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SUMMARY
We discuss design and analysis of longitudinal studies after case-control sampling, wherein
interest is in the relationship between a longitudinal binary response that is related to the sampling
(case-control) variable, and a set of covariates. We propose a semiparametric modelling
framework based on a marginal longitudinal binary response model and an ancillary model for
subjects’ case-control status. In this approach, the analyst must posit the population prevalence of
being a case, which is then used to compute an offset term in the ancillary model. Parameter
estimates from this model are used to compute offsets for the longitudinal response model.
Examining the impact of population prevalence and ancillary model misspecification, we show
that time-invariant covariate parameter estimates, other than the intercept, are reasonably robust,
but intercept and time-varying covariate parameter estimates can be sensitive to such
misspecification. We study design and analysis issues impacting study efficiency, namely: choice
of sampling variable and the strength of its relationship to the response, sample stratification,
choice of working covariance weighting, and degree of flexibility of the ancillary model. The
research is motivated by a longitudinal study following case-control sampling of the time course
of ADHD symptoms.
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1. Introduction
The Attention Deficit Hyperactivity Disorder (ADHD) Study (Lahey, 1998; Hartung et al.,
2002) is a longitudinal study on 255 children that seeks to identify risk and prognostic
factors in early childhood for ADHD symptoms, diagnoses, and functional outcomes across
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childhood, adolescence and early adulthood. In the paper we model ADHD prevalence as a
function of time and baseline predictors in the first eight waves of data (including baseline).
One hundred thirty-eight children who were referred to one of two participating clinics due
to parent or teacher suspicion of ADHD symptom exhibition were enrolled in the study, as
was a demographically and socioeconomically similar group of 117 non-referred children.
All participants were followed over seven annual visits after baseline. Assessment of ADHD
symptoms was made at each visit using the Diagnostic and Statistical Manual of Mental
Disorders (4th ed.; DSM-IV; American Psychatric Association, 1994) criteria, and these
assessments were used to generate at each wave a diagnosis of ADHD in the previous six
months. While participant referral was a strong predictor of ADHD symptom level,
particularly at the first (baseline) visit, the relationship was not deterministic, and some
referred subjects did not meet criteria for ADHD at baseline. Conversely, non-referred
participants exhibited symptoms and at times met diagnostic criteria for ADHD.

Because referred and non-referred participants are at high and low risk, respectively, for
expressing symptoms during followup, the ADHD study design allows researchers to
observe substantial response variation and thereby to potentially estimate many target
regression effects efficiently. Because the sampling scheme is biased, however, standard
longitudinal data analysis methods do not apply. In this manuscript, we discuss analytical
strategies and design considerations when such “case-control” (e.g., referred and non-
referred) sampling is followed by longitudinal followup on a binary response related to case-
control status at baseline. Similar biased sampling in longitudinal studies has been used
elsewhere (e.g., Lahey et al., 1999), and the methods described herein would apply in those
settings as well.

To formalize the problem, assume interest lies in the longitudinal marginal relationship E(Yi
| Xi) where i indexes subjects in a population, Yi is a binary vector of responses on the ith
subject, and Xi is a design matrix containing predictor and adjustment variables of interest.
Subjects are sampled from the population into the study with probability that depends on a
univariate case-control or sampling variable Zi which is related to Yi, or possibly on (Zi,
X1i), where X1i is contained in Xi. The analytic goal is to make inferences on the marginal
mean E(Yi | Xi). Though case-control sampling is in the general sense a stratified design, for
the purpose of this paper, we refer to sampling based on (Zi, X1i) as stratified sampling
(dropping the case-control designation for ease of exposition only), and we refer to sampling
based only on Zi as case-control sampling.

The case-control design we consider is a specific instance of what is more generally termed
outcome dependent sampling (ODS). The majority of such ODS designs, including those
pertaining to longitudinal and correlated data, require explicit acknowledgment of non-equal
probability of participant ascertainment in the analysis. Neuhaus and Jewell (1990) and
Qaqish et al. (1997) discuss the implications of ignoring the ODS design with cluster-based
sampling for correlated data, and Neuhaus and Jewell propose subject-specific conditional
logistic regression models when sampling is based upon binary response vector sums.
Similarly, Schildcrout and Heagerty (2008) describe sampling based on the presence/
absence of binary response series variation and propose conditional maximum likelihood
analyses for marginal models. Case-control family studies, an alternative design, sample on
a single component (the proband) of a cluster rather than on a summary of the entire cluster-
level response vector. Whittemore (1995), Zhao et al (1998), and Neuhaus, Scott, and Wild
(2002) approach case-control family studies via marginal models; Neuhaus, Scott and Wild
(2006) have more recently developed methods using subject-specific models. Our design is
linked to the case-control family study; however, we sample on an ancillary variate that is
related but not equal to the index response. Whereas Neuhaus et al. (2006) discuss a
‘stochastic’ sampling design like ours, they propose likelihood-based estimation. In contrast,
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we develop a semiparametric estimation strategy for the marginal model E(Yi | Xi) using
generalized estimating equations (GEE; Liang and Zeger, 1986). Advantages to likelihood-
based estimation over GEE are well known (e.g., model selection and missing data);
however, we believe it is important to develop an estimation strategy for this design using
methods that, unlike parametric approaches, are insensitive to dependence model
misspecification. Our approach can be implemented using standard GEE software and we
provide a macro for doing so in Stata (StatCorp, 2007) on the second author’s (PJR) website
(http://health.bsd.uchicago.edu/rathouz/Software).

This manuscript is organized as follows. In section 2, we describe modeling assumptions
that must be made for valid inferences and a general strategy that can be used for estimation
with this study design. We detail a semiparametric estimation approach to parameter
estimation and inference under logistic regression models for Zi and Yi in section 3. Section
4 reports on simulation studies conducted for the purpose of examining the finite sample
operating characteristics of the proposed estimator, focusing on the impact on bias of model
misspecification and on statistical efficiency of design and estimation strategies. We return
to the ADHD study in section 5 and describe an analysis of those data. Finally, we provide
concluding remarks and a discussion in section 6.

2. Sampling and modeling assumptions
Consider a target population wherein each subject i in the population admits (Yi, ti, Xi).
Here, Yi = (Yi1, …, Yini)′ is a longitudinal series of binary outcomes such as annual ADHD
diagnosis, Xi = (xi1, …, xini)′ is a ni × p matrix of covariates predicting Yi, and ti = (ti1, …,
tini)′ is a vector of observation times which may also be contained in Xi. For example, in the
ADHD study, each row j of Xi may contain a vector of baseline (e.g., gender and ethnicity)
and time-varying (e.g., wave, age, other psychiatric diagnoses, or interactions between
baseline predictors and time) predictors for ADHD diagnosis Yij at time tij. For purposes of
exposition, we assume that the number ni and values ti of observation times are fixed by
design. In practice, ni and ti can vary either functionally or stochastically depending on
baseline predictors contained in Xi, so long as they are independent of Yi given such baseline
predictors.

We assume that interest lies in the marginal probability that Yij = 1 given Xi in the target
population,

(1)

(subscript P for target population), where g(·) is a link function mapping (0, 1) to the real
line, and, generally, β1 is the parameter of interest. Note that (1) implicitly contains the
“reproducibility” or “no interference” assumption that

i.e., that predictors available in Xi provide no additional predictive value for Yij over and
above the information available in xij. In the ADHD study, for example, this assumption
would be easily satisfied if xij contains only baseline and non-stochastic predictors such as
time or age. In situations wherein xij contains stochastic predictors such as other mental
health diagnosees as time tij, the assumptions needs to be more carefully examined.
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In randomly drawing a sample from the target population, let Si be an indicator variable for
the ith subject in the population being selected into the sample, and assume that Si∐Si′, i ≠ i′.
Under simple random sampling, or sampling that is related to Xi but not to Yi, models and
inferences for β = (β0, β1)′ in µPij can be carried out ignoring the sampling process. A
typical approach would be to fit mean model (1) along with a working correlation model,
corr(Yij, Yik|Xi), j ∈ {1, …, ni}, k ∈ {1, …, ni}, j ≠ k, using GEE.

Now, consider a more challenging design wherein sampling Si is related in some way to Yi
and possibly Xi. In this setting, the sample is no longer representative of the target
population. Rather, it represents a pseudo-population that is a reweighted version of the
target population, where weights vary as a function of Yi, or if sampling also depends upon
Xi, as a function of (Yi, Xi). To proceed, define the sampling probability ρij(y, Xi) ≡ Pr(Si =
1|Yij = y, Xi). That is, ρij(y, Xi) is defined to equal the probability of being sampled
conditional on the entire design matrix Xi, but only on the jth response Yij; even though Si
may depend on the entire vector Yi, for reasons that will become evident, we focus here only
on this marginal probability. We have included subscripts ij on ρij(y, Xi) to indicate that this
probability could vary with one or more of the observation number j, time tij, and design
matrix Xi. Then, conditional on being sampled (i.e., Si = 1), standard Bayes’ Theorem
calculations applied to target population model (1) yield the following pseudo-population
marginal odds model,

(2)

(subscript S indicating pseudo-population sample).

When ρij(1, Xi)/ρij(0, Xi) is known, we may use (2) to make inferences about target
population parameters through parameter estimation for the pseudo-population model.
Estimation with GEE would require specification of the mean model for µSij given by (2)
and a working correlation model for corr(Yij, Yik|Xi, Si = 1) in the pseudo-population.

Here, we consider the circumstance where the sampling fraction, ρij(1, Xi)/ρij(0, Xi) is
unknown. We assume that sampling depends upon (Yi, Xi) only indirectly through a binary
case-control or sampling variable Zi, or, when a stratified sampling scheme is implemented,
only indirectly through (Zi, X1i), where Xi = (X1i, X2i), and X1i contains a subset of the
information, generally available at baseline, in Xi. In the ADHD study, Zi indicates referral
status, and X1i contains subject’s gender. In other designs it may also include measures such
as baseline age, neighborhood or community variables available at the time of enrollment,
etc. Stratifed sampling may be utilized in order to improve estimation efficiency on the
coefficients for X1i as well as covariates in X2i that are related to X1i. Formally, we assume
that, without stratification, Si ∐ (Yi, Xi)|Zi, while for the stratified design,

(3)

In the ADHD study, (3) indicates that, given referral status and gender, selection is
independent of baseline or subsequent ADHD diagnoses and of other predictor variables. In
subsequent exposition, we focus on the stratified sampling design. Our development is
easily adapted to the simpler, unstratified design if that is of interest.

Let π(z, X1i) = Pr(Si = 1 | Zi = z, X1i), z = 0, 1. Then, if (3) holds, knowledge of π(1, X1i)/π(0,
X1i) permits estimation of the ratio ρij(1, Xi)/ρij(0, Xi). This in turn permits inferences about
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parameters β in model (1) via relationship (2). To see this, define λPij(y, Xi) = Pr(Zi = 1|Yij =
y, Xi), y = 0, 1. Note that this quantity may at first appear counterintuitive, since Zi occurs
prior to Yij in time. Nevertheless, this “reverse” conditional probability certainly exists and
can be modeled. This model is ancillary to model of interest (1) and is specified in order to
render identifiable parameters in model (1). Utilization of this intermediary model to
identify parameters in the target model follows directly from Lee, McMurchy, and Scott
(1997) and Neuhaus et al. (2006). Owing to the reverse time sequence and to the fact that the
conditioning statistic Yij varies with j, we will tend to choose flexible specifications for
λPij(y, Xi). Note also that, as with ρij(y, Xi), λPij(y, Xi) is conditional on the entire design
matrix Xi, but only on the jth response Yij. Similarly to (2), Bayes’ Theorem calculations
yield an odds model for Zi in the pseudo-population, viz,

(4)

y = 0, 1, where λSij(y, Xi) = Pr(Zi = 1|Yij = y, Xi, Si = 1). Additionally, due to (3),

from which we can write the ratio

(5)

In Section 3, relationship (4) and sampling ratio π(1, X1i)/π(0, X1i) will be used to specify
and fit a model for λPij(y, Xi) using data from the pseudo-population. This will lead to
estimates of ρij(1, Xi)/ρij(0, Xi) using (5) which can be used in (2) to make β-inferences.

3. Implementation with logistic regression and GEE
Here, we present a specific approach to the program outlined in section 2, beginning with
model specification and estimation for λPij(y, Xi). Suppose λPij(y, Xi) is modeled as a logistic
regression of Zi of the form

(6)

where w1,ij and w2,ij are functions of (Xi, ti). We assume that w1,ij and w2,ij are sufficiently
rich so that

(7)

We separately denote xij, w1,ij and w2,ij because, even though they may be overlapping in
their information content, they may take on different functional forms and because, in order
to compute (5), any interactions with y in (6) need to be made explicit. In most applications,
we would expect to maximize model flexibility in ancillary model (6), but to be more
parsimonious in our specification of model of interest (1). For example, while ti, may be
included as a linear term in E(Yi | Xi), the relationship between Zi and both ti and the
interaction between ti and y may be non-linear. Later, in the ADHD study example, we
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allow ti to be a series of time-specific indicator variables in w1,ij, a piecewise linear spline
function in w2,ij, and a simple linear term in xij.

Via (4), (6) induces a model for λSij, i.e.,

(8)

Model (8) can be fitted to the data from a case-control sample using standard logistic
regression software, including log{π(1, X1i)/π(0, X1i)} as an offset term in the linear

predictor. Specifically, setting λSij = λSij(Yij, Xi) and  is estimated by solving
the logistic regression score ∑iTi(γ) = 0, yielding γ̂, where

(9)

Ti(γ) nominally treats the jth term in (9) as independent of the other ni − 1 terms in the sum.
This independence does not, of course, hold, as all terms share the same response variable
Zi. Nevertheless, Ti(γ) is unbiased and so in general will yield consistent estimators for γ.
Therefore, γ can be estimated using any logistic regression GEE software program which
permits offset terms and allows for the independence correlation structure.

Turning to model specification for µPij, let g(·) be the logit function. Then (1) implies

, and, from (2),

(10)

wherein the bias-correction term Bij = Bij(Xi) = log{ρij(1, Xi)/ρij(0, Xi)} appears as an offset.
By (5) and (6), Bij is a function of γ, and so is estimable by plugging in γ̂ for γ to obtain B̂ij.
With B̂ij, the sampled data can then be analyzed using marginal model (10). This mean
model can be complemented with a working correlation model

(11)

in the sampled pseudo-population, governed by parameter α, though α ̂ cannot be applied to
inferences regarding the target population. The model specified via (10) and (11) with B̂ij
replacing Bij can then be estimated directly using any standard GEE software program. If the
working correlation model is a reasonable approximation to the true correlation structure in
the sampled pseudo-population, it should result in an increase in statistical efficiency for β
estimation under (10) relative to, say, estimation under the independence working
correlation model (Liang et al, 1992;Fitzmaurice, 1995;Mancl and Leroux, 1996;Schildcrout
and Heagerty, 2005). Standard errors for β̂ will not however be correct under this approach,
since they must account for the uncertainty in estimation of γ.

Standard errors can be calculated via a corrected version of the sandwich estimator (Liang
and Zeger, 1986). Note that β is estimated by solving the GEE logistic regression estimating
equation ∑i Ui(β, γ̂) = 0 for β, yielding β̂, where
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Here, as in the usual GEE setup,

 is
the ni × ni matrix with element (j, k) given by (11). Correlation parameter α is estimated
iteratively with β, but owing to the orthogonality of α and β in Ui, estimation of α has no
asymptotic impact on the validity of the standard errors of β̂ (Liang and Zeger, 1986).
Robust standard errors for β̂ are developed by viewing (γ̂′, β̂′)′ as the solution to the
“stacked” estimating equation

(12)

The asymptotic variance of (γ̂′, β̂′)′ is then given as

(13)

where the ^’s indicate that (γ′, β′)′ has been replaced by (γ̂′, β̂′)′,

(14)

In (14),

the upper right quadrant of I is 0 because E(− ∂Ti/∂β′) = 0,

and

In IUT, Bi = (Bi1,…, Bini)′ and

(15)
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where

W1i = (w1i1, …, w1ini)′ and W2i = (w2i1, …, w2ini)′ (see Web Appendix A available online at
http://www.biometrics.tibs.org).

4. Finite sample operating characteristics of estimators
In the previous section we outlined a strategy to estimate population model parameters as
well as uncertainty estimation in a longitudinal study following (stratified) case-control
sampling. We now explore via Monte-Carlo simulation, the impact that misspecification of
π(1, X1i)/π(0, X1i) and λSij(y, Xi) can have on inferential validity, and the effect that design
and estimation strategy can have on estimation efficiency.

4.1 Population model
The population model we consider is a marginalized transition and latent variable model
(Schildcrout and Heagerty, 2007) which is given by:

(16)

(17)

Equation (16) is the marginal mean model for Yij which captures the impact of target
covariates on the average response, and equation (17) is the conditional mean model for (Yij|
Yi,j−1, bi) that captures within-subject response dependence. The conditional mean model
introduces two sources of dependence among repeated measurements within an individual.
Subject-to-subject heterogeneity in predisposition for a positive response (Yij = 1) is
introduced by the random intercept bi, and serial dependence is introduced by the transition
term, Yij−1 with coefficient γ. The marginal and conditional mean models, along with the
distributional assumption, , complete the multivariate distribution of [Yi | Xi]
and allow us to generate data for the population. The value, Δij, linking µPij and  has been
described in a number of earlier manuscripts (e.g., Azzalini, 1994; Heagerty, 1999 and 2002;
Schildcrout and Heagerty, 2007). For this simulation, xij = (tij, x1i, x2i)′, β0 = −2.75, β1 = (βt,
βx1, βx2) = (0.25, 0.75, 0.75), σb = 2.5 and γ = 1. Covariates x1i and x2i are binary and time-
invariant with Pr(x1i = 1) = 0.2 and Pr(x2i = 1 | X1i) = 0.25 + 0.1X1i, and tij is a time
covariate with tij = j, j ∈ {1, …, ni}. We assume a missing completely at random dropout
mechanism, where the last follow-up time ni is uniformly distributed between three and
eight. The large σb value is intended to reflect the substantial between-subject heterogeneity
in ADHD diagnoses; many children never exhibit symptoms or meet diagnostic criteria,
while others do so often. This model induces a marginal prevalence at ti1 of Pr(Yi1 = 1) ≈
0.119.

The sampling covariate Zi is binary, and we generated its value for each subject using the
model, λPij = logit−1(γ0 + γ1Yi1) with γ = (γ0, γ1) fixed at two sets of values: (−5, 10) and
(−3, 3). We will refer to the former as strong Zi ~ Yi1 dependence (Strz~y) and the latter as
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weak Zi ~ Yi1 dependence (Wkz~y). Note that with Strz~y, Zi is effectively equal to the first
response value Yi1. Pr(Zi = 1) equals 0.124 and 0.101, respectively under Strz~y and Wkz~y.

4.2 Sampling from the population
For the purpose of sampling from the population, we consider both unstratified and stratified
approaches, denoted respectively by S(z) and S(z, x1). In S(z), the sampling probability
depends only on Zi, i.e., π(z, X1i) = π(z). In S(z, x1), it depends both on Zi and subject-level
covariate xi1, i.e., π(z, X1i) = π(z, xi1). In a population of size N with Nz, z ∈ {(0, 1)} and
Nz,x1, (z, x1) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} members in each sampling stratum, we sample
each subject according to their stratum membership with probability π(z) = 200/Nz for S(z)
and π(z, x1) = 100/Nz,x1 for S(z, x1). The number of sampled subjects nz,x1 in each stratum (z,
x1), follows a binomial distribution so that the expected number of controls (Zi = 0) and
cases (Zi = 1) is equal to 200. For a detailed description of how data were generated, see the
Web Appendix B available online at http://www.biometrics.tibs.org.

4.3 Analysis models and model misspecification
In model fitting, for each replicate, we focus on the impact of two forms of model
misspecification: 1) misspecified sampling ratio π(1)/π(0) (for S(z)) or π(1, x1)/π(0, x1) (for
S(z, x1)), and 2) misspecified (w1,ij, w2,ij) in (8) which is equivalent to violation of
assumption (7); analysis models are summarized in table 1. In the former case,
misspecification occurs during estimation, when we assume the value the sampling ratio is
one-half of, one-fifth of, and twice its true value. In the latter case, we consider four
functional forms for (w1,ij, w2,ij). In order of increasing flexibility, the linear predictors in (8)
are given as follows: (lp-1), w1,ij = w2,ij = (1, x1i, x2i)′; (lp-2), w1,ij = w2,ij = (1, x1i, x2i, tij)′;
(lp-3), w1,ij = (1, x1i, x2i, x1i × x2i, tij, x1i × tij, x2i × tij)′ and w2,ij = (1, x1i, x2i, tij)′; (lp-4),
(lp-3) with the main effect tij replaced in w1,ij by time-specific indicator variables, and tij in
interaction terms in w1,ij and in w2,ij by a piecewise linear function with a knot at t = 3. In all
cases, GEE with exchangeable working covariance weighting (GEEE) was used for β
estimation with (12), and Wald-based 95% confidence intervals were computed based on
standard errors estimated using (13). Finally, we consider a modeling approach that ignores
the study design, i.e., is a standard GEE model for E(Yi|Xi) with exchangeable correlation
matrix. We used the exchangeable working correlation model because, noting that σ = 2.5
and γ = 1, the random intercept is the dominating source of response dependence in these
data, and although the true dependence structure also has a serial component, very few
standard GEE software packages permit estimation that acknowledges both sources.

4.4 Results: Inferential Validity
We now discuss inferential validity in the presence of possible misspecification of sampling
ratio π(1)/π(0) or π(1, x1)/π(0, x1) and of model (8). Results are displayed in table 2 for the
four combinations of S(z) and S(z, x1), and Strz~y and Wkz~y. As expected, approach 1,
which has the most flexible model for Zi and uses the correctly-specified sampling ratio,
does very well in terms of both bias and coverage probability. As with case-control studies,
sampling ratio misspecification (approaches 2, 3, 4 and 8) led to biased estimates of the
intercept, which is often not a large concern. It also led to biased estimates of the time-
varying covariate parameter βt; this is not unexpected because the slope over time
summarizes the change in time-specific intercepts, which are biased due to sampling ratio
misspecification. Biases in estimates of time-invariant covariate coefficients were generally
modest and less than ten percent, except with S(z, x1) where estimation approach 8 was
severly biased for the stratification variable coefficient, βx1. Severe inflexibility in the model
for Zi (approach 5), also led to large biases in the intercept and time parameters, but with
more flexible approaches such as 6 or 7, these biases were substantially reduced. In most
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cases, when bias was low or zero for a given parameter estimator, 95% confidence intervals
were accurate.

4.5 Results: Estimation Efficiency
Regarding the impact of the design and estimation strategy on parameter estimation
efficiency, we consider four specific contrasts (table 3): 1) Strz~y versus Wkz~y (with S(z)
and GEEE) 2) S(z, x1) versus S(z) (with Strz~y and GEEE), 3) GEEE versus independence
weighted GEE (GEEI; with Strz~y and S(z)), and 4) estimation strategy 1 versus others (using
Strz~y, S(z) and GEEE). We only consider efficiency for parameter value combinations that
yielded approximately valid inferences in the last section (coverage percentages ≥ 92).

Efficiency gains for Strz~y over Wkz~y were pronounced. Wkz~y variances were up to 42%
larger for β̂x1 and β̂x2 and 26% larger β̂t. With S(z, x1), efficiency improvements over S(z)
were observed for β̂x1 and β̂x2 by values as high as 38%. No efficiency improvements were
observed for β̂t because stratification variable x1i was unrelated to tij.

GEEE improved estimation efficiency only modestly over GEEI which may be expected for
time-invariant covariate estimates; however, we anticipated larger efficiency gains for time-
varying covariate coefficient, βt. We speculate that this is due to the dependence of β
estimates on γ estimates; i.e., IUT from (14) was non-zero. Finally, with the exception of
estimation approach 4, approach 1 was no more efficient—and sometimes less so—than the
other approaches for the time-invariant covariate coefficients. That it was as efficient as 5, 6,
and 7, we gather that estimation of more parameters in 1 does not have a major impact on
uncertainty in β̂. That it was more efficient than 4, and less efficient than 2, 3, and 8, can
possibly be explained by the impact of ‘weighting’ of cases relative to controls. By
increasing the assumed values of π(1, x1)/π(0, x1), we are effectively giving greater weight
to cases, and differential weighting of subjects is known to impact estimation efficiency.

4.6 Summary
To summarize, substantial effort should be made to ascertain reasonable approximations of
π(1, x1)/π(0, x1), unless interest is only in time-fixed covariate coefficients. Topic specific
experts should be involved in this process, and sensitivity analyses should be conducted over
a range of reasonable values in order to examine the extent to which inference would change
based on mild to moderate misspecification. Similarly, if time-varying covariate coefficients
are of interest, it is important to build a sufficient model for (8). The crucial elements of this
model include a flexible functional form of tij, Yij, and their interaction. Finally, estimation
efficiency can be improved by choosing study designs with stratification and strong
relationships between Zi and Yi.

5. Application to natural history studies of childhood mental health
disorders

Participants of the ADHD study were sampled on the basis of whether (Zi = 1) or not (Zi =
0) they were referred to one of the two participating clinics. The study was matched on
gender, Gi, and can be thought of as stratified since the probability of being sampled
depended upon the pair, (Zi, Gi). Patient referral was strongly related to ADHD symptom
diagnosis at baseline as Pr(Yi1 = 1 | Zi = 1) ≈ 0.92 and Pr(Yi1 = 1 | Zi = 0) ≈ 0.02, but this
relationship was not deterministic. The demographic characteristics among referred and non-
referred participants were similar. Both groups were approximately 82% male, 64% white,
31% african-american, and 6% were classified as “other” ethinicity. Age distributions were
also similar with a median value of 5 years.
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The primary goal of this analysis is to estimate the time trend of ADHD prevalence for boys
(Gi = 0) and girls (Gi = 1) separately, and to examine whether this trend differs between
them. The impact of race/ethnicity and age at baseline were of secondary interest. Similar to
section 4, we examine the impact of assumptions about π(1, g)/π(0, g) and those in auxiliary
model (8). We considered six reasonable analysis approaches plus the naive analysis that
ignored the design altogether. We assume that approximately five percent of girls in the
population would qualify for referral and among boys this rate is likely to be higher. We
considered the values, five, ten, and fifteen percent for boys. In our sample, 25 out of 46
girls were cases, and with five percent prevalence, Pr(Zi = 1 | Gi = 1) = 0.05, we have π(1,
1)/π(0, 1) = (25 · 0.95)/(21 · 0.05) = 22.6. Among boys, there were 113 cases and 96
controls. With Pr(Zi = 1 | Gi = 0) equal to 0.05, 0.10, and 0.15, π(1, 0)/π(0, 0) equals 22.4,
10.6, and 6.7, respectively. Next, we considered two linear predictors in auxiliary model (8).
In the simpler model, the linear predictor included: Yij, tij, age at baseline, gender, African
American ethnicity, “other” ethnicity, and all pairwise interactions with Yij. The more
flexible model (8), was identical to the simpler one except the main effect of tij and its
interaction with Yij were replaced with time-specific indicator variables.

Results from these analyses are displayed in table 4. The naive analysis yielded vastly
different conclusions than analyses that acknowledge the biased study design. While tij was
significantly and positively associated with ADHD prevalence in boys (Gi = 0) among all
analyses that acknowledged the study design, it was significantly and negatively associated
with ADHD in the naive analysis. The prevalence time trend for girls in the naive analysis
was positive (although not significant), but was flat when study design was taken into
account. Similarly, gender appeared to be independent of ADHD prevalence at baseline (tij =
0) in the naive analysis while four of the six other approaches showed substantial evidence
of females being at lower risk for ADHD than males. Among the other six analyses, the
assumed values of π(1, g)/π(0, g) had a far larger impact on conclusions than did choice of
the linear predictor in model (8). Lower assumed prevalence of referral status (Zi = 1)
among boys or equivalently, higher π(1, 0)/π(0, 0) values, resulted in smaller effect sizes (in
magnitude) for gender at baseline. The estimated baseline log odds ratios for girls versus
boys ranged from approximately −1.05 to −0.4. The magnitude of the ADHD prevalence
time trend for boys was also highly impacted by π(1, 0)/π(0, 0), with higher values being
associated with larger time trend estimates. It is interesting to note that the time trend among
females agreed very closely across the six approaches; in all cases, the values of the
coefficients for tij and tij · Gi were in the opposite direction, and were comparable in
magnitude.

6. Discussion
In this manuscript we discussed design and analysis considerations for stratified and un-
stratified case-control sampling followed by longitudinal followup on a stochastically
related binary response vector. We developed a GEE-based estimation strategy as well as
robust standard error calculations that incorporate information and uncertainty associated
with the study design into the analysis via an ancillary model for case-control status. We
found for time-invariant covariate coefficients that the biased design does not have a major
impact on inferential validity, as most estimation approaches performed reasonably well.
This result may be expected given the well-known performace of logistic regression under
case-control sampling. There was one exception which involved the naive analyses with a
stratified design. In this case, inferences related to the stratification variable should not be
trusted as estimates are likely to exhibit large biases. Misspecification of the ancillary case-
control model can lead to invalid inferences on time-varying covariate coefficients;
however, as long as this model is reasonably well specified and includes flexible functions
of time in the linear predictor, analyses should perform reasonable well. Specification of the
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sampling ratio was also shown to have a major impact on the validity of analyses related to
time-varying covariates, and, since this value is often unknown, appropriate specification of
it is a major challenge. Content-specific experts should be involved in determining its value,
and sensitivity analyses over a reasonable range should be conducted to examine the impact
on inferences. While we found that stratification and strong dependence between the
sampling covariate and response vector can improve estimation efficiency, covariance
weighting only improved efficiency slightly.
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Refer to Web version on PubMed Central for supplementary material.
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Table 1

Estimation Strategies: In strategy 1, the sampling ratio, π(1)/π(0) or π(1, x1)/π(0, x1), is correctly specified, and
the model (8) is very flexible. In strategies 2, 3, and 4, we misspecify the sampling ratio by assuming it is one
half, one fifth and twice its true value, respectively. In strategies 5, 6, and 7, we assume three less flexible
models for (8), given in the text. Approach 8 ignores the design altogether with analyses conducted as if the
sample was representative of the target population.

Estimation
Strategy

Specification of
π(1, x1)/π(0, x1)

Specification of
Model (8)

1 π(1, x1)/π(0, x1) (lp-4)

2 0.5 · π(1, x1)/π(0, x1) (lp-4)

3 0.2 · π(1, x1)/π(0, x1) (lp-4)

4 2.0 · π(1, x1)/π(0, x1) (lp-4)

5 π(1, x1)/π(0, x1) (lp-1)

6 π(1, x1)/π(0, x1) (lp-2)

7 π(1, x1)/π(0, x1) (lp-3)

8 Ignored Ignored
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