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Abstract

DRP-1 and ZIPk are two members of the Death Associated Protein Ser/Thr Kinase (DAP-kinase) family, which function in
different settings of cell death including autophagy. DAP kinases are very similar in their catalytic domains but differ
substantially in their extra-catalytic domains. This difference is crucial for the significantly different modes of regulation and
function among DAP kinases. Here we report the identification of a novel alternatively spliced kinase isoform of the DRP-1
gene, termed DRP-1b. The alternative splicing event replaces the whole extra catalytic domain of DRP-1 with a single coding
exon that is closely related to the sequence of the extra catalytic domain of ZIPk. As a consequence, DRP-1b lacks the
calmodulin regulatory domain of DRP-1, and instead contains a leucine zipper-like motif similar to the protein binding
region of ZIPk. Several functional assays proved that this new isoform retained the biochemical and cellular properties that
are common to DRP-1 and ZIPk, including myosin light chain phosphorylation, and activation of membrane blebbing and
autophagy. In addition, DRP-1b also acquired binding to the ATF4 transcription factor, a feature characteristic of ZIPk but
not DRP-1. Thus, a splicing event of the DRP-1 produces a ZIPk like isoform. DRP-1b is highly conserved in evolution, present
in all known vertebrate DRP-1 loci. We detected the corresponding mRNA and protein in embryonic mouse brains and in
human embryonic stem cells thus confirming the in vivo utilization of this isoform. The discovery of module conservation
within the DAPk family members illustrates a parsimonious way to increase the functional complexity within protein
families. It also provides crucial data for modeling the expansion and evolution of DAP kinase proteins within vertebrates,
suggesting that DRP-1 and ZIPk most likely evolved from their ancient ancestor gene DAPk by two gene duplication events
that occurred close to the emergence of vertebrates.
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Introduction

The Death Associated Protein Kinase (DAPK) family of

proteins is a family of five Ser/Thr kinases which are very similar

in their catalytic domain and are involved in programmed cell

death (PCD) mechanisms. Three members including DAPk (also

called DAPK1), DRP-1, (also called DAPK2), and ZIP-kinase

(ZIPk, also called DAPK3), share about 80% identity in their

catalytic domains thus creating a sub-family which is in the focus

of this work. Two other members, DAPk Related Apoptosis

inducing Kinase 1 and 2 (DRAK1 and DRAK2) are more

distantly related, sharing only about 50% identity with DAPk [1];

also see Figure 1A).

DAPk is a 160 kDa, multi domain Ca+2/Calmodulin (CaM)

regulated, Ser/Thr kinase. In addition to the catalytic and the

CaM regulatory domains, it possesses several ankyrin repeats, a

potential P loop motif, a cytoskeleton binding domain, a death

domain and a C-terminal Serine rich region (Figure 1A). Ectopic

expression of DAPk (as well as of ZIPk and DRP-1) induces

membrane blebbing and cellular rounding through the phosphor-

ylation of the regulatory light chain of myosin II (MLC). DAPk is

activated by dephosphorylation of a specific site in the CaM

regulatory domain and by Ca+2/CaM binding [2]. DAPk is

involved in several pathways leading to cell death, including

apoptosis, autophagy and anoikis-like cell death. It mediates

several types of stress signals induced by IFN-c TNF-a, Fas, TGF-

b, ceramides, deprivation of neuronal cells from Netrin-1, and

stimulation of NMDA receptors in cerebral ischemia [3,4]. The

gene is frequently silenced in cancer by promoter DNA

methylation, suggesting that it functions as a tumor suppressor

[5]. Moreover, a germline mutation in the human DAPK1

promoter leads to a familial case of Chronic Lymphocytic

Leukemia CLL [6]. DAPk may have also other functions, not

related to PCD, such as a role in cytokinesis and cell migration

[7,8,9,10]. The DAPK1 gene is well conserved in evolution from

various invertebrates, such as C. elegans [11], to chordates and

mammals. DRP-1 is a 42 kDa cell death-promoting kinase. Like

DAPk, it contains a CaM regulatory domain which shares high

sequence and functional similarity with that of DAPk, but its C-

terminus differs completely from DAPk, possessing a unique 40

amino acid tail at its C terminus necessary for stabilizing the

homo-dimerization state of the kinase [12]. Full activation of

DRP-1 depends on relieving the inhibitory effects of the CaM

regulatory domain by its binding to Ca+2/CaM and by the

dephosphorylation of an critical Ser residue in this domain similar

to DAPk regulation. In addition, homo-dimerzation is also
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Figure 1. The DAPk family of proteins and the new member, DRP-1b. A. The percentage in the blue boxes, representing the catalytic domain
of the kinases, indicates the extent of identity of each catalytic domain to the kinase domain of DAPk. B. A scheme of the genomic locus of DRP-1,
DRP-1b exon and the DRP-1b protein structure. Dark blue- catalytic domain coding exons; light blue- CaM binding domain encoding exons, pink-
dimerization tail encoding exons; red and green- the alternative open reading frame. Percents indicate similarity of the catalytic or extra-catalytic
domain to the indicated protein. Enlarged area shows sequence alignment of the human alternative exon and the extra catalytic domain of human
ZIPk. Letters indicate identities, pluses indicate similarities. Gray background indicates a non aligned area. LZ- leucine zipper. C. DNA sequence at the
59 and 39 of human DRP-1b alternative exon. Red- open reading frame; Green- splicing acceptor site. Capital letters- translated amino acids.
doi:10.1371/journal.pone.0017344.g001
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necessary for full activation of the DRP-1, as long as the CaM

regulatory domain is present [12]. DRP-1 is a cytoplasmic protein,

and upon ectopic expression it induces autophagy, and caspase-

independent autophagic cell death [8]. TNF-a induces both

dephosphorylation and dimerization of DRP-1 and a functional

interaction between DRP-1 and DAPk has been proposed as well

[8,12,13,14].

The third member of the DAPk family is ZIP kinase, a 55 kDa,

Ser/Thr kinase. ZIPk-induced cell death can involve both caspase

dependent and independent pathways, the former being mito-

chondrial dependent [15]. Unlike DAPk and DRP-1, ZIPk is not

regulated by Ca+2/CaM. It contains a leucine zipper like domain

at the C-terminus, needed for homo-oligomerization that is critical

for its death promoting effects. ZIPk also contains a nuclear

localization signals (NLS) and is localized both in the nucleus and

the cytoplasm. Quite surprisingly it was recently found that the

murine orthologs of ZIPk underwent a unique type of sequence

divergence compared to other vertebrate species. As a conse-

quence they are localized exclusively to the nucleus and also

acquired several additional changes to compensate for their

divergence [16]. A non-PCD function of ZIPk was observed in

smooth muscle cells, where ZIPk-dependent phosphorylation of

MLC led to Ca+2 sensitization and smooth muscle contraction.

This was attributed to direct phosphorylation of MLC as well as

inactivation of Smooth Muscle Myosin Phosphatase (SMMP-1M),

through phosphorylation of the phosphatase’s myosin binding

subunit, and phosphorylation of its inhibitor protein CPI17

[17,18]. Both DRP-1 and ZIPk genes are only present in

vertebrates.

Previously it has been shown in our lab that there is a physical

and functional cross talk between ZIPk and DAPk. DAPk is able to

trans-phosphorylate ZIPk on six distinct sites in the extra-catalytic

domain, thus increasing the cytoplasmic localization of ZIPk and

the homo-trimerization towards a more potent cell death inducer.

Accordingly, co-expression of both kinases causes a synergistic

effect in promoting the membrae blebbing phenotype

[15,19,20,21,22,23]. These data, together with the epistatic

relationship mentioned above, imply that the DAPk family may

have a signaling capacity greater than the sum of signaling

attributed to its individual members, perhaps even creating a cell

death inducing kinase-kinase cascade.

In this work we illustrate an additional level of complexity in

which transcripts derived from the genomic locus of DRP-1 can

undergo alternative splicing to give rise to a new kinase isoform,

found to be expressed in embryonic stem cells and brain tissues.

The alternatively spliced exon is homologous and highly similar to

the C-terminus of ZIPk, thus generating a novel DRP-1 kinase

isoform which shares functional characteristics with ZIPk. The

DRP-1 gene organization, and its potential for alternate isoforms,

is conserved in all known DRP-1 loci. Together with known

sequences of other DAP kinases this provides an evolutionary

model for the expansion and evolution of these kinases within

vertebrates, and suggests that the DAP kinases sequence diversion

is accompanied by retained sequence features.

Results

The genomic locus of DRP-1 contains an alternative exon
Analyzing genomic loci of DRP-1 (DAPk2) we identified a

previously unknown putative exon. The exon is found in all

vertebrate DRP-1 gene loci that have been sequenced (Figure S1),

is well conserved, and codes for 165–220 amino acids. This region

is significantly similar to only one protein in the current sequence

databases, to the extra catalytic domain of ZIPk (DAPK3), which

is also encoded by a single exon. The new DRP-1 exon is located

between its previously known exons 8 and 9, immediately

downstream of the catalytic domain encoding exons, and

upstream of the two exons coding for DRP-1 regulatory extra

catalytic domain (Figure 1B). All DRP-1 loci, from fish to

mammals, include a tightly conserved splice acceptor sequence

at the 39 end of the upstream intron (Figure 1C), and a stop codon

in a well conserved position. Sequence analysis of the coding

capacity of the exon shows its conservation pattern is typical to

protein coding regions and includes numerous codons undergoing

purifying selection (data not shown). Thus DRP-1 has the potential

to encode another isoform to its previously known product, where

an alternative splicing event will replace the known CaM

regulatory and dimerization domains with a ZIPk-like extra

catalytic domain.

The human DRP-1 exon we identified is 202 amino acids long.

Residues 5–165 of this exon have 42% identity (and 65%

similarity) to residues 289–444 of human ZIPk (Figs. 1B and 2).

The C-terminal 37 amino acids of the exon are Ser/Thr rich, with

no significant similarity to any known protein in the current

sequence databases. Thus, in case of an alternative splicing event

at the locus of DRP-1, the predicted translated protein would be

very similar to ZIPk- e.g., in humans 79% identity in the catalytic

domain and 42% identity in the extra catalytic domain (Fig. 1B).

Unlike DRP-1, this protein is not expected to be regulated by

calcium, as it lacks its Ca+2/CaM binding domain. Detailed

analysis of available sequence data identified transcripts of the new

isoform in pig, cow, chicken and several fish (Table S1). We

termed the alternative spliced isoform DRP-1b.

Sequence analysis of DRP-1b alternative exon
To further study the features of the DRP-1 new exon, we

aligned all the protein sequences we found for it and compared the

alignment to a similar alignment of the ZIPk extra catalytic

domain (Figure 2). The two regions are very similar and can be

confidently aligned across their N-terminal 80%. The most

conserved region is at human ZIPk positions 297–332. ZIPk

contains at this region several sites that are phosphorylated by

DAPk and several autophosphorylation sites, shown to be

important for full activation of the protein [21,24]. Most of these

sites are conserved in DRP-1b (Figure 2) and may undergo similar

regulation. Another conserved region corresponds to the Leucine

zipper-like motif of ZIPk, at position 433–447 of DRP-1b,

especially due to the presence of hydrophobic amino acids at the

key positions 433/440/447 of the heptameric repeat that creates

the zipper itself [25] (Figure S2). Sequence prediction for coiled

coil domains showed both these DRP-1b and ZIPk regions to most

probably adopt this structure, as expected for Leucine Zipper type

dimerization regions (data not shown).

It is interesting to note that unlike ZIPk, DRP-1b is conserved in

murines, and did not undergo the murine-specific divergence

characteristic of murine ZIPk which we have previously described

[16]. Thus, while the extra catalytic domain of mouse ZIPk shows

only 81% similarity to that of human ZIPk, mouse alternative

exon DRP-1b is 92% similar to its human ortholog, This suggests

that DRP-1b has a distinct, separate role from ZIPk, and thus was

not under the same evolutionary pressure which led ZIPk to

diverge from the common consensus in murines.

mRNA and protein expression of DRP-1b
Database searches identified a few DRP-1b expressed sequence

tags (ESTs) suggesting that this isoform may be expressed in some

settings (Table S1). Yet the low number of DRP-1b ESTs stands in

contrast to the numerous ESTs of DAPk, DRP-1 and ZIPk
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reported to date (Table S1), suggesting that unlike the ubiquitous

expression of the three well known family members the new

alternate isoform may have a more restricted pattern of expression.

Experimentally, we identified the presence of DRP-1b mRNA in

cDNA libraries of mouse embryos. The detection was done by PCR

amplification, using specific probes on both sides of the alternative

splice junction. DRP-1b mRNA was clearly detected in samples

from embryonic days 10, 14, 16 and 18 (Figure 3A), proving the

presence of this alternatively spliced mRNA in embryonic cells of

different developmental stages (Note that the apparent lack of

detection of DRP-1b mRNA in samples from day 12 is due to the

fact that the quality of the sample is lower, as shown by the

attenuated detection of DRP-1 mRNA, used as a control

(Figure 3A)). We next searched for DRP-1b protein expression,

using antibodies directed against the N’ terminus of DRP-1 (which is

present in both isoforms), and which recognize both human and

mouse proteins. The isoform distinction is done through the size of

the protein, where DRP-1 runs on gels as a 42 kD band [13] and

DRP-1b is predicted to display a size of 55 kD. Initial screen of

various human and mouse cells lines, including HEK293T, HeLa,

H1299, and NIH3T3, failed to detect a band of the appropriate

size. We next screened brain extracts from fetal and young mice,

and found a strong signal at the expected size, that was absent in

adult mouse brains, suggesting strong protein expression of the

DRP-1b isoform in the brains of embryos and young mice

(Figure 3B). DRP-1 on the other hand was expressed in all the

brain samples taken. DRP-1b isoform was also detected in human

embryonic stem cells (Figure 3B). Thus, we proved that the DRP-1

locus undergoes alternative splicing in some tissues/cells from early

developmental stages, and that the alternative transcript is

translated into protein, both in mice and humans.

Functional characterization of DRP-1b protein
To characterize the properties of the DRP-1b protein we cloned

FLAG-tagged DRP-1b in a mammalian expression vector. Over-

expression of the protein in 293T cells led to extensive membrane

blebbing (Figure 4A), at levels comparable to those induced by

over-expression of DRP-1 and ZIPk (Figure 4, B and C).

Figure 2. The DRP-1b alternative exon shows similarity to the extra-catalytic domain of ZIPk. A multiple sequence alignments of the
extra catalytic domain of ZIPk and DRP-1b orthologs from the indicated vertebrates. Blue arrows- ZIPk autophosphorylation sites; red arrows- ZIPk
phosphorylation sites by DAPk. Brown to yellow bars- conservation measure; the position of ZIPk leucine zipper is marked by pale blue boxes. The
MSA was performed using CLUSTALW program and visualized with the JalView tool.
doi:10.1371/journal.pone.0017344.g002
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DAP kinase family of proteins induce membrane blebbing by

phosphorylating the regulatory light chain of myosin II, MLC [1].

To verify that DRP-1b retains this ability, we performed an in

vitro kinase assay, using MLC as substrate. As shown in Figure 4D,

DRP-1b can phosphorylate MLC on serine 19 to a level

comparable to ZIPk and DRP-1.

Transmission electron microscopy (TEM) studies were next

performed to find out whether DRP-1b induces the accumulation

of autophagosomes like the other members of the DAPk family. It

was found that double membrane vesicles characteristic of

autophagosomes were clearly evident upon DRP-1b transfection;

the autophagosomes were detected at high number within the

membrane blebs (Figure 5A) and the cell body (Figure 5B). This is

consistent with the autophagic phenotype induced by DRP-1 and

ZIPk ([8,21], and Kimchi et al., unpublished data). Western blot

analysis revealed that the ectopic expression of each of the three

kinases induced the conversion of LC3-I to the lipidated LC3-II

form which is a marker of autophagy activation (Figure S3) while

none of them activated caspases, a marker of apoptosis (data not

shown).

Altogether, the ectopic expression experiments indicate that

DRP-1b shares some biochemical and cellular properties with

both DRP-1 and ZIPk, including MLC phosphorylation, mem-

brane blebbing and autophagy.

DRP-1b and ZIPk but not DRP-1 share a common
interacting protein

Since DRP-1b shows high similarity to ZIPk, we next examined

whether it retains some of the ZIPk unique characteristics. The

high degree of conservation of the leucine zipper-like motif of ZIPk

in DRP-1b led us to examine whether both proteins can interact

with the same partners through this structural domain. Activating

transcription factor 4 (ATF4) was previously shown to bind ZIPk

through its leucine zipper [25] and was thus selected for this study.

To this end, we performed a co-immunoprecipitation experi-

ment to examine whether the ectopically expressed DRP-1b and

ATF4 proteins interact with each other. As shown in Figure 6,

both ZIPk and DRP-1b were able to pull down ATF4, while DRP-

1 could not. Thus, DRP-1b shares at least one interacting protein

with ZIPk, a function gained by the alternative splicing which does

not exist in the canonical DRP-1 isoform. A leucine zipper mutant

of DRP-1b, in which three key hydrophobic amino acids (at the d

position of the heptamer in Figure S2) were substituted to alanines,

displayed a reduced ability to pull down ATF4 (Figure S4).

DRP-1 and ZIPk evolved from DAPk at the emergence of
jawed vertebrates

To find out the relation between the different DAPK family

members we calculated a phylogenetic dendogram from an

alignment of the kinase catalytic domains from DAPk, DRP-1

and ZIPk. To determine the root of the dendogram and its time

dimension we included DRAK proteins that are more distant from

DAPk, DRP-1 and ZIPk proteins than the distance in between

these members [1,26]. (Figure 7)

The resulting dendogram clearly separates the DAPk, DRP-1

and ZIPk proteins from each other, and within each cluster most

sequences are grouped according to accepted taxonomic relations

of the species they are found in. DAPk proteins are most diverse,

confirming their identification in both invertebrates and verte-

brates. DRP-1 and ZIPk clusters appear on the dendogram next to

the vertebrate DAPk cluster. The closest cluster to these three

vertebrate clusters is a clearly separated (bootstrap value of 95/

100) and earlier branching cluster with two lamprey sequences.

The sequences from this jawless vertebrate have a DAPk kinase

domain (but their extra catalytic domain is yet undetermined), and

their dendogram position is in between the jawed vertebrate DAPk

proteins and the DAPk proteins of other invertebrates, simpler

chordates (i.e, Amphioxus), and urochordates (i.e, Ciona). DRP-1

and ZIPk clusters each include a sequence from a shark species.

The Elephant shark (Callorhinchus milii) includes at least five DAPk

genes but their publicly available sequences are partial, highly

fragmented, and most are too short to include in phylogenetic

dendograms (SP, data not shown).

Ciona species belong to a basal urochordate sub phyla that

diverged before the emergence of vertebrates [27]. Two Ciona

species C.intestinalis and C.savignyi include a DAPk protein with an

extra catalytic domain different from those of DAPk, DRP-1 and

ZIPk. These proteins are clearly placed within the DAPk cluster

on the dendogram, showing them to be a novel ‘‘offshoot’’ of these

proteins. Other interesting DAPk sequences appear in the insects

Honeybee (Apis mellifera), Jewel wasp (Nasonia vitripennis), ants

(Camponotus floridanus, Harpegnathos saltator, Atta cephalotes), and Red

flour beetle (Tribolium castaneum). No DAPk sequences were

identified in any of the Drosophila and mosquito genomes

sequenced so far, but probable DAPk sequences are found in

other arthropods including insects, arachnids, and crustaceans

(Table S1). It thus seems most likely that the DAPk gene was lost in

a dipteran progenitor of mosquitos and flies. Partial sequences of

Figure 3. mRNA and protein expression of DRP-1b. A. DRP-1b
and DRP-1 mRNA fragments were amplified by PCR, using total embryo
mouse cDNA from the indicated days as template, followed by
ethidium bromide gel detection. B. Western blot detection of DRP-1b
and DRP-1 protein levels in brain tissues of mice and human embryonic
stem cells, using anti N’-DRP-1 antibody. E12- embryonic day 12, P5 -
postnatal day 5, P42 – postnatal day 42 (adult mouse).
doi:10.1371/journal.pone.0017344.g003
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DAPK-like kinase domains from cnidaria, basal metazoa with

radial symmetry, could be found and cluster with the invertebrate

DAPk sequences. However, they are not all clustered together and

their exact nature would be better understood once their full

sequences will be available.

Fish DRP-1 genes
Fish exhibit a unique composition of DAP kinases. Two DRP-1

gene loci were found by us in each of six different teleost fish

species where relatively large genomic and EST sequence data is

available. These two DRP-1 sub-type groups cluster together

(Figure 8) and are the probable result of the whole genome

duplication that occurred after the divergence of ray-finned fish

[28]. One fish DRP-1 sub type has the same genomic structure as

the DRP-1 gene in other vertebrates, i.e., including 39 exons

coding for both the previously known DRP-1 and ZIPk-like extra-

catalytic domains. The second fish DRP-1 sub type gene only has

the exon for the ZIPk-like domain, missing the previously known

DRP-1 39 exons (Figure 1A). In zebrafish there is another change -

its first DRP-1 sub type gene does not have a C-terminal ZIPk-like

exon. Thus, the two zebrafish DRP-1 genes each have a different

extra-catalytic domain.

It is possible that in the teleost fish, DRP-1 gene has evolved, or

is even yet evolving, into two distinct genes. The function, or at

least coding capacity, of these duplicated DRP-1 genes could be

equivalent to the different transcripts of the single DRP-1 gene of

other vertebrates. It is also interesting that we found no evidence in

fish for DAPk and ZIPk gene duplicates. Perhaps the two DRP-1

gene duplicates were retained after the fish whole genome

duplication because of the distinct alternative messages possible

from their progenitor gene.

Discussion

Here we report the discovery of a novel member of the DAP

kinase family DRP-1b, highly conserved from fish to mammals,

which is generated by alternative splicing event of the DRP-1 gene.

The uniqueness of this isoform is in its close resemblance to ZIPk,

another member of the DAP kinases family, due to an interesting

modular organization discovered here. The resulting modular

cross similarity within the DAP kinase proteins could allow for

intricate control of their function and is unique, to the best of our

knowledge.

We show that this alternative splicing takes place in mouse

embryonic tissues and that the product of the new isoform is

expressed in the embryonic brains of mice and human embryonic

stem cells. We further show that DRP-1b is an active kinase, able

to phosphorylate MLC on serine 19 and induce membrane

blebbing, and autophagic vesicle formation. Further studies will

need to be conducted in order to determine the physiological roles

of DRP-1b and the specific differences between this kinase and the

other DAP kinases, that appear to have kept the relative

complicated DAP kinase genes arrangement throughout verte-

brate evolution. It is interesting to note that a recent paper by

Tang et al. shows that ZIPk plays a role in induction of autophagy

by phosphorylating the ULK1 protein [29]. It should be examined

if DRP-1b can perform the same function.

The interaction of DRP-1b and ATF-4 has unclear functional

implications, as the function of the interaction of ZIPk and ATF-4

is not known either. It is possible that these interactions sequester

ATF-4 from the nucleus and its genomic targets, thus halting the

induction of pro-survival genes. On the other hand, it has been

suggested that ATF-4 may block the pro-death activities of ZIPk

by preventing its homo dimerization [25], and it may play a

Figure 5. Ectopic expression of DRP-1b induces the accumulation of autophagic vesicles. HEK293T cells were transfected with DRP-1b
expression vector, fixed 24 h after transfection and examined using Transmission Electron Microscopy (TEM). A. a cell undergoing membrane
blebbing; B. larger magnification of induced vesicles. Arrowheads indicate double membrane, autophagic vesicles.
doi:10.1371/journal.pone.0017344.g005

Figure 4. Ectopically expressed DRP-1b induces MLC phosphorylation and membrane blebbing in cells. A. DRP-1b ectopic expression
induces membrane blebbing. HEK293T cells were co-transfected with FLAG DRP-1b and GFP expression vectors, and examined under fluorescent
microscope after 24 h. White arrows- cells exhibiting membrane blebs. B. Quantification of the blebbing inducing ability of ZIPk, DRP-1 and DRP-1b.
Note that the number of blebbed cells in cells transfested with control plasmids is below detection levels C. Western blot detection of the kinases,
(detection was done with anti-FLAG Abs, running the samples in the same gels and the same exposure time of the blots) indicating comparable
expression levels. D. ZIPk, DRP-1b and DRP-1 phosphorylate myosin light chain (MLC). FLAG tagged kinases were expressed in HEK293T,
immunoprecipitated using anti-FLAG antibodies and eluted from beads. His-tagged MLC was purified from bacteria, and used as a substrate in an in
vitro kinase assay. MLC phosphorylation was detected using an antibody against phospho-serine 19 on MLC.
doi:10.1371/journal.pone.0017344.g004
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similar role for DRP-1b. These possibilities should be further

pursued in order to establish them. In any case, this interaction

proves that DRP-1b, although possessing the DRP-1 kinase

domain, has functions similar to those of ZIPk. DRP-1b has also

lost some of the DRP-1 features, like the regulation by Ca+2/CaM.

The conservation of DRP-1b and ZIPk and their gene

organization across vertebrates, perhaps even from the very

emergence of this subphylum, excludes complete redundancy and

indicates some essential and specific roles for both kinases. On the

one hand the localization of the ZIPk like extra-catalytic exon in

the same genetic locus of DRP-1 may allow a coordinated control

of both DRP-1 and DRP-1b as opposed to their placement in

separate genomic loci. On the other hand, the additional presence

of ZIPk on a distinct locus is assumed to have a significant

advantage suggesting some unidentified yet functional difference

between ZIPk and DRP-1b. The two genes are driven by different

promoters, and their extra-catalytic domains are not completely

identical (Figure 2).

The discovery of a ZIPk-like encoding exon sheds light on the

evolution of the entire DAPK family, and enables us to

hypothesize on the events leading to the emergence of DRP-1

and ZIPk genes. One parsimonious course of evolutionary events

that could have led to the present nature and distribution of DAPk

genes is shown in Figure 8. DAP-kinase emerged early in the

evolution of metazoa, appearing already in nematodes, flat worms

and other bilateral invertebrates as a single DAPk gene in their

genomes. Around the development of the jawed vertebrates, the

DAPk gene underwent a duplication with one copy losing the extra

catalytic coding regions downstream of the CaM regulatory

domain and acquiring (from an unknown source) two single

coding-exon regions for protein dimerization. A region coding for

a leucine-zipper like dimerization domain was inserted between

the catalytic domain exons and the CaM regulatory domain, and a

much shorter exon coding for a different dimerization domain was

inserted downstream of the CaM regulatory domain. We have no

data at present to determine if this happened in a single or multiple

events. The resulting gene progenitor of DRP-1 and ZIPk then

underwent a second gene duplication. One gene lost the Ca+2/

CaM and adjacent dimerization exons, creating the ZIPk

progenitor. The second gene kept all exons, but probably

expressed either the leucine zipper encoding exon or the 39

Ca+2/CaM and dimerization exons by alternate splicing, thus

giving rise to DRP-1 and DRP-1b isoforms.

In conclusion, our integrated research approach and analysis of

diverse data allowed us to identify a complex case of gene

evolution and expression. Examining all available DRP-1 loci

confirmed the coding nature of the cryptic exon which we found.

This, together with subsequent experimental data, transformed, in

turn, the absence of human and mouse ESTs for this exon, from a

trivial and uninformative observation to a hypothesis for a

restricted and potentially interesting expression of a new DRP-1

isoform. Identifying the DRP-1b isoform in the brain of

embryonic and young mice excluding the adult phase may have

functional implications for our future understanding of why such

domain modularity evolved in this family of death –inducing

kinases.

Materials and Methods

Sequences
Sequences accession numbers and compositions are detailed in

the supplementary material.

Multiple sequence alignments and Phylogenetic tree
Multiple sequence alignments were generated using the BLAST

[30], DIALIGN2 [31], GLAM2 [32], and LAMA [33] programs.

Sequence reads were assembled using the CAP3 program [34].

Sequences were aligned and edited analysis with Se-Al (http://

tree.bio.ed.ac.uk/software/seal/) program. Sequence dendograms

were calculated based on the multiple alignment of the catalytic

domains of DAPk, DRP-1 and ZIPk, and rooted using the

catalytic domain of DRAK, using the PHYML v.2.4.4 program

[35].

Plasmids
Human DRP-1 and ZIPk plasmid were previously described

[13,21]. Human DRP-1b exon was amplified through PCR using

genomic DNA as template, ligated to DRP-1 catalytic domain

coding sequence and finally subcloned into a FLAG-tagged

pcDNA3 expression plasmid. HA tagged human ATF4 expression

plasmids were kindly provided by Prof. Michael S. Kilberg and by

Prof. Fung-Fang Wang. The leucine zipper perturbation of DRP-

1b was created by introducing the substitutions L433A/I440A/

F447A to human DRP-1b, using the PCR site-directed mutagen-

esis protocol.

mRNA and protein detection
DRP-1 and DRP-1b mRNA detection was performed using

PCR amplification with cross-exon primers. Mouse embryo cDNA

(MD-104, Zygen) of the indicated days was used as template. Anti-

DRP-1 (N’ terminus) Rabbit monoclonal antibody (dilution 1:500)

(AbCaM, EP1633Y) was used for endogenous DRP-1b protein

detection in lysates of the indicated cells or tissues. Mouse brain

tissues were kindly provided by Prof. Orly Reiner.

Cell culture and transient transfection
293T Human Embryonic Kidney (HEK) cells and HeLa cells

were grown in DMEM (Biological Industries) supplemented with

10% fetal bovine serum (Hyclone) and 1% L-Glutamine

(GibcoBRL) and a mixture of antibiotics (100 u/ml penicillin

and 0.1 mg/ml streptomycin). For transient transfections, 1.26106

(293T) or 0.86106 (HeLa) cells were plated on 9 cm plates

24 hours prior to transfection. Transfections were done by the

calcium phosphate method with 10 mg DNA per plate. To assess

the membrane blebbing potency of DRP-1b, DRP-1 and ZIPk,

293T cells were transfected with the appropriate plasmid and 1 mg

of peGFP expression vector. After 24 hours, green cells were

counted and the percent of blebbing cells was calculated. Western

Figure 6. ZIPk and DRP-1b bind ATF-4, while DRP-1 fails to do
so. HEK293T cells were co-transfected with the indicated vectors and
harvested 24 h post transfection. Lysates were immunoprecipitated
using anti-FLAG antibodies, and protein levels were detected using
western blot.
doi:10.1371/journal.pone.0017344.g006
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blot analysis was conducted to ensure equal kinase protein

expression.

Immunoprecipitation
Cells were washed twice in PBS and then suspended and

vortexed in cold PLB lysis buffer (5 mM EDTA, 10 mM NaPO4,

1% Triton X-100, 0.1 M NaCl, 0.5% DOC, 0.1% SDS) with

protease inhibitors (1% protease inhibitor cocktail (Sigma), 1%

PMSF). Lysates were centrifuged for 15 min. at 14,000 rpm at

4uC. The pellet was discarded and the supernatant was pre-cleared

for 1 hour at 4uC on a slurry of protein G-PLUS Agarose beads

(Santa Cruz Biotechnology). The pre-cleared extracts were

incubated with Agarose-conjugated anti-FLAG M2 gel beads

(Sigma) for 2 hours at 4uC. Immunoprecipitates were washed 4

times with lysis buffer containing protease inhibitors, and resolved

by standard SDS-PAGE. Blots were reacted with anti-FLAG-M2

monoclonal antibody (dilution 1:500) (Sigma); anti-CREB-2

(ATF4) rabbit polyclonal antibody (dilution 1:500) (Santa Cruz);

or anti-Actin monoclonal antibody (dilution 1:5000) (Sigma).

In vitro kinase assay
Immunoprecipitated FLAG- DRP-1b, DRP-1 or ZIPk were

quantified after elution against standards. 200 nmol bacterial

expressed, purified, human MLC was incubated with or without

50 nmol kinase in reaction buffer (50 mM HEPES, pH 7.5,

20 mM MgCl2) containing 1 mM bovine calmodulin, 0.5 mM

CaCl2 and 50 mM ATP. The kinase assay was conducted at 30uC
for 30 minutes. Protein sample buffer was added to terminate the

reaction, and after boiling, the proteins were analyzed resolved by

standard SDS-PAGE. Kinase protein levels were detected using

anti-FLAG-M2 monoclonal antibody (dilution 1:500) (Sigma);

Substrate protein levels were detected using polyclonal anti-MLC

Figure 7. The DAP kinases phylogenetic tree. A phylogenetic tree of the indicated organisms was constructed based on the multiple alignment
of the DAP kinase scatalytic domain, using the PHYML program. Numbers above branches represent bootstrap support from 100 replicates. Yellow
background- high bootstraps value. Blue- DAPk; Green- DRP-1; Red- ZIPk; Black- ortholog undetermined due to partial sequence.
doi:10.1371/journal.pone.0017344.g007
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antibody (dilution 1:300) (E201); MLC-phosphorylation was

detected using polyclonal anti-phospho Ser19 MLC antibody

(dilution 1:1,000) (Cell Signaling).

Immunostaining
0.86106 HeLa cells were seeded on glass cover slips in 9 cm

plates and transfected the next day with the appropriate

constructs, 10 mg DNA per plate. After 24 hours, cells were fixed

in 3.7% formaldehyde for 15 min. After blocking and permeabi-

lization with 10% normal goat serum (Biological Industries), 0.4%

Triton X-100 in PBS, the cells were incubated for 1 h with anti-

FLAG polyclonal antibody (Sigma; 1:600 dilution) followed by

RRX-conjugated goat anti-rabbit secondary antibody (Jackson

ImmunoResearch; dilution 1:800). The cover slips were finally

stained with DAPI (0.5 mg/ml, Sigma) and mounted with

ImmuMount (Thermo Shandon) embedding media. Stained cells

were viewed by fluorescent microscopy (Olympus BX41) equipped

with a 100x oil immersion objective, using excitation wavelengths

of 530-550l (for RRX) and 360-370l (for DAPI). Digital imaging

was performed with a DP50 CCD camera using Viewfinder Lite

and Studio Lite software (Olympus). Final composites were

prepared in Adobe Photoshop (Adobe Systems).

Transmission Electron Microscope
293T cells were transfected with DRP-1b, DRP-1 or ZIPk

expression plasmids. Cells were fixed for 1 hr in Karnovsky’s

fixative (3% paraformaldehyde, 2% glutaraldehyde, 5 mM CaCl2
in 0.1 M cacodylate buffer [pH 7.4], containing 0.1 M sucrose).

Cells were scraped, pelleted, and embedded with agar noble to a

final concentration of 1.7% and postfixed with 1% OsO4, 0.5%

potassium dichromate, and 0.5% potassium hexacyanoferrate in

0.1 M cacodylate buffer. The pellet was stained en bloc with 2%

aqueous uranyl acetate followed by ethanol dehydration and

embedded in EMbed (EMS). Sections (75 nm) were cut, stained

with 2% uranyl acetate in 50% ethanol and lead citrate, and

examined using a T12 BioTwin (FEI Holand) transmission electron

microscope at an accelerating voltage of 120 KV. Digital images

were obtained with Eagle CCD 2K by 2K camera (FEI Holand).

Supporting Information

Figure S1 DRP-1b proteins alternatively-spliced extra
catalytic region. Most fish species included have two DRP-1b
isoforms marked by 1 and 2. See text for discussion of the fish

DRP-1b isoforms.

(DOCX)

Figure S2 Conservation of the leucine zipper-like motif
in DRP-1b and ZIPk. Logo showing the conservation of the

leucine zipper-like motif of both proteins. Upper case letters colors

indicate amino acid sub group; lower case letters indicate the

amino acid position in the a-helix structure, with the d position of

the hydrophobic amino acid marked in red. Sequence logos were

calculated according to reference [Henikoff, S., Henikoff, J. G.,

Alford, W. J., and Pietrokovski, S. (1995) Gene (Amst.) 163,

GC17–GC26].

(TIF)

Figure 8. A model of the Evolution of the DAP kinases. Scheme showing a most-parsimonious model of the evolution of DRP-1 and ZIPk in
vertebrates.
doi:10.1371/journal.pone.0017344.g008
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Figure S3 Ectopic expression of DRP-1, ZIPk and DRP-
1b induces LC3 shift. HEK293T cells were transfected with the

FLAG-tagged ZIPk, DRP-1b or DRP-1 expression vectors or were

mock transfected with a nonrelevant protein expressing plasmind,

and were harvested 24 h post transfection. Lysates were

immunoblotted using anti-LC3, anti-FLAG and anti-Actin

antibodies.

(TIF)

Figure S4 The binding of DRP-1b to ATF-4 is through
the leucine zipper-like domain. HEK293T cells were co-

transfected with the indicated vectors and harvested 24 h post

transfection. Lysates were immunoprecipitated using anti-FLAG

antibodies, and protein levels were detected using western blot

with the indicated antibodies.

(TIF)

Table S1 Sequences used in the multiple sequence
alignment of the DAP kinases. The table details organisms,

sequence accession numbers and composition assembly of the

sequences.

(DOC)
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