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Abstract
Two decades have passed since the first report of the cloning of a kainate receptor (KAR) subunit.
The intervening years have seen a rapid growth in our understanding of the biophysical properties
and function of kainate receptors in the brain. This research has led to an appreciation that kainate
receptors play quite distinct roles at synapses relative to other members of the glutamate-gated ion
channel receptor family, despite structural and functional commonalities. The surprisingly diverse
and complex nature of KAR signaling underlies their unique impact on neuronal networks through
their direct and indirect effects on synaptic transmission, and their prominent role in regulating
cellular excitability. This review pieces together highlights from the two decades of research
subsequent to the cloning of the first subunit, and provides an overview of our current
understanding of the role of KARs in the CNS and their potential importance to neurological and
neuropsychiatric disorders.

Introduction
Glutamate is the principal excitatory neurotransmitter in the brain, exerting its actions
through distinct classes of receptors predominantly localized to neuronal synapses. The
glutamate-gated ion channel (iGluR) family consists of the kainate, α-amino-3-hydroxy-S-
methylisoxazole-4-propionic acid (AMPA), and N-methyl-D-aspartate (NMDA) subfamilies
of receptors. Each of these receptors fluxes ions that depolarize neuronal plasma
membranes; however, they perform quite distinct functions at the synapse and in neuronal
processing more generally. KARs have distinguished themselves functionally as
unconventional members of the iGluR receptor family. They are distributed throughout the
brain, but unlike AMPA receptors (AMPARs) and NMDA receptors (NMDARs) are not
predominantly found in excitatory postsynaptic signaling complexes. Instead, KARs act
principally as modulators of synaptic transmission and neuronal excitability. More
peculiarly, they link to metabotropic signaling pathways in addition to conventional
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operation as ionotropic receptors. These modulatory roles position KARs as potentially
favorable targets for the development of therapeutics, and indeed KAR antagonists have
been examined for amelioration of a diverse range of neurological conditions, including
chronic pain, epilepsy and migraine [1].

Elucidation of the biological function of neuronal KARs has occurred during an
extraordinarily productive period in neuroscience initiated by the cloning of the first iGluR
subunits [2] and the identification of the first KAR subunit gene [3]. In this review, we
provide a perspective of the research that has followed these achievements over the past two
decades (Figure 1) and celebrate the coming of age of KARs.

The early years: the emergence of a new glutamate receptor subfamily
Pharmacological and toxicological research into the actions of kainic acid (KA), a natural
conformational analogue of glutamate isolated from seaweed, pre-dated the cloning of its
target receptors by well over a decade. KA is a powerful neurotoxin that elicits a complex
spectrum of effects when injected in the mammalian brain, including neuropathological
lesions and seizures reminiscent of those found in patients with mesial temporal lobe
epilepsy (mTLE) [4,5].

Early pharmacological evidence supported the hypothesis that excitatory amino acid
receptors mediated the neurotoxic effects of KA [6]. Pioneering pharmacological studies led
to the differentiation of vertebrate excitatory amino acid receptors into AMPAR, NMDAR
and KAR subfamilies (reviewed in [7])). The anatomical distribution of high affinity binding
sites for KA corresponded well to brain regions particularly susceptible to injections of
moderate amounts of the toxin, such as the CA3 region in the hippocampus [4,5,8]. KA also
had a potent depolarizing activity on dorsal root fibers in the spinal cord [9], which arose
from a subpopulation of dorsal root ganglion neurons expressing predominantly KARs
rather than AMPARs or NMDARs [10].

Cloning and structural characterization of KARs
Molecular cloning

Cloning of the cDNAs for KAR subunits clearly established that these subunits comprised a
functionally and structurally distinct family of iGluRs. In 1990, the first KAR subunit
cDNA, GluR5, was isolated [3] shortly after the cloning of the four AMPAR subunits [11–
13], which represented fundamental breakthroughs in iGluR research. The predicted GluR5
protein had a lower level of sequence similarity to GluR1 and other AMPAR subunits, and,
unlike AMPARs, homomeric channels formed from GluR5 subunits exhibited a much
higher affinity for KA than for AMPA [14]. Two iGluR cDNAs isolated subsequently,
GluR6 and GluR7, were categorized as KAR subunits based on their high degrees of
sequence homology with GluR5 [15,16]; further, all three subunits had dissociation
constants for KA characteristic of “low-affinity” KA binding sites described in earlier
autoradiographic experiments [17]. Two additional cDNAs, KA1 and KA2 [18–20],
encoded more distantly related proteins that bound radiolabeled KA with KD values similar
to those characterized as “high-affinity” KA-binding sites in the mammalian brain [21,22].
Unlike the channels formed by GluR5, GluR6 and GluR7 receptor subunits [14,15,23], KA1
and KA2 did not generate functional homomeric receptors when expressed in heterologous
systems; rather, co-expression of KA2 with GluR5 or GluR6 generated channels with novel
functional and pharmacological properties [19]. These findings, together with biochemical
evidence that GluR6 and KA2 subunits co-assembled as multimeric receptors but could not
assemble with AMPAR subunits [24], confirmed that these subunit proteins, encoded by the
respective Grik1-5 genes, comprised the KAR gene family of iGluRs [25] (Figure 2).
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Recently the International Union for Basic and Clinical Pharmacology (IUPHAR)
recommended a new nomenclature for all iGluR subunits, which will be utilized throughout
the remainder of this review, in which GluR5, GluR6, GluR7, KA1 and KA2 subunits were
renamed GluK1-5, respectively (see Table 1 for a comparison of the various naming systems
used for KAR subunits).

Structure and function of KARs
Cloning of the receptor subunit cDNAs precipitated an exceptionally fertile period of
research into the biophysical and structural diversity of iGluRs. Many key insights derived
from examination of other recombinant iGluRs – primarily AMPARs- proved to be broadly
applicable to KARs as well. A notable example was the discovery that mRNAs encoding the
GluK1 (GluR5) and GluK2 (GluR6) subunits were subject to enzymatic editing by an RNA
deaminase [26], similar to the AMPAR subunit GluA2 [27], which most critically resulted in
alternate incorporation of an important amino acid in the channel pore-forming P-loop (the
“Q/R” site). Functionally, receptors incorporating subunits edited at the Q/R site have
markedly reduced divalent cation permeabilities [28], and very low single-channel
conductances [29]. Additional editing sites exist in M1 of GluK2 that impact ion selectivity
to a modest degree [26] (Figure 2A). Paradoxically, the physiological relevance of the
tightly controlled developmental changes in the Q/R site editing of GluK1 and GluK2
receptors remains unclear.

Two key insights further impacted structural studies on KARs in the decade following the
cloning of the subunits. After several years of uncertainty, the topology of iGluRs in the
plasma membrane was established by several groups [30–32]. Surprisingly, these studies
supported a secondary structure distinct from that of other ligand-gated ion channel
subunits: a large extracellular N-terminal domain followed by a single transmembrane
domain (M1), a re-entrant P-loop (M2), another transmembrane domain (M3), a large
extracellular loop, and a final transmembrane domain (M4) preceding the cytoplasmic
carboxy-terminal domain (Figure 2B). Concurrent with the topological studies, the ligand-
binding domains of iGluR subunits were discovered to be formed from the non-contiguous
pre-M1 domain (known as S1) and the loop between M3 and M4 (known as S2) [32,33].
These and subsequent structure-function studies led to the concept of iGluRs as “modular”
proteins in which an isolated ligand-binding core could be reconstituted as a soluble protein
with a pharmacological profile similar to that of full-length receptor subunits [34]; this
discovery laid the groundwork for the advances in the elucidation of the detailed structural
basis for receptor function that were to follow.

Application of crystallographic and spectroscopic techniques to iGluR structure continues to
drive a productive period of research that has moved understanding of conformational
changes underlying receptor function from a “black box”, at the time of the cDNA cloning,
to highly detailed and testable physical models that can be correlated with kinetic data and
mutagenic-based structure-function studies. Breakthroughs achieved in resolving physical
models of iGluR function, initiated with the crystallization of the GluA2 ligand-binding core
[35], were subsequently extended to two KARs subunits, GluK1 and GluK2 [36–38] (Figure
2B). Conservation of structural similarity between subtypes of iGluRs extends to subunit
amino-terminal domains [39,40], which are critical for oligomerization of tetrameric
receptors [41]. Based on these and many other studies, physical models now exist for the
conformational changes underlying many aspects of iGluR function, including activation,
agonist efficacy, desensitization, recovery from desensitization, and deactivation [42].

The unprecedented level of insight into the molecular workings of iGluRs underscored
structural similarities between the three subfamilies of iGluRs, while simultaneously
revealing that many substantive differences in gating and pharmacological properties arise
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from relatively small variations in protein structure. For example, early comparisons noted
that recovery from desensitization following glutamate activation of receptors, a biophysical
parameter that shapes synaptic responses to different frequencies transmission, was ~10-fold
slower for KARs compared to AMPARs [43,44]. An elegant study combining mutagenesis,
physiological analysis, and resolution of ligand-binding structures demonstrated that the
relatively slow recovery of GluK2 KARs is attributable to an agonist-stabilized interaction
between the two lobes of the binding domain through formation of hydrogen bonds and salt
bridges that do not exist in agonist-bound AMPAR subunits [45].

Structural studies also shed light on the unusual dependence of KAR gating on extracellular
cations and anions. In the absence of ion binding to defined sites on dimer interfaces
[46,47], KARs accumulate in an unresponsive state analogous to some degree with fully
desensitized receptors, with the distinction that loss of function in the absence of ions does
not depend on agonist binding [48–50]. The requirement for ion binding may render KAR
activation sensitive to fluctuations in extracellular ionic concentrations, which are thought to
occur during periods of high neuronal activity [48].

Accessory proteins
These structural and biophysical studies were accompanied by a growing appreciation that
iGluRs did not operate (or assemble) in isolation, but rather represented one component of
macromolecular complexes that could include proteins serving as trafficking chaperones,
molecular scaffolds, and/or signaling enzymes. The postsynaptically enriched PDZ
(PSD-95/Dlg/ZO1) protein PSD-95 (postsynaptic density protein 95) was first identified as
an interacting protein for the GluK2 subunit that modestly altered function and localization
[51]. Additional interacting proteins were identified through both yeast two hybrid screens
[52,53] and proteomic approaches [54] targeting the C-terminal domain of KAR subunits.
Each of these interacting proteins has been demonstrated to be relevant to neuronal KAR
function, either through effects on regulating the trafficking of receptors to and from the
neuronal and synaptic membrane [52–56] or being involved in the modification of channel
gating [57,58]. For instance, interactions between KARs and the PDZ proteins PICK1
(Protein Interacting with C Kinase-1) and GRIP (Glutamate Receptor Interacting Protein)
appear to be important for stabilizing KARs at synapses [52]. In contrast, the novel BTB/
kelch-domain protein KRIP6 (Kainate Receptor Interacting Protein for GluR6) and recently
identified transmembrane CUB (C1r/C1s,Uegf,Bmp1) domain-containing proteins, NETO1
& 2 (NEuropilin TOlloid-like 1 & 2), directly modulate receptor channel gating without any
effects on receptor trafficking [57,58]. In addition, a number of trafficking and targeting
motifs encoded in KAR subunit amino acid sequences have been identified, including a
conserved amino acid sequence that strongly promotes forward trafficking of GluK2a- and
GluK3a-containing receptors [59,60] and, conversely, polybasic retention motifs in GluK1
and GluK5 subunits [61–63]. Post-translational modification of KAR subunits by
phosphorylation, palmitoylation and, most recently, sumoylation, also impact receptor
trafficking and function in diverse fashions [64–66]. These and related studies have provided
a wealth of information regarding the cellular mechanisms that regulate KAR trafficking and
membrane targeting, but nonetheless it remains unclear what protein interactions and
cellular mechanisms produce the markedly polarized and heterogeneous distribution of
KARs, which varies between different types of neurons and across brain regions [67].

Physiological functions of KARs
What purpose(s) do KARs serve in the mammalian nervous system? The answer to this
question has proven both elusive and more complex than first imagined following the
cloning of the receptor subunits. The most accurate response now appears to be that this
receptor subclass is involved in the “regulation of activity in synaptic networks”. KARs
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perform this function through diverse mechanisms that include postsynaptic depolarization
at a subset of excitatory synapses, presynaptic modulation of both excitatory and inhibitory
transmission (Figure 3A&B), refinement of synaptic strength during development, and
enhancement of neuronal excitability (Figure 3C). These varied roles generally impact the
balance between excitation and inhibition in neuronal networks and thereby influence
oscillatory behavior and, potentially, cognition [68].

Understanding the role of KARs in the CNS was difficult initially because KARs and
AMPARs exhibit overlapping sensitivities to most competitive antagonists [1,69]. This
hurdle was overcome with the identification of relatively selective antagonists for AMPARs,
the 2,3-benzodiazepines [70,71], which allowed the pharmacological isolation of KAR
currents in neurons [72]. The first KAR-mediated excitatory postsynaptic currents
(EPSCKA) were subsequently pharmacologically isolated and characterized at the
hippocampal mossy fiber – CA3 pyramidal cell synapse [73,74]. These observations
resolved the fundamental question of whether KARs were operative at postsynaptic sites;
however, they simultaneously introduced a long enduring question about neuronal KAR
function. That is, the mossy fiber EPSCKA exhibited surprisingly slow activation and
deactivation kinetics relative to AMPAR-mediated currents from the same synapse.
Furthermore, EPSCKA did not match well with currents gated by recombinant KARs
expressed in heterologous systems. Similarly slow kinetics have proven to be a predominant
feature of postsynaptic KARs at a diverse sites in the CNS [75–78]. While a definitive and
comprehensive explanation does not yet exist, studies on recombinant receptors and in gene-
targeted mice suggest that the subunit composition of the synaptic KARs acts as a critical
determinant [79–81]. Receptor co-assembly with auxiliary proteins that alter channel
function, such as the recently described NETO proteins [58], could also contribute to the
synaptic current kinetics. This unexpected behavior of the EPSCKA clearly influences the
integrative features of excitatory transmission mediated by KARs, particularly excitatory
postsynaptic potential (EPSP)-spike coupling [78,82–84].

The preponderance of research over the last fifteen years suggests that KARs serve a crucial
role as presynaptic regulators of neurotransmitter release [85,86]. While widely accepted
now, this was a surprising and unconventional hypothesis when initially reported in
hippocampal synaptosome preparations [87]. Electrophysiological recordings subsequently
demonstrated that exogenous KAR agonists regulate transmitter release at both excitatory
and inhibitory synapses in a biphasic fashion, dependent upon synapse type and
concentration of agonist, while endogenous activation by synaptically released glutamate is
predominantly facilitatory (reviewed in [85,88,89]).

Presynaptic KARs that regulate excitatory transmission at hippocampal mossy fiber – CA3
pyramidal cells synapses have been subjected to experimental scrutiny for over a decade, but
nevertheless continue to generate lively debate on various aspects of their molecular and
functional properties. Homosynaptic activation of this population of KARs facilitates
glutamate release from mossy fiber terminals and thereby contributes to the characteristic
frequency-dependent short-term plasticity of mossy fiber excitatory transmission [90–93].
Induction of long-term potentiation (LTP) of mossy fiber transmission by high-frequency
stimulation is facilitated by presynaptic KARs [90–92,94–96], and comparative studies with
gene-targeted mice indicate that presynaptic receptors mediating synaptic plasticity contain
the GluK2 [90,95,97] and GluK3 receptor subunits [92]. GluK1-containing receptors were
implicated in mossy fiber plasticity in many [91,94,98], but not all [97,99], studies that
utilized selective antagonists. It is clear, however, that some of the GluK1 antagonists also
inhibit receptors containing the GluK3 subunit [99], which might underlie their effect on
mossy fiber presynaptic function [92].
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The mechanisms by which KARs facilitate release at hippocampal mossy fiber synapses are
not well understood. Glutamate release following even a single action potential activates
presynaptic KARs [90,93], resulting in augmentation of terminal calcium signals that in part
results from stimulation of release from internal calcium stores [96,100]. The necessity to
measure presynaptic KAR function indirectly (through effects on postsynaptic currents)
makes resolution of this mechanistic issue challenging; in fact, despite the preponderance of
functional evidence and ultrastructural localization of KAR subunits within mossy fiber
terminals [101], questions still continue to be raised as to their fundamental relevance to
mossy fiber synaptic transmission [102]. However, on this point pharmacological and
genetic analyses are in agreement, unequivocally supporting a central role for presynaptic
KARs in the modulation of excitatory transmission [80,83,92]. While the mossy fiber
synapse has been the primary focus of much research on presynaptic KAR regulation of
excitatory transmission, the receptors have been shown to play similar roles at a variety of
synapses in both the central and peripheral nervous systems ([85,86] and reviewed in [103]).

KAR activation also alters GABAergic transmission in a complex fashion dependent upon
the type of neuron as well as the route and strength of receptor activation. Exogenous
activation of KARs initially was shown to depress stimulation-evoked transmission between
inhibitory interneurons and CA1 pyramidal cells [104,105]. This effect was suggested to be
due in part to depolarization of interneurons by somatodendritic KARs [106] (but see [107]).
In contrast, action potential-independent GABA release measured in both CA1 interneurons
and pyramidal cells was enhanced by bath application of KAR agonists [108–110] (but also
see [105]). The net effect on inhibitory function of physiological activation of presynaptic
KARs remains controversial, with stimulation of Schaffer collateral excitatory inputs
producing both facilitation [108,111] and inhibition [112]; KARs localized on axons can
also contribute by enhancing excitability [113]. Thus, there are likely to be multiple
mechanisms by which KARs directly or indirectly modulate GABAergic transmission,
including through concerted action with other signaling systems such as presynaptic
endocannabinoid receptors [114].

Non-conventional metabotropic signaling
KARs also are unique in the iGluR family in that some of their neuronal function is
mediated through non-canonical metabotropic (G protein-mediated) signaling pathways.
This was first demonstrated at inhibitory synapses in the CA1 region of the hippocampus,
where modulation of GABA release by exogenous KA was independent of ion channel
function and engaged a pertussis toxin (PTx)-sensitive G-protein and protein kinase C [115].
A similar form of metabotropic signaling underlies KAR-dependent inhibition of the slow
after-hyperpolarizing potential (AHP) in CA1 pyramidal cells, which leads to long-lasting
enhancement of neuronal excitability [116]. Selective activation of the GluK5 receptor
subunit was proposed to mediate an analogous function in CA3 neurons [117], because
metabotropic signaling was abrogated in GluK5 knockout mice, but similar analyses led to a
divergent conclusion in subsequent studies [80]. Thus, while the existence of non-canonical
metabotropic function by pre- and post-synaptic KARs has received strong experimental
support in these and other studies (e.g. [118,119]), many mechanistic aspects of the
signaling pathway remain unresolved. KAR subunits do not contain conventional motifs in
their C-terminal domains that support direct coupling to G-proteins, suggesting that
intermediary proteins might exist that act as scaffolds and transducers in a receptor-G-
protein signaling complex. Furthermore, some metabotropic actions attributed to KARs are
due to the actions of neuromodulatory agents whose release or action is stimulated by KAR
activation [76,120].
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KARs and synaptic plasticity
Consistent with their predominantly presynaptic localization, KARs facilitate the induction
of forms of excitatory synaptic plasticity that manifest as increases in synaptic release
probability, such as that at hippocampal mossy fiber – CA3 pyramidal cell synapses [94].
Both short-term facilitation and long-term potentiation of mossy fiber synaptic transmission
are impaired in the GluK2 knockout and GluK3 knockout mice [90,92]. Analysis of the
other available knockout mice has thus far excluded obligatory roles for GluK1 [90,97] and
GluK5 [79] in these forms of plasticity. Pharmacological studies, while generally supporting
the importance of KARs for plasticity at this synapse, have led to different conclusions
regarding subunit composition of mossy fiber KARs [91,98]. Presynaptic KARs have been
proposed to contribute an associative reduction in the threshold for plasticity at this synapse
[95], possibly through coupling to intraterminal calcium stores [100]. Under conditions of
endogenous glutamate release, presynaptic KARs acting on GABA release are also
implicated in short term plasticity of inhibitory connections [108,112,114].

The slow deactivation of postsynaptic mossy fiber KARs results in a significant contribution
to temporal summation of the synaptic response and increased spike transmission. This in
turn facilitates induction of Hebbian spike-timing dependent LTP of the associational/
commissural synapses [83], which comprise the majority of synapses on CA3 pyramidal
neurons. A similar associative, integrative role for KARs in heterosynaptic plasticity has
been demonstrated at synapses in the basolateral amygdala [121]. Thus, it seems likely that
KAR contributions to LTP are largely modulatory, regulating the induction of plasticity,
rather than acting as obligatory mediators of synaptic potentiation.

Development of selective pharmacological tools targeting KARs
Despite sustained efforts in both academic and industrial laboratories to develop selective
antagonists following the cloning of KAR subunits (reviewed in [1]) few useful orthosteric
or allosteric antagonists exist that inhibit KARs selectively (but which spare AMPARs). In
the absence of such compounds, serious limitations exist in how effectively pharmacology
can be used to characterize the contributions of neuronal KARs for behavior. The
therapeutic utility of targeting KARs therefore remains a largely untested potential, with a
few notable exceptions.

The GluK1 subunit has proved the most amenable for the development of selective
pharmacological agents. Selective agonists and antagonists for receptors containing the
GluK1 subunit have been developed from structurally diverse templates that include
synthetic decahydroisoquinolines as well as the natural products willardiine and
dysiherbaine [1]. These compounds have been used to explore receptor subunit composition
in native KARs, although these studies have been complicated by a growing recognition that
some of the antagonists (UBP-series willardiine analogs, in particular) are less selective than
initially proposed [99]. Because GluK1-containing receptors modulate transmission in
peripheral and central nociceptive pathways [122], antagonists against these receptors form
the basis of a novel strategy for alleviating pathological pain.

KARs remain ripe targets for development of new pharmacological agents, which could
have application in a variety of neuropathologies in addition to chronic pain. These could
include antagonists that selectively alter GluK2- or GluK3-containing receptor function.
Alternate strategies for targeting these receptors could include development of positive or
negative allosteric modulators or compounds that alter association with functionally
important auxiliary proteins. Further investigation into the neurophysiological role of KARs,
and the elucidation of their contribution to cognitive function as well as neuropathological
states, would greatly benefit from a more complete set of pharmacological tools.
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KARs and disease
KARs have been most prominently associated with epileptogenic activity. The KA rodent
model of mTLE has been a key tool in studying the physiology of seizures. In addition,
KAR mutant mice have altered susceptibility to seizures in this model [123,124] and GluK1
selective antagonists block seizures induced by pilocarpine [125], clearly implicating KARs
in the induction and propagation of seizures, at least in rodent models. Interestingly,
recurrent mossy fiber synapses in the dentate gyrus, which are observed in the hippocampus
from patients with mTLE and in rodent epilepsy models with lesions of the CA3 region,
generate aberrant EPSCKA [126], altering the temporal precision of EPSP-spike coupling in
dentate granule cells [127]. However, a clear link to human epilepsies has not been
established, and thus it remains uncertain whether KARs are likely to provide useful clinical
targets for controlling seizures.

Glutamate excitotoxicity has been associated with a range of pathophysiological disorders of
the CNS, and consequently all members of the ionotropic and metabotropic glutamate
receptor families have been proposed as potential targets to reduce neuronal damage. KARs
appear to play both direct and indirect roles in excitotoxicity of oligodendrocytes, for
example, which are more sensitive to complement-mediated attack following KAR
activation [128]. This interesting observation could be particularly relevant to demyelinating
diseases such as multiple sclerosis (MS); however, the efficacy of KAR antagonists in
slowing disease progression in mouse models of MS has not yet been tested.

The growth of genetic epidemiology also has identified several potential linkages between
neuropsychiatric disorders and KARs. GRIK4 is associated with schizophrenia [129] in
some populations (but see [130]). GRIK2 and GRIK3 are linked to obsessive compulsive
disorder [131,132], GRIK3 with depression [133] and GRIK2 with autism [134–137]. These
associational studies in many cases have been limited to suggestive linkages to these
disorders and further scrutiny is required to firmly establish a causative link to human
diseases. A recent genetic study also found loss of function mutations in GRIK2 that co-
segregated with non-syndromic autosomal recessive mental retardation in a consanguineous
family [138], strongly suggesting that GluK2-containing receptors are indispensable for
appropriate brain functions in humans. The genetic association with neurodevelopmental
disorders [134–138] is consistent with a role of KARs in the development of neuronal
circuitry [139–141]. These interesting associations await confirmation in molecular and
mechanistic studies, but they clearly represent future research directions with potential
application to human disease.

Conclusions and future directions
Research on the neurobiology of KARs has progressed rapidly in the past two decades at
many levels, driven by structural insights as well as new pharmacological and genetic tools.
A new appreciation for their functional relevance has arisen from efforts of many
laboratories inspired by the molecular characterization of the receptor subunits. Although a
number of important questions remain (Box 1), there is a large body of work which has
pieced together the mechanistic contribution of these receptors to cellular and synaptic
function. Likewise, there has been a growing understanding of the involvement of KARs in
pathophysiological conditions. These are just the first, necessary stages in development of a
more comprehensive framework for understanding the diverse physiological contributions of
KARs in the nervous system. We are now challenged to bridge the gap between the cellular
synaptic mechanisms to define which of their diverse signaling properties contribute to
behavior; this process has begun already to some degree and will likely provide some more
surprises in the future. A further major challenge for the future will be to evaluate this
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receptor system as potential targets for treatment of a variety of neuropathologies. We are
therefore at, “perhaps, the end of the beginning” in fully uncovering the roles these elusive
proteins play in brain function.

Box 1

Outstanding Questions

• What are the main determinants of the polarized expression of KARs in
neurons?

• What is the physiological and pathological relevance of changes in the editing
status of GluK1 and GluK2 receptor subunits?

• How do kainate receptors link to metabotropic signaling pathways?

• How do presynaptic KARs regulate synaptic transmitter release ?

• What role do KARs play in network activity and higher cognitive brain
functions?

• Do KARs play a significant role in neuropsychiatric and neurological disorders?
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Figure 1. Timeline for two decades of discoveries in KAR neurobiology
Cloning of the KARs, beginning with the first subunit (GluR5/GluK1) in 1990, led to a large
effort to characterize the biophysical and physiological properties of KARs. Development of
knockout mice and selective ligands began to uncover diverse roles for KARs in the brain.
Resolution of the crystal structure of the ligand binding domain increased our understanding
of KAR biophysics and accelerated the potential development of selective ligands. Post-
translational modifications and important accessory proteins were found to contribute to the
diversity of neuronal KAR function. Additionally, genetic association studies have identified
several potential linkages between neurological disorders and KARs.
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Figure 2. KAR subunit diversity and structure
(A) KAR subunits (GluK1-5) and splice variants. Black boxes represent membrane domains
(M1-M4). Triangles depict sites of RNA editing, including the “Q/R” site within both
GluK1 and GluK2, which controls ion permeability of the channel. The primary subunits
(GluK1-3) have high sequence homology and are required for the formation of a functional
heteromeric receptor complex. The high affinity subunits (GluK4-5) are incorporated into
heteromeric receptors and modulate receptor properties. (B) KAR subunit topology
depicting the three transmembrane domains (M1, M3,M4) and the re-entrant pore loop
(M2), the extracellular N-terminus and the intracellular C-terminal loop. D1 and D2 refer to
modular lobes within the ligand binding domain (LBD). R1 and R2 refer to component lobes
of the N-terminal domain (NTD). Crystalstructure of the NTD [39] and the LBD [38] are
shown.
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Figure 3. Cartoon representations of examples of diverse physiological actions of KARs
Presynaptic kainate receptors can (A) depress [142] (at synapses between thalamic neurons
and layer IV (LIV) neurons), or (C) facilitate [90] (at synapses between dentate gyrus (DG)
neurons and CA3 pyramidal cells (PC)) glutamate release. Similarly both a (B) depression
(between Stratum Radiatum interneurons (St Rad IN) and CA1 PCs) [105], and (D)
facilitation (between St Rad INs) [110] of GABA release have been reported. In addition,
non-synaptic KARs can mediate modulation of excitability of different cellular
compartments, including the (E) somatodendritic compartment of PCs in the CA1 region of
the hippocampus and (F) the axon of DG granule cells [116,143]. These effects are mediated
through diverse signaling pathways and are specific to particular cell-types and brain
regions.
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