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Abstract

Preparing a goal directed movement often requires detailed analysis of our environment. When picking up an object, its
orientation, size and relative distance are relevant parameters when preparing a successful grasp. It would therefore be
beneficial if the motor system is able to influence early perception such that information processing needs for action control
are met at the earliest possible stage. However, only a few studies reported (indirect) evidence for action-induced visual
perception improvements. We therefore aimed to provide direct evidence for a feature-specific perceptual modulation
during the planning phase of a grasping action. Human subjects were instructed to either grasp or point to a bar while
simultaneously performing an orientation discrimination task. The bar could slightly change its orientation during grasping
preparation. By analyzing discrimination response probabilities, we found increased perceptual sensitivity to orientation
changes when subjects were instructed to grasp the bar, rather than point to it. As a control experiment, the same
experiment was repeated using bar luminance changes, a feature that is not relevant for either grasping or pointing. Here,
no differences in visual sensitivity between grasping and pointing were found. The present results constitute first direct
evidence for increased perceptual sensitivity to a visual feature that is relevant for a certain skeletomotor act during the
movement preparation phase. We speculate that such action-induced perception improvements are controlled by neuronal
feedback mechanisms from cortical motor planning areas to early visual cortex, similar to what was recently established for
spatial perception improvements shortly before eye movements.

Citation: Gutteling TP, Kenemans JL, Neggers SFW (2011) Grasping Preparation Enhances Orientation Change Detection. PLoS ONE 6(3): e17675. doi:10.1371/
journal.pone.0017675

Editor: David Whitney, University of California, Berkeley, United States of America

Received November 4, 2010; Accepted February 8, 2011; Published March 8, 2011

Copyright: � 2011 Gutteling et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a Netherlands Foundation for Scientific Research (NWO, http://www.nwo.nl/) Open Competition Grant NWO 400-05-134.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: T.Gutteling@umcutrecht.nl

Introduction

In daily life, there is a constant interaction between what we do

and what we see. Our actions are partly dictated by what we

perceive, but the reverse also holds. When performing an action,

our perception is focused towards those things in our visual

experience that enable us to execute the action successfully. For

instance, when picking up a book, its orientation, thickness and

distance all determine grasping kinematics early during the

movement. When the perceptual system would be ‘primed’

towards relevant features, such as the orientation or size of the

book, the subsequent grasping action can be executed with

increased accuracy and speed.

This effect of motor preparation on visual perception has been

well studied for the oculomotor system. It is now well established

that, shortly before the actual execution of an eye movement,

spatial perception greatly improves at the eye movement target

location [1–3]. Furthermore, recent evidence demonstrates that

oculomotor areas in the (pre)motor cortex influence processing in

the visual cortex during eye movement preparation [4–6]. This is a

likely neuronal mechanism underlying the observed links between

spatial attention and eye movements.

It would make sense that when preparing more complex actions

with the skeletomotor system, such as grasping and manipulating

objects, not only spatial perception but also the perception of

object features relevant for the task at hand would be improved.

However, where there is ample evidence for this phenomenon in

the oculomotor system, few reports exist for the skeletomotor

system. Among the scarce reports there is encouraging, but

indirect, evidence from the analysis of eye movement scanpaths

before grasping [7] and the influence of subconscious priming on

grasping reaction times [8] that indeed object orientation is

perceived in an enhanced manner during grasping preparation.

Although these few findings support the influence of action

preparation on perception in the skeletomotor system, the

measures used are speeded motor responses or eye movement

scanpaths that might reflect interactions within the motor control

system itself. As such, it is difficult to tease apart the contributions

of the motor acts on perception and vice versa.

We therefore aimed to provide a direct measure of visual

performance during (skeleto)motor preparation. This was done by

estimating the visual sensitivity (d9) to slight orientation changes

occurring during grasping and pointing preparation (just before

the movement started). Visual discrimination performance was

measured from non-speeded key presses well after the movement

ended. Orientation was chosen as discrimination feature for its

relevance for grasping acts, but not pointing acts. Should the

preparation of a grasping act enhance the perception of relevant

features, then sensitivity to orientation differences should be higher

when preparing a grasping act, rather than a pointing act. As a
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control, luminance was chosen as a discrimination feature that is

not relevant for either a grasping or pointing act. No differences in

visual sensitivity were thus expected.

Materials and Methods

Ethics
This study was approved by the Medical ethical committee of

the University Medical Center Utrecht. All subjects signed an

informed consent prior to participation.

Experiment I: Orientation
Participants. Sixteen subjects (11 women; mean age 25.9

SD4.4) with normal or corrected-to-normal vision participated in

the first experiment. All were right handed, as checked by the

Edinburgh handedness inventory (mean 85 SD22) [9].

Apparatus. Subjects sat in a dimly lit room in front of

a IIyama 170 (3206240 mm) monitor, with a resolution of

10246768 pixels and a refresh rate of 100 Hz. They were

seated in a frame with head- and chinrest. Viewing distance was

adjusted to enable comfortable pointing and grasping movements.

Visual angle of the stimuli was kept constant by compensating the

size of the stimuli relative to the viewing distance.

To ensure that grasping and pointing actions were executed

correctly, motion tracking of the right hand (grasping/pointing

hand) was performed using a ‘driveBay’ magnetic motion tracker

(Ascension technology, Burlington, USA). Subjects wore a flexible,

unrestrictive glove that was fitted with four motion sensors located

at the tip of the thumb, tip of the index finger, back of the hand

and at the wrist. Movement data were recorded from all sensors at

240 Hz.

Task. Subjects were instructed to perform an orientation

discrimination task, see Figure 1. Every trial started with a fixation

spot (0.8u visual angle), after which a red rectangular bar appeared

(4u60.8u visual angle) in either of four locations, equidistant (8.5u)
to the fixation spot. This bar stayed on screen for 130 ms. After a

Figure 1. Experimental paradigm. (A) Stimulus display used in experiment 1 (orientation) and 2 (luminance). A fixation spot was followed by the
appearance of a bar that signaled the go-cue for the action to be executed (by instruction) and which could be either rotated slightly (left,
experiment 1) or differ in luminance (right, experiment 2) from the subsequent second bar. A brief fixation period (100 ms) was present between the
first and second bar presentation. Subjects responded by key-press after execution of the action. (B) Timeline representation of the paradigm. The top
plot represents the grand mean average movement (distance to origin) for either grasping (black) or pointing (gray).
doi:10.1371/journal.pone.0017675.g001
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brief disappearance (100 ms) the bar reappeared in the same

location, either slightly rotated or having the same angle. The

100 ms blank interval was added to ensure that the discrimination

was made based on the difference in orientation and not as a

consequence of the sudden transition between orientations, which

induced a motion-like rotation which was much easier to detect.

Subjects indicated by pressing a key with their left (non-dominant)

hand whether they observed a difference in orientation between

the first and second presentation of the bar. The bar stayed on

screen until a response was given. Fixation was required until the

bar reappeared (see above), the fixation spot disappeared at that

moment. Simultaneously, subjects were required to perform either

a grasp or point action to the appearing bar, depending on the

instruction at the start of the block. The go-cue for this action was

the first appearance of the bar. Subjects were specifically

instructed to initiate the action as soon as the first bar appeared.

This realizes a situation where the to-be discriminated orientation

change occurs during grasping preparation, as the orientation

change occurs 230 ms after the grasping/pointing go-cue, which is

well before the grasping/pointing movement onset (pointing/

grasping movements have latencies of around 400 ms [10,11].

Grasping was performed by applying a precision grip in the length

direction of the bar, i.e. to place index finger and thumb at the

opposing short sides of the bar. The pointing action implied

pointing to the center of the bar with the index finger.

The difference in orientation between the first and second bar

could be either ‘none’, ‘small’ (2u rotation), ‘medium’ (4u) or ‘large’

(6u). The second bar was always oriented at either 45u or 245u (and

hence the first bar at +/2 39, 41, 43, 45, 47, 49 or 51u). These

differences occurred in both a clockwise and counter-clockwise

direction. The second bar was always at the same orientation to

avoid detection of the change after the movement preparation

phase, as the second bar stayed on screen for the remainder of the

trial. The magnitudes of change were small, as these were proven to

evoke a stronger effect of action preparation in the pilot phase of the

study. Movement onset time (.0.15 m/s) was monitored to check

whether no movement was made before the second bar appeared,

to ensure that the discrimination was made in the action

preparation phase. In case this was violated, the trial was discarded.

Subjects were trained to reach adequate detection performance

levels and were grasping and reaching properly before starting the

actual experiment. On average, subjects completed 2–3 training

blocks before starting the actual experiment. After training, subjects

performed 4 blocks, each consisting of 64 trials. Grasping and

pointing blocks alternated and were counterbalanced across subjects.

Stimuli were presented using custom software (‘Trackmagic’,

written in C++) that was able to interface with the movement

tracker for synchronized data acquisition. Care was taken to

ensure accurate timing of stimulus presentation by synchronizing

to the screen refresh rate of the display monitor.

Analysis. All computational analyses were done using

customized Matlab scripts (The Mathworks, Natick, USA).

Sensitivity (d9) for each ‘magnitude of change’ – ‘action type’ pair

was estimated by subtracting z-transformed hit rates and block false

alarm rate (d9 = Z(HR)2Z(FA), where HR = hit rate FA = false alarm

rate and Z() is the z-transformation). Sensitivity (d9) represents how

well one can detect a signal from noise, and thus is an estimation of

the sensitivity to detect a certain stimulus, in this case an orientation

change. This way, a measure of performance is obtained that is free of

any response bias. For clarity, an indication of the response bias, in

the form of log b, was also calculated (log b~d0 l{1=2d
0� �

, where d9

is the sensitivity and l the response criterion -Z(FA)) [12].

The d9 values per condition were further analyzed in a repeated

measures analysis of variance (ANOVA) with the factors ACTION

(grasping/pointing) and CHANGE_MAGNITUDE (small/medi-

um/large). The action counterbalancing order (grasping or

pointing in the first block) was added as a covariate. A preceding

pilot study showed that participants continued to show practice

effects, even after training. These effects of training differed

between grasping and pointing (see Figure 2). We therefore treated

the first 2 blocks as further training. The results section therefore

describes the results of the remaining 2 blocks, as this is considered

as representative data without practice effects.

As all actions were performed only with the right hand, but

stimuli appeared in both left and right visual field, there might be

an effect of hemifield. To this end, in a separate analysis, the data

were divided by visual field in which the bar appeared and

collapsed over the magnitude of orientation change (to retain

sufficient trials to give a reliable sensitivity estimate).

Additional parameters were extracted from the acquired

movement data, including movement onset and duration, grasp

angle and aperture. Movement onset threshold was set at 0.15 m/s.

Trials with a movement onset before second bar appearance or two

standard deviations beyond the subject mean movement onset were

excluded from behavioral analysis, as it is unlikely that the

discriminations in this case were made during action preparation.

The grasping angle was defined as the angle between the line

defined by the DriveBay probes attached to the index finger and

thumb, and an imaginary line along the vertical edge of the screen.

This angle was extracted for every sample during every trial and

sorted by target angle. For statistical testing purposes, angle

timeseries were normalized to movement duration and divided in

25 equal time windows. A bonferroni adjusted significance

threshold of p,0.002 was used.

All statistical analyses on the aforementioned parameters were

performed using SPSS (15.0, SPSS inc., Chicago).

Experiment II: luminance
Experiment 2 was identical to experiment 1, except as described

below.

Participants. Sixteen subjects (13 women; mean age 25.6

SD3.5) participated in the second experiment, 12 of which had

participated in experiment 1. All were right handed, as checked by

Figure 2. Effects of training. Separate analyses were performed on
the first (block 1–2) and second half (block 3–4) of the first (orientation
change) experiment. Differences in sensitivity due grasping or pointing
preparation become apparent only in the second half of the orientation
experiment (1).
doi:10.1371/journal.pone.0017675.g002
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the Edinburgh handedness inventory (mean 86 SD22) [9].

Subjects signed an informed consent prior to participation.

Task. The task was identical to experiment I, except the

discrimination feature was luminance instead of orientation.

Again, four levels of luminance changes were used: ‘none’,

‘small’ (62.7%), ‘medium’ (64.7%) and ‘large’ (66.6%). These

levels were chosen to match the difficulty of the orientation

discrimination task, based on hit rates during grasping and

pointing trials in the pilot phase of the experiment. Luminance

levels of the first bar were either incremented or decremented,

where the second bar always had the same luminance level.

Results

Orientation sensitivity
We found that sensitivity to orientation changes increased when

grasping, rather than pointing, see Figure 3 and Table 1. An analysis

of (co)variance (ANCOVA) was conducted with factors ACTION

(grasping/pointing), CHANGE_MAGNITUDE (small/medium/

large change) and covariate ‘order’ (grasping or pointing first). This

yielded a significant main effect of ACTION (F(1,14) = 6.56, p = 0.023,

partial g2 = 0.32), indicating that the visual sensitivity significantly

differed, depending on the instruction to grasp or point. The mean

overall sensitivity for grasping (1.32 SD 0.60; Hit rate 59.9% SD 16.1;

false alarm rate 16.4% SD 14.4, bias log b 0.08 SD 0.53) was higher

than the sensitivity for pointing (1.07 SD 0.63; Hit rate 57.9% SD

20.1; false alarm rate 22.6% SD 15.4, bias log b 0.15 SD 0.62).

Also, a significant main effect of CHANGE_MAGNITUDE

(F(2,28) = 24,82, p,0.001, partial g2 = 0.79) was found, showing

that subjects sensitivity depended on the magnitude of the

orientation change, as expected. No interactions between factors

reached significance levels (ACTION6CHANGE_MAGNI-

TUDE; F(2,28) = 1.10, p = 0.51, partial g2 = 0.046).

To test for possible effects of visual field in which the bar

appeared, a separate ANCOVA with factors HEMIFIELD (left/

right), ACTION (grasp/point) and covariate ‘order’ was performed.

This yielded a main effect of ACTION (F(1,14) = 5.73, p = 0.031,

partial g2 = 0.29) and a significant ACTION*HEMIFIELD inter-

action (F(1,14) = 5.10, p = 0.040, partial g2 = 0.27), see Figure 4. This

indicated that the effect depends on the visual field where the

discrimination is made and the action performed. The sensitivity

values in the left hemisphere show very little difference between

actions (grasping: 1.11, pointing: 1.07), whereas the sensitivity values

in the right hemisphere do (grasping: 1.15, pointing: 0.87). The

increase in performance due to grasping preparation thus only seems

to occur for stimuli in the right visual field, or the ipsilateral hemifield

with respect to the performing hand.

Data rejection due to premature or late movement onset

(beyond two standard deviations of the subject mean) was 3.0%

(SD 1.5) on average. Rejection rates did not differ between actions

(paired samples t-test, t(15) = 0.11, p = 0.91). Mean button press

Figure 3. Main findings. (A) In the orientation change discrimination experiment (1), performance is increased when a grasping action is prepared.
This effect occurs for all magnitudes of change tested. (B) No such consistent change in performance was found when luminance was used instead of
orientation as a feature to-be discriminated.
doi:10.1371/journal.pone.0017675.g003

Table 1. Behavioral performance for all conditions of
experiment 1 (orientation).

Action/Change Hits (%) FA rate d9 log b

Grasping 16.4 0.08

Small 32.1 0.49 (0.15)

Medium 62.9 1.37 (0.31)

Large 84.8 2.11 (20.22)

Pointing 22.6 0.15

Small 31 0.25 (0.3)

Medium 60.3 1.14 (0.18)

Large 82.5 1.83 (20.04)

‘Hits’: Percentage of correct detections. ‘FA rate’: Percentage of false alarms
(indications of change when no change was present). ‘d9’: Measure of
perceptual sensitivity. Log b: Measure of response bias towards either a change
or no-change response.
doi:10.1371/journal.pone.0017675.t001

Figure 4. Visual hemifield differences in grasping and pointing
performance. Differences in sensitivity between grasping and
pointing are prominent when the stimulus is shown in the right visual
field, but not when the stimulus appears in the left visual field.
doi:10.1371/journal.pone.0017675.g004
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response time in the grasping condition was 1127 ms (SD 597) and

1096 ms (SD 568) in the pointing condition.

Luminance sensitivity
As a control, the same experiment was repeated using luminance as

the discrimination feature instead of orientation, see Figure 3 and

Table 2. The same ANCOVA was performed as in the orientation

experiment: ACTION (grasping/pointing), CHANGE_MAGNI-

TUDE (small/medium/large) and covariate ‘order’ (grasping or

pointing first). This yielded only a significant main effect of

CHANGE_MAGNITUDE (F(2,28) = 37.75, p,0.001, partial

g2 = 0.85). No significant effect was found for ACTION

(F(1,14) = 0.40, p = 0.54, partial g2 = 0.027), or any interaction be-

tween factors (ACTION6CHANGE_MAGNITUDE; F(2,28) = 0.44,

p = 0.65, partial g2 = 0.035). Thus, no difference in visual sensitivity

was found between grasping (mean d9 = 1.83 SD 0.67; hit rate 64.4%

SD20.5; false alarm rate 7.3% SD8.3, bias log b 0.46 SD 0.62) and

pointing (mean d9 = 1.82 SD 0.65; hit rate 65.2% SD19.7; false alarm

rate 8.2% SD8.0, bias log b 0.53 SD 0.46) when using a feature that is

not relevant for the action in preparation.

Again, an ANCOVA with factors HEMIFIELD, ACTION and

covariate ‘order’ was performed. No significant main effects or

interactions were found.

Data rejection due to premature or late movement onset

(beyond two standard deviations of the subject mean) was 3.3%

(SD 1.6) on average. Rejection rates did not differ between actions

(paired samples t-test, t(15) = 0.0, p = 1.0). Mean button press

response time in the grasping condition was 1100 ms (SD 692) and

968 ms (SD 569) in the pointing condition.

Movement parameters
See Table 3 for an overview of the extracted movement

parameters and Figure 5 for example kinematic data. No significant

difference in movement onset was found between grasping and

pointing (paired samples t-test, t = 21.16, p = 0.27) for the

orientation experiment or for the luminance experiment (paired

samples t-test, t = 20.55, p = 0.59). However, movement duration

was significantly shorter for pointing (565 ms) than for grasping

(610 ms) (paired samples t-test, t = 2.27, p = 0.039). This was also the

case in the luminance experiment (paired samples t-test, t = 4.19,

p = 0.001) for pointing (525 ms) and grasping (566 ms) durations.

To test for proper angle pre-shaping of the hand during

grasping (that is, the alignment of the orientation of the hand with

respect to the target in-flight), angle timeseries were separated for

target angles of 45 and 245 degrees. These timeseries were

divided in 25 time windows (where time windows 1 is movement

onset and time window 25 is movement offset) and tested for

significant deviation. This yields the time point in which the angle

of the target bar influences the grasping action. The preshaping

timecourse was averaged over all bar positions. For the orientation

experiment, the difference between target angles reached signif-

icance from time window 7 (of 25) onwards (t = 4.97, p,0.001).

This means pre-shaping of the hand was differentiated to target

orientation from 28–32% of the grasping movement duration and

onwards, which corresponds to 171–196 ms after movement

onset, as the mean movement duration is 610 ms. In the

luminance experiment it was slightly earlier, in time window 5

(t(15) = 3.92, p = 0.001; 20–24% of the grasping duration, 566 ms,

or 113–136 ms after movement onset). See also Figure 6 for the

time course of grasping preshaping to both bar orientations.

As the change in orientation may have influenced grasping

angle preshaping, a similar analysis was performed on the angle

timelines (divided over 25 time bins). Here, angle time courses

were separated by orientation change condition (small, medium,

large or none) and target angle (45 or 245 degrees) and tested for

significant deviation as a function of magnitude of orientation

change. In a CHANGE_MAGNITUDE(4)6TIME_BIN(25) AN-

OVA, no significant effect of CHANGE_MAGNITUDE was

found for either the 45deg target orientation (F(3,45) = 0.88,

p = 0.46, partial g2 = 0.055) or the 245deg target orientation

(F(3,45) = 2.15, p = 0.11, partial g2 = 0.13), indicating that we found

no influence of orientation change on grasping preshaping angle.

Similarly, angle preshaping time courses were analyzed as a

function of the given response (change/no change) instead of

change magnitude. Again, no effect of the given response (45deg:

F(1,15) = 1.31, p = 0.27, partial g2 = 0.08; 245deg: F(1,15) = 0.11,

p = 0.74, partial g2 = 0.008) was found in the data.

Discussion

In the current study, we found direct evidence for a perceptual

enhancement of a specific, relevant feature when preparing a

motor act. Visual sensitivity to object orientation change was

increased when subjects prepared a grasping action (for which

orientation is a relevant parameter) relative to preparing a

pointing action (for which orientation is irrelevant). However, no

differences in sensitivity were found between grasping and

pointing preparation when a luminance change of the target

object had to be discriminated, a feature that is irrelevant for both

actions. Luminance is not an object feature that must be

incorporated in a grasping action, unlike orientation. It is,

however, an object feature that is similar to orientation for all

other aspects of the task, thus controlling for non-specific effects.

The critical difference between orientation and luminance is its

relevance for the upcoming action. Take together with the existing

literature, this strongly supports a specific action-relevant modu-

lation of perception during action preparation (for encouraging

results on grasping preparation and ‘size’ as the relevant feature,

see [13,14]). A direct measure of visual sensitivity was obtained by

using non-speeded key-press responses occurring well after the

grasping or pointing action, where the key-press reactions

indicated a discrimination of visual changes that happened during

action preparation. This way, we ensured there was no

interference between two different active motor systems (key-

presses and grasping/pointing) causing the observed influence of

action on perceptual discrimination. This is supported by the

finding that there was no influence of the magnitude of object

Table 2. Behavioral performance for all conditions of
experiment 2 (luminance).

Action/Change Hits (%) FA rate d9 log b

Grasping 7.3 0.46

Small 33.0 0.91 (0.72)

Medium 73.7 2.05 (0.60)

Large 86.5 2.52 (0.05)

Pointing 8.2 0.53

Small 38.1 1.09 (0.73)

Medium 70.1 1.91 (0.59)

Large 87.3 2.47 (0.27)

‘Hits’: Percentage of correct detections. ‘FA rate’: Percentage of false alarms
(indications of change when no change was present). ‘d9’: Measure of
perceptual sensitivity. Log b: Measure of response bias towards either a change
or no-change response.
doi:10.1371/journal.pone.0017675.t002
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orientation change on the preshaping angle of the hand during

grasping and also, no difference in the grasping angle preshaping

time course between ‘change’ and no-change’ responses.

Analysis of the grasping and pointing movements revealed no

differences in movement onset. This implies that the time course of

the planning phase was similar, and that the discrimination was

made during the same phase of action planning. An influence of

target bar orientation (+ or 2 45 degrees) on the grasping

preshaping angle was found within the first third of the grasping

movement, implying that the orientation of the object was an

important factor in preparing the grasp.

Interestingly, the effect of action preparation on perception

differed between visual hemifields. The effect of enhanced

grasping performance was only present when the discrimination

target was presented in the right visual field. This may be linked to

the hand that was used to perform the action, which, in the current

paradigm, was the right hand in combination with central fixation.

Neuronal processes in motor related brain areas may only induce

changes in perceptual areas within the same cerebral hemisphere,

which might explain this effect (see the discussion of feedback

based neuronal mechanisms below). One must note though, that

there seems to be a non-specific overall increase in visual

performance for both grasping and pointing movements in the

left visual field. The improvement in discrimination performance

for grasping movements we report here is always expressed relative

to discrimination performance for pointing movements. This

hemifield difference may be attributed to a general difference in

performance between visual fields. It has been shown that different

parameters of a visual stimulus (i.e. stimulus eccentricity, spatial

frequency, perceptual demand) have differential effects on

processing efficiency of the left and right hemisphere (for review,

see [15]). In the current paradigm, the right hemisphere in right

handed individuals (processing information from the left visual

field) may be better suited to make the type of spatial

discriminations required in the current task.

As mentioned in the method section and in Figure 2, training

effects were still present after initial training and they seemed to

differentiate between actions. To accommodate this, the first two

blocks of the experiment were discarded and a ‘starting-action’

covariate (whether the subject started with either a grasping or a

pointing block) was added to the analysis. It is interesting to note

that the effects of action specific perceptual enhancement

improved with training. It is likely that, especially for grasping,

the artificiality of the current setup may have counteracted or

occluded any performance gain at first. With practice, the actions

became more automatic, as they are in daily life.

In general, discrimination performance during the luminance

change experiment was slightly higher than during the orientation

change experiment, despite efforts to match the difficulty. This

may have impaired comparability between experiments. However,

the orientation change experiment shows the effect of action

preparation for all change magnitudes and thus seems indepen-

Figure 5. Kinematic data example. Exemplar data from grasping and pointing from a single subject, for a single bar position. (A) Velocity profile is
taken from the wrist position. The first peak in velocity reflects the initial transport to the screen, whereas the second peak is caused by the retraction
from the screen after the grasping/pointing action to the rest position. (B) Height profile is extracted from the thumb and index positions. Here,
maximum height is reached when the subjects points to/grasps the bar on screen. Differences in thumb-index height in the grasping condition
reflect the grasping aperture.
doi:10.1371/journal.pone.0017675.g005

Table 3. Mean movement parameters extracted from the movement tracker.

Action/Parameter (ms) Movement onset Movement duration Angle preshaping

Orientation

Grasping 550 610 .176

Pointing 576 565 NA

Luminance

Grasping 517 566 .113

Pointing 513 525 NA

Movement onset times (ms) is the time between the go-cue (onset of the first bar) and the actual initiation of movement. Duration of movement (ms) is defined as the
time between movement onset and movement offset (when the object on screen is grasped or pointed at). Angle preshaping time (ms) is the time point where a
significant difference is observed in thumb-index angle between 45 and 245 degree target bars.
doi:10.1371/journal.pone.0017675.t003
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dent of difficulty. Furthermore, the effect of action preparation

does not show for the smaller change magnitudes in the luminance

experiment, and therefore it is unlikely that the slight mismatch

between orientation and luminance change discriminability

explains why the effects of action-modulated perception were

only found in the orientation change experiment.

Our current results agree well with existing literature. It fits with

the idea that selection of visual processing (selective visual attention)

is based on the intended action to be executed, that is, as a selection-

for-action mechanism (e.g. [16]). This selection of action relevant

information and the planning of this action may be implemented in

a common mechanism (e.g. [17,18]). This idea is closely related to

the influential pre-motor theory of attention [19], stating that the

preparation of a motor act is essentially identical to the attentional

preparation that facilitates the action. Originally this was formulat-

ed for the oculomotor system, explaining covert shifts of attention as

unexecuted eye movements. Later the theory was expanded to

incorporate skeletomotor acts as well (e.g. [8]). In the latter study by

Craighero et al., subjects had to execute a grasping action to a (real)

bar object, triggered by a go-cue (a bar of matching or non-

matching orientation) on a computer screen. When the bar on

screen (go-cue) and the bar to-be-grasped had a matching

orientation, movement onset times were reduced compared to

incongruent orientations. The authors attributed this effect to

enhanced visual processing of the go-cue due to the preparation of

the grasping action. Although the latter explanation is likely, the

results by Craighero et al. entail an enhanced orientation perception

only for matching orientations. That is, the preparation of a

grasping action facilitates the visual processing of objects with an

orientation matching the prepared grasping action. This might be

due to the specificity of the prepared grasping action, which was

known before the appearance of the go-cue on screen in the study

by Craighero et al. Therefore, this effect could also be related to a

feed-forward process that perceives cues congruent to the instructed

action in an enhanced way, rather than movement preparation

effects that improve orientation perception.

In a similar fashion, Symes and colleagues [14] showed

reduced reaction times in a change blindness paradigm if the

changing object was congruent, rather than incongruent

with a planned grasp (precision/power grasp and small/large

objects).

The effect of action-modulated perception has also been shown to

facilitate visual search for grasping-relevant features such as bar

orientation. In a study by Bekkering and Neggers ([7], see also [20]),

subjects had to grasp or point to an object of a certain orientation

and color among other objects. The saccadic eye movements that

naturally precede the grasping or pointing action were analyzed.

Fewer eye movements were made to wrong orientations when

subject had to grasp the object rather than point to it. Increased

peripheral sensitivity to orientation, as was found in our study, can

account for the performance improvement observed by Bekkering

and Neggers. It is interesting to note that the visual search

enhancement seemed to disappear with smaller set sizes. In the

current study, three levels of difficulty were used, covering a wide

range of performance. Here the effect did not disappear with

decreasing difficulty, but remained consistent across difficulty levels.

It may be that the current paradigm is more sensitive to performance

differences, even when the task is relatively easy. Furthermore, the

effect by Bekkering and Neggers can also be explained by interaction

between two motor processes, grasping preparation and saccade

scanpaths (patterns we are often not aware of). The present influence

of grasping preparation on visual discrimination judgments, which

we are fully aware of, cannot be explained this way.

One can speculate on the neuronal mechanism underlying action

modulated perception. First, the current observed effect may be very

similar to action-induced perceptual enhancements in the oculomo-

tor system, where strong links have been found between spatial

attention and eye movement preparations. Namely, Deubel and

Schneider [1] showed that spatial attention is greatly increased at the

target position of the upcoming eye movement. This has been

interpreted as support for the influential pre-motor theory of

attention [19]. Recently, the neural mechanisms underlying this

effect have been studied in more detail. It is becoming clear that the

effect is mediated by cortical feedback connections from the

oculomotor areas (specifically the frontal eye fields) to occipital areas

shortly before an eye movement [4–6,21]. Such connections allow

preparatory activation in motor control areas to modulate early

visual processing in the occipital lobe. It may very well be so that this

current form of ‘action-modulated perception’ is mediated by similar

mechanisms in the skeletomotor domain. Cortical (pre)motor areas,

specific for the action to be performed, might modulate visual

processing through feedback connections to occipital areas. For

instance, the anterior intraparietal area (AIP) would be an ideal

candidate to fulfil such a function, as it is heavily implicated in the

planning and execution of grasping actions [22,23]. A recent EEG

study [24] shows some initial evidence for such a mechanism. Here,

grasping preparation elicited an enhanced occipital selection

negativity that was absent in pointing preparation. This is indicative

of an early modulation of visual processing specific to the preparation

of a grasping action. Interestingly, when such feedback from AIP to

the occipital lobe would occur within each cerebral hemisphere only,

this would explain why we mainly find effects of grasping on

perception in the right visual field. When assuming that left AIP is

activated for grasping with the right hand, this induces changes in the

left occipital lobe which in turn leads to action-modulated perception

in the right (contralateral) visual field. Further studies are needed to

unveil the exact neuronal mechanism driving the enhancement of

action relevant features during action preparation.
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Figure 6. Grasping angle preshaping. Mean orientation of the
thumb-index vector, as a function of target bar orientation (45 or 245
deg) and experiment (orientation/luminance) in the grasping condition.
The horizontal axis represents the percent movement completed (0–
100%), where 0% is movement onset and 100% is the point where the
bar on screen is grasped. Error bars represent the standard error (SE).
doi:10.1371/journal.pone.0017675.g006
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