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Abstract

Endobronchial Ultrasound Guided Transbronchial Needle Aspiration (EBUS-TBNA) and Trans-esophageal Ultrasound
Scanning with Fine Needle Aspiration (EUS-FNA) are important, novel techniques for the diagnosis and staging of non-small
cell lung cancer (NSCLC) that have been incorporated into lung cancer staging guidelines. To guide and optimize treatment
decisions, especially for NSCLC patients in stage III and IV, EGFR and KRAS mutation status is often required. The
concordance rate of the mutation analysis between these cytological aspirates and histological samples obtained by
surgical staging is unknown. Therefore, we studied the extent to which allele-specific quantitative real-time PCR with
hydrolysis probes could be reliably performed on EBUS and EUS fine needle aspirates by comparing the results with
histological material from the same patient. We analyzed a series of 43 NSCLC patients for whom cytological and
histological material was available. We demonstrated that these standard molecular techniques can be accurately applied
on fine needle cytological aspirates from NSCLC patients. Importantly, we show that all mutations detected in the
histological material of primary tumor were also identified in the cytological samples. We conclude that molecular profiling
can be reliably performed on fine needle cytology aspirates from NSCLC patients.
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Introduction

Lung cancer is the leading cause of cancer mortality in the

Western world [1]. For clinical and therapeutic purposes, lung

cancer is traditionally subdivided into small cell (SCLC) and non-

small cell lung cancer (NSCLC). Whereas SCLC is treated by

chemo- and/or radiotherapy, NSCLC is primarily treated through

resection; however, only 30% of NSCLC patients have a resectable

disease (stage I/II) at the time of presentation [2]. This underscores

the importance of accurate, preoperative mediastinal staging in

preventing unnecessary resections. Preoperative staging can be

performed through the transbronchial (EBUS-TBNA) or trans-

esophageal (EUS-FNA) aspiration of the mediastinal lymph nodes.

These cytological procedures are less invasive than routine

mediastinoscopy followed by biopsy of the lymph nodes, but similar

high specificity and sensitivity [3–9] are achieved. Endosonography

has been incorporated into lung cancer staging guidelines as an

alternative for the surgical staging of the mediastinum [10,11].

In many cases, the increased use of these minimally invasive

techniques is sufficient to diagnose and stage the patient correctly.

Although the amount of cellular material obtained by these

procedures is relatively small, the information requested by the

clinicians is rapidly growing, e.g., for NSCLC, immunohistochem-

istry and molecular pathology have become part of the standard

care [12].

In addition to this change in staging procedures, the rapid

development of new medical treatments for NSCLC patients has

taken place. A subset of NSCLC cancers may harbor an activating

mutation in the EGFR kinase domain [13]. Tumors with these

mutations are frequently sensitive to tyrosine kinase inhibitors

(TKIs). On the other hand, activating mutations in KRAS are

associated with resistance to TKIs. Although most publications

report that these mutations are mutually exclusive [14–19],

evidence suggests [20] that a tumor can simultaneously harbor an

activating EGFR mutation and mutations downstream in the

pathway in the KRAS gene, which means that upstream inhibition

of EGFR will have no therapeutic effect in these cases. Also,

mutations in BRAF and PIK3CA are reported in NSCLC. However,

further research is required to determine the extent to which these

mutations can have consequences for treatment [21,22].
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Due to these developments and the desire of patients and

clinicians to minimize the delay of treatment, rapid and sensitive

molecular techniques are needed. Preferably, these techniques

should be applicable on formalin-fixed, paraffin-embedded (FFPE)

cytological samples [23–25] because EBUS-TBNA and EUS-FNA

aspiration samples are often the first material that is acquired from

patients with NSCLC. Allele-specific quantitative real-time PCR

(qPCR) with hydrolysis probes is a reliable and sensitive technique

that can be used for this purpose. Detecting mutations in EGFR,

KRAS, BRAF and PIK3CA with hydrolysis probes has been

previously described in NSCLC patients [23–26]. The sensitivity

of the assays also surpasses the 1% sensitivity proposal set for KRAS

mutation testing [27].

The majority of EGFR mutations are p.L858R, the hotspot

mutation in exon 21 and deletions in exon 19, which are reported

to comprise up to 36% of all activating mutations [15,28]. KRAS is

mutated in 10%–30% of lung carcinomas and over 95% of all

activating mutations in KRAS are located in exon 1 (codons 12 and

13) [28,29]. The BRAF p.V600E hotspot mutation is reported in

3% of NSCLC and alters residues important in AKT-mediated

BRAF phosphorylation, suggesting that the disruption of AKT-

induced BRAF inhibition plays a role in malignant transformation

[28,30]. Three hotspot mutations in PIK3CA may be another cause

of the over-activation of the PI3K–AKT pathway, which promotes

the malignant transformation of human airway epithelial cells and

has been reported in approximately 4% of lung carcinomas

[28,31].

In the current study, we compared allele-specific qPCR assays

for the most frequent activating mutations in EGFR, KRAS, BRAF

and PIK3CA in tumor-positive fine needle cytological aspirates

against histological material of primary tumors.

With this approach, we aimed to determine the extent to which

allele-specific qPCR with hydrolysis probes can be performed on

cytological aspiration material by comparing the mutation status

and then observing the concordance rate between the cytological

and histological material and between primary tumors and

metastases.

Materials and Methods

Ethics Statement
Specific need for ethics committee’s approval was not necessary

for this study. All samples were handled according to the medical

ethical guidelines described in the Code Proper Secondary Use of

Human Tissue established by the Dutch Federation of Medical

Sciences (www.federa.org, accessed October 27, 2010). Accord-

ingly to these guidelines all human material used in this study has

been anonymized since clinical data were not used. Because of this

anonymization procedure individual patients’ permission is not

needed.

Sample selection
Material from 43 patients with NSCLC for which both tumor-

positive cytological and histological material was available were

selected from the Department of Pathology in the Leiden

University Medical Center (LUMC) and identified through a

PALGA database search; non-gynecologic cytological samples

between 2005 and 2009 were searched using the search-strings

‘‘lung, malignant cells and non small cell lung cancer’’ and

‘‘mediastinum, malignant cells and non small cell lung cancer’’.

From the 447 unique cytological samples, we selected cases for

which tumor-positive histological material of the primary tumor

was also available (Supplementary Table S1). Of the 43 patients,

33 patients were subtyped: 14 squamous cell carcinomas, 15

adenocarcinomas, 3 adenosquamous carcinomas and 1 large cell

carcinoma. The remaining 10 patients had been classified NSCLC

only.

DNA from 42 control FFPE samples was obtained from the

Molecular Diagnostics (MD) section of the Department of

Pathology in the LUMC. For validation purposes, a series of 10

DNA samples, of which 9 had a demonstrated EGFR exon 19

deletion by DNA sequencing, was provided by the Netherlands

Cancer Institute - Antoni van Leeuwenhoek Hospital.

DNA isolation
Prior to DNA isolation, tumor cells were enriched to obtain

tumor cell percentages .70% (Figure 1). The FFPE tumor blocks

were enriched for tumor cells guided by a hematoxylin and eosin

(H&E)-stained slide taking 0.6-mm tissue punches from the tumor

focus in the FFPE block by using a tissue microarrayer (Beecher

Instruments, Sun Prairie, WI, USA). Prior to DNA isolation, the

tissue was deparaffinized in xylene and washed in 70% ethanol.

For the cell blocks, 10 slides of 10 mm were stained with

hematoxylin. Tumor cells were marked by guiding with a 5-mm

H&E slide and the corresponding tumor fields on the hematoxylin

slides were microdissected.

For the cytology smears, microdissection was initiated by

marking the tumor foci with a diamond needle on the back side

of the Giemsa-stained slide. Subsequently, cover slips were

removed by incubating in xylene at room temperature in separate

50-ml tubes to avoid contamination. Incubation was performed

overnight or until the cover slip was removed (sometimes up to a

week). Subsequently, the slides were washed in alcohol, three times

in 100%, once in 70% and once in 50%, to rehydrate the tissue.

Using a scalpel blade, the tumor foci from the marked areas were

scraped and collected in micro tubes for DNA isolation.

DNA was isolated using the NucleoSpin Tissue XS Genomic

DNA Purification kit (Machery-Nagel, Düren, Germany) accord-

ing to the manufacturer’s instructions. The average DNA yield

from the cytological smears and cell blocks was 282 ng and

280 ng, respectively. However, cytology smears were fixed using

Figure 1. Mediastinal lymph node cytology of a NSCLC patient.
Microscopical detail of a cytological smear obtained through fine
needle aspiration of a meadiastinal lymph node from a NSCLC patient.
The tumor foci are marked on the backside of each slide with a
diamond tip. Subsequently the coverslips are removed and tumor foci
are scraped from the slide using a scalpel blade (not shown).
doi:10.1371/journal.pone.0017791.g001

NSCLC Mutation Analysis after Fine Needle Cytology
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methanol rather than formalin, so the isolated DNA was expected

to be of higher quality. The average DNA yield from the biopsies

was considerably higher (985 ng).

Prior to analysis, the DNA samples were diluted by 5 or 15

times. We observed that DNA diluted over 15 times generally gave

a quantification cycle (Cq).35 (data not shown); therefore, in the

subsequent assays, we used 56 stock DNA dilutions in sterile

water.

Mutation detection
The assays for the detection of seven different KRAS, three

PIK3CA and one BRAF variant were obtained through the Custom

TaqManH Assay Design Tool (Applied Biosystems, Nieuwerkerk

a/d IJssel, NL). Hydrolysis probes were designed with minor grove

binder (MGB) modifications at the 39-end. These modified probes

have the advantage that relatively short probes can be designed

with higher melting temperature (Tm) and increased duplex

stability and specificity in comparison to conventional probes [32].

The EGFR assays were described previously [33]. qPCR reactions

were performed in 10-ml reactions containing 5 ml of FastStart

Universal Probe Master (Roche Applied Science), 1 ml of 106
primer and hydrolysis probe solutions, 2 ml of 56 diluted DNA

and 2 ml of sterile water in a sealed LightCycler 480 Multiwell

Plate 384 (Roche Applied Science) in a LightCycler 480 system

(Roche Diagnostics) as follows: 10 minutes at 95uC and 45 cycles

of 15 seconds at 92uC, 60 seconds at 60uC and 10 seconds at

72uC. For validation, we performed direct Sanger sequencing

using M13 primers as described previously [34] at the sequencing

core of the Leiden Genome Technology Center. Primer sequences

are listed in Supplementary Table S2. All DNA Sequencing was

completed on known genes and no new sequencing was

completed.

Raw data from the LC480 software were imported into an in-

house–created Microsoft Excel 2003 spreadsheet to define the

mutation status. The quantification cycle (Cq) was used for quality

assessment and samples with Cq values exceeding 35 (Cq.35) in

the wild-type channel were rejected and excluded for further

analysis. To determine the presence or absence of a mutation, the

endpoint fluorescence ratio Rm/Rwt was calculated after subtract-

ing the average background signal from three negative controls.

The spreadsheet is available upon request. For BRAF, PIK3CA and

EGFR p.L858R, mutation status was directly discriminated

(Figure 2a). Mutations were identified when the Rm/Rwt ratio

was higher than 0.7, while a ratio lower than 0.3 indicated the

absence of a mutation. No intermediate values were observed. In

KRAS wild-type samples, an increased background signal was

observed for the c.34G.T (Rm/Rwt60.4) and c.38G.C (Rm/

Rwt60.6) assay in the mutant probe channel. This was probably

caused by imperfect hybridization of these probes to the wild-type

allele. The setting to identify the mutation correctly was c.34G.T

Rm/Rwt.0.7, while the c.38G.T mutant was identified when an

Rm/Rwt ratio cut-off of 0.8 was used. The EGFR exon 19 deletion

probe resulted in a drop in endpoint fluorescence, while in a wild-

type sample, both probes gave a signal. To analyze EGFR exon 19

deletions, Rm/Rwt.0.8 and Cq,32 were considered wild-type

and Rm/Rwt#0.6 and Cq,32 indicated a deletion. Intermediate

values, with Rm/Rwt ratio between 0.6 and 0.8 and Cq,35,

required confirmation using Sanger sequencing.

Results and Discussion

Assay design and validation
For BRAF, a single assay was designed that detects the activating

hotspot mutation p.V600E, which results from the c.1799T.A

substitution [35]. For PIK3CA, we designed probes for the three

most common substitutions [36]: c.1624G.A (p.E542K),

c.1633G.A (p.E545K) and c.3140A.G (p.H1047R). Although

these three assays detected over 85% of all mutations in NSCLC,

Figure 2. qPCR Results for the EGFR assays. Panel A shows the EGFR p.L858R assay. All samples show a wild type (control) signal, VIC, lower
panel (green and blue lines) while only group 2 (blue line) shows a mutant FAM signal. Panel B shows the EGFR exon 19 mutation assay. The lower
panel shows the wildtype VIC signal for all samples (red, green and purple lines). The top panels shows the mutant FAM signal. Group 1 (red lines)
shows the wildtype signal, Group 2 (red and purple) shows possible mutants with decreased fluorescence, group 3 (green line) show an almost
completely disappeared signal indicating a deletion. The images are obtained from the LC480 software release 1.5.0. The y-axis shows the relative
fluorescence for the FAM (465–510 nm) and VIC (533–580nm) probes, x-axis shows the PCR cycles.
doi:10.1371/journal.pone.0017791.g002
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some of the infrequent substitutions in the hotspot regions were

potentially missed. For KRAS, we designed assays for the seven

most frequent base pair substitutions in codons 12 and 13:

c.34G.A (p.G12S), c.34G.C, (p.G12R), c.34G.T, (p.G12C),

c.35G.A, (p.G12D), c.35G.C, (p.G12A), c.35G.T (p.G12V)

and c.38G.A (p.G13D). Together, these assays detect almost all

substitutions in KRAS, although some rare variants might be

missed. To detect the p.L858R hotspot and exon 19 deletions in

EGFR we used previously reported assays [33]. The EGFR

p.L858R mutation was detected using a probe mix containing a

wild-type probe and two different mutant probes: one for the most

common variant (c.2573T.G) and one for the rare complex

c.2573_2574TG.GT inversion.

Hotspot mutation analysis in cytology material from
NSCLC patients

To address the extent to which the mutation analysis can be

reliably performed on EBUS-TBNA and EUS-FNA aspiration

material, we performed the 13 assays on 43 patients with NSCLC

for which both primary tumor (either biopsies or histological

material from resections) and tumor-positive cytological material

had been collected. The material from the 43 patients represents

29 tissue cores from histological excisions, 23 microdissected

biopsies and 3 whole-section biopsies which were compared to 45

microdissected cytological smears and 17 microdissected cell

blocks (Supplementary Table S1).

Six patients presented with a KRAS mutation: c.34G.T (N = 2),

c.34G.A, c.35G.A, c.35G.C and c.38G.A. One patient

carried a deletion in exon 19 of EGFR (c.2238_2252del15) and two

patients showed PIK3CA mutations: c.1633G.A and c.3140A.G.

The latter case showed an additional KRAS mutation (p.34G.T).

No mutations in BRAF were observed.

For some patients, multiple histological and/or cytological

samples were analyzed. In different samples for the same patient,

conflicting results for the same type of material were never

observed. Therefore in table 1 each patient is represented only

once, where for each type of material the information from all the

patient’s samples is merged. This means that the clearest signal for

each assay took precedence. In table 1, the remaining missing

calls, due to low signals are indicated by ‘‘?’’.

The overall call rate in the 13 assays, after merging, amounts to

95% (58 undetermined results out of 1118 tests). The call rate for

histological material is substantially higher at 99% (8 undeter-

mined out of 559) than for cytological material at 91% (48 out of

559). Within the cytological material, the call rate for primary

tumors is lower (84%) than for metastases (96%). Note that these

observations remain if the patient with the lowest quality results

(sample 21) is removed. Within the histological material the same

difference in call rate can be observed, but in a much lower degree

(98% for primary tumors versus 99% for metastases). When

comparing call rates per assay, we observed that the three assays

on the PIK3CA gene performed less (between 88 and 91%) than

the other 10 assays (between 94 and 99%).

As could be observed, when cytological material was obtained

from primary tumors, the mutation results for histology and

cytology were concordant in all cases where both results were

determined. When cytological material was obtained from

metastasis, in one patient (nr 40) with an adenocarcinoma/

bronchoalveolar cell carcinoma (BAC), a KRAS c.34G.A

mutation was identified in the mediastinal lymph node which

was not detected in the primary tumor. This could be explained by

the commonly observed genetic divergence of metastasis from its

primary tumor. In this case the time-span is 18 years between the

primary tumor and the metastasis. Overall, the discordance rate is

only 0.20% (1 assay out of 503 where both histological and

cytological results are determined).

Tumor cell percentage and DNA quality
From biopsies and cytology, only small tumor foci can be

microdissected. This results in a low DNA yield that, in case of

formalin fixation, is also partially degraded. To study the quality of

the DNA, we compared the DNA yield to assay performance. We

observed that the average amount of DNA isolated (295 ng) was

lower in the group (n = 15) where two or more assays failed [as

compared to the group without failing assays (n = 102, 2973 ng)].

Nevertheless, in the latter group, 44% of the samples (n = 45) also

had a DNA amount of lower than 295 ng. This indicates that Cq

values are a better indicator of DNA quality and performance than

DNA concentration measurements.

Allele-specific qPCR with hydrolysis probes has been reported

to surpass the 1% sensitivity level [27]. However, considering that

the qPCR efficiency also depends on DNA fragmentation, the

DNA isolated from FFPE samples could accurately be analyzed at

a sensitivity level of 10% [26]. We determined the detection limit

in serial dilutions of DNA from two tumors carrying a KRAS

c.34G.T or a c.35G.A mutation. This showed that the minimal

DNA input must be at least 32 pg, the equivalent of 4–6 cells of

high molecular DNA, to give Cq values ,35 (Figure 3).

Furthermore, we validated the assays in a series of DNA isolates

from microdissected FFPE samples with known KRAS, PIK3CA,

BRAF or EFGR variants as determined by Sanger sequencing. We

found a 100% correlation with the hydrolysis probe assays.

We validated the assay for EGFR exon 19 in a series of 10

samples with possible sequence verified exon 19 deletions and a

tumor percentage of more than 50%. The samples were tested

without prior knowledge of the mutation status. The hydrolysis

assay results were compared with the DNA sequence results and

all nine samples containing an exon 19 deletion were correctly

identified and distinguished from the wild-type specimen

(Figure 2b). In one case, there was an 18-bp insertion in exon

19. Because this fell outside the detection area of the probes, the

mutant was not detected by the deletion assay (SampleID 1012 in

Supplementary Table S3). These results show that all hotspot

mutations and EGFR exon 19 deletions can be detected using the

hydrolysis probes.

Cross-reactivity
Mutations in KRAS and PIK3CA cluster in hotspots. For KRAS,

all seven assays hybridized to codons 12 and 13 (nucleotides

c.34G, c.35G and c.38G), while for PIK3CA two assays detected

exon 9 changes (c.1624G.A and c.1633G.A). As the probes

potentially hybridized in the same region, cross-reactivity between

the different KRAS or PIK3CA assays might be observed as a result

of increased fluorescence readings from imperfectly matched

probes or primers [26]. Additionally, cross-reactivity might result

from (rare) base pair substitutions that are not covered by the used

assays.

Cross-reactivity was studied in a series of 42 MD samples

carrying a KRAS mutation at position 34, 35 or 38. A total of 294

assays (4267) were performed. The correct mutation status was

identified when an Rm/Rwt ratio cut-off .0.7 was used; however,

in 68 assays, a cross-reactivity signal was observed. Five cross-

reactivity signals had Rm/Rwt.0.7, but in these cases, the assay

for the genuine mutation had Rm/Rwt.1.0. Cross-reactivity was

only observed for probes covering the same base pair position (at

position 34 or 35). Cross-reactivity between signals from base pair

34 or 35 and position 38 was not observed (Supplementary Table

NSCLC Mutation Analysis after Fine Needle Cytology
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S4). Therefore, it is probable that no cross-reactivity effects were

observed for the two different PIK3CA probes.

Clinical practice
The described methods can be implemented in clinical practice.

The molecular diagnostics test results can be generated in a short

time. In daily practice, the cytological EBUS-TBNA or EUS-FNA

aspiration material is morphologically typed by pathologists.

Subsequently, samples are clustered for microdissection on a

weekly basis. Microdissection is essential to obtain high tumor cell

percentages to detect the EGFR exon 19 deletion, and to allow

other analyses with lower sensitivity than the described method,

e.g Sanger sequencing. After DNA isolation, the hydrolysis probe

assays are performed on the DNA dilutions. At the end of the

second day, the qPCR results are analyzed in an in-house–

developed Microsoft Excel–based analysis tool to interpret the

results, e.g., determine the mutation status of each probe and

interpret the effect of cross-reactivity. The results are subsequently

reported to the clinic. A limitation of hotspot analysis is, by

definition, that only the hotspot mutations are detected, while

Sanger sequencing can identify all mutations in the PCR

amplicon. In some cases, in which the mutation analysis does

not meet the quality settings, Sanger sequencing will be

performed. For Sanger sequencing, extra PCR reactions, reaction

product purifications and electrophoresis must be performed,

which will require two extra days in the analysis pipeline.

Conclusion
We conclude that somatic mutation hotspot analysis for KRAS,

PIK3CA, BRAF and EGFR of fine needle aspirations of mediastinal

Figure 3. Effect of the DNA concentration on the c.34G.T KRAS assay. The top panel shows the mutant (FAM) signal for a range of different
amounts of input DNA in pg carrying the c.34G.T KRAS mutation. No ‘‘mutant’’ signal is observed in a wildtype DNA (green line) and water control
(grey line). In the wildtype (VIC) panel all DNA’s show a wildtype signal while the water control is negative (grey line). The images are obtained from
the LC480 software release 1.5.0. The y-axis shows the relative fluorescence for the FAM (465–510 nm) and VIC (533–580nm) probes, x-axis shows the
PCR cycles.
doi:10.1371/journal.pone.0017791.g003
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lymph nodes in NSCLC patients is accurate and reliable. Somatic

hotspot mutation analysis for KRAS, PIK3CA, BRAF and EGFR can

reliably be performed using allele-specific qPCR with hydrolysis

probes; the mutation results from cytological specimens and the

primary tumors are highly concordant.

Somatic mutation analysis in NSCLC for molecular staging and

the guidance of treatment decisions can be performed on EBUS

and EUS fine needle aspirates, procedures that are less invasive for

the patient than routine mediastinoscopy.

Our findings indicate that the molecular genetic analysis of

NSCLC should be incorporated with the standard EBUS and EUS

procedures. This combined approach will result in the accurate

diagnosing and staging of those patients and will also help to guide the

optimal treatment decisions, especially in stage III and IV NSCLC.

Supporting Information

Table S1 General overview.

(XLS)

Table S2 Primer sequences.

(XLS)

Table S3 EGFR exon 19 validation experiment.

(XLS)

Table S4 Cross reactivity in KRAS assays.

(XLS)
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