a stage to the disease and
making a prognosis based on DESI-MS data. An advantage to using a spray-based
ionization method is the ability to perform chemically specific reactions at the surface prior
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to detection.[18] This advantage will be exploited in the future in order to more thoroughly
explore the wealth of chemical information present in each sample.

Experimental Section

All tissue samples were handled in accordance with approved institutional review board
(IRB) protocols at the Indiana University School of Medicine. All patients, from whom
tissue was collected, had voluntarily signed the most current informed consent and HIPAA
documents prior to study participation in accordance to the IRB protocol. The samples were
flash frozen in liquid nitrogen and stored at —80°C until sliced into 15 pm thick sections and
thaw-mounted onto glass slides. The slides were stored at —80°C; prior to analysis the
samples were allowed to come to room temperature and then dried under nitrogen in a
dessicator for approximately 20 min. All twenty pairs of tissue samples were subjected to
DESI-MS imaging analysis. For multivariate statistical analysis, 53 representative,
individual spectra were acquired from known tumor and normal regions of each of the ten
samples in the training set, excluding the background regions of glass. All experiments were
carried out by using a commercial LTQ linear ion trap mass spectrometer controlled by
XCalibur 2.0[19] software and a lab-built prototype DESI ion source.[20] Biomap software
(freeware, http://www.maldi-msi.org) was used to generate single and overlaid ion images.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 2.
Negative ion mode tissue imaging of bladder tissue including areas of cancer and adjacent

normal tissue of sample UH0103-23 from the validation set, illustrating individual ion
images and the performance of the PCA and partial least-square discriminate analysis (PLS-
DA) methods; a) ion image of m/z 788.7, PS(18:0/18:1); b) ion image of m/z 885.7,
P1(18:0/20:4); c) ion image of m/z 281.5, FA(18:1); d) ion image of m/z 563.5, FA dimer; e)
ion image of m/z 537.5, FA dimer; f) H&E-stained tissue sections of the tumor tissue; and
(9) normal PCA-based synthetic image and (h) PLS-DA synthetic image.
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Figure 3.

Principal component analysis: a) average tumor (red) and normal (blue) spectra from the
training set that were used as inputs for PCA. The spectra are re-sampled to unit resolution,
background corrected, and scaled to the median area under the curve for all spectra. b) First
principal component. c) PC1/PC2 score plot for training data set. d) PC1/PC2 score plot for
validation data set projected onto the training set principal component eigenvectors. €)—g)
Score plots for PLS-DA of the training set. The two axes LV1 and LV2 correspond to the
scores of the first two components for each sample after applying PLS. A good separation
between cancer (=) and normal (o) samples as observed in €) indicates that the first two
components carry sufficient disease-related information, f) and g) show the scores of the
first and second components with the third component, which is unnecessary for disease
classification. h) Loading plot for the first component in PLS-DA for the training set. The
plot illustrates the m/z values and their relative importance for the first component in PLS-
DA. The large peaks are detected and marked by vertical lines in the plot, which should
correspond to the isotopic patterns. These visible peaks are the primary effects contributing
to the separation of normal and tumor samples and subject to further close investigation.
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Sample UH0005-30
a) PS(18:0/18:1) - m/z 788.7

Figure 4.
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Negative ion mode tissue imaging of bladder tissues including areas of cancer and adjacent
normal tissue (note the tissue orientation is different between the two samples). Both
samples are from the validation set, illustrating the performance of the methods on future
samples; a) UH0005-30 ion image of m/z 788.7, PS(18:0:18:1); b) UH0005-30 ion image of
m/z 281.5, FA(18:1); ¢) UH0005-30 H&E-stained tissue sections of the normal and tumor
tissue; d) UH0005-30 PCA-based synthetic image; e) UH0005-30 PLS-DA-based synthetic
image. The normal tissue appears to contain a border of carcinoma in situ on the upper left
hand side of the tissue section; f) UH0003-15 ion image of m/z 788.7, PS(18:0:18:1); g)
UHO0003-15 ion image of m/z 281.5, FA(18:1); h) UH0003-15 H&E-stained tissue sections
of the tumor and normal tissue; i) UH0003-15 PCA-based synthetic image; j) PLS-DA-
based synthetic image.
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