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Abstract
The maximum likelihood method provides a powerful approach for many problems in cryo-EM
image processing. This contribution aims to provide an accessible introduction to the underlying
theory and reviews existing applications in the field. In addition, current developments to reduce
computational costs and to improve the statistical description of cryo-EM images are discussed.
Combined with the increasing power of modern computers and yet unexplored possibilities
provided by theory, these developments are expected to turn the statistical approach into an
essential image processing tool for the electron microscopist.

Introduction
The cryo-EM single-particle reconstruction (SPR) problem is a very difficult one. Given a
large number of very noisy electron-microscope images, each showing a macromolecular
“particle” in a random position and orientation, the problem is to deduce the three-
dimensional (3D) structure of the particles that were imaged. It is amazing that standard
software packages now allow even casual users to perform such reconstructions, in a
numerical process that seems little short of magical. The goal of this chapter is to describe
the basis of a particularly powerful approach to the SPR problem and related tasks in 2D
crystallography and electron tomography.

Maximum-likelihood estimates
When we use an SPR algorithm to obtain a 3D model from a set of images , how do we
know that we have found the best model? Formally, we would want to know what quantity
is optimized to yield the model. Traditional SPR refinement algorithms use an iterative
process. The images are aligned and sorted to give the best match to a set of projections of
the nth model. Given the angles of each projection, a synthesis of the 3D map from the
images is performed by standard methods, to yield the (n + 1)st model. This process is
repeated until the model does not change. Arguably this process yields a least-squares
estimate, as the traditional cross-correlation based projection-matching step is equivalent to
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a least-squares optimization. In the optimization process a numerical density value is
obtained for each voxel of the model, and as a byproduct the values of orientation angles for
each particle are also found. There is however no theory that says that the model obtained in
this way is the most reliable one.

The statistical approaches discussed in this chapter seek to maximize a probability function.
Suppose we group the desired 3D map along with any other quantities that we wish to
estimate into a more generalized model Θ. In a sense, what we would like to maximize is the
probability P(Θ| ) that this model is the correct one, given the data. Unfortunately, there are
both philosophical and practical problems surrounding this quantity. Some people would say
that Θ is not a random variable in the first place, so how can one define a probability
function. But if the philosophical problems are bypassed, perhaps by imagining an ensemble
of possible true structures Θ that could have given us our dataset , there is still the problem
of computing this quantity. An easy way around these problems is to compute the
probability of observing  given Θ. This is a valid and computable probability, and it is
given a special name, the likelihood (Θ) = P( |Θ). What is unusual here is that the
likelihood  is expressed as a function of the model Θ rather than of the data .

The choice of the likelihood as the quantity to be maximized can be understood by applying
Bayes’ rule,

(1)

We know what P( |Θ) is, that is just the likelihood. P( ) is an imponderable: what is the
probability of obtaining this dataset instead of some other? However, since it doesn’t depend
on Θ we won’t have to worry about it, and for our present purposes we can replace it by a
constant. The resulting quantity to be maximized is P( |Θ)P(Θ) and is called the posterior
probability. The model Θ that maximizes it is called the maximum a posteriori (MAP)
estimate, and we will discuss briefly the use of this estimation approach at the end of this
chapter. The term P(Θ) is called the prior probability, as it reflects any knowledge we might
have about the model in the absence of any data. For now, suppose we believe that all
possible models are equally likely, so that P(Θ) is also a constant. Then maximizing P(Θ| )
becomes the same as maximizing the likelihood.

Finding the model Θ that gives the maximum value of the likelihood—this is called the
maximum-likelihood estimate or MLE—is a very good way to find the best model. The
MLE is asymptotically unbiased and efficient; that is, in the limit of very large datasets, the
MLE is as good or better than any other estimate of the true model.

Introduction to the EM-ML algorithm
Finding the model Θ that maximizes the likelihood is a daunting task. In principle, the
density value of each voxel in the 3D map must be varied until the best set of densities is
found—an optimization problem with on the order of 106 unknowns! Fortunately there is a
straightforward way to find the ML estimate, called the expectation maximization algorithm
(Dempster et al., 1977). We will abbreviate this as the EM-ML algorithm to avoid confusion
with the terminology of EM for “electron microscopy”. The idea behind the EM-ML
algorithm is illustrated here with a simple example based on the Gaussian mixture model
(Redner & Walker, 1984), while a formal presentation of the theory is considered in the next
section of this chapter. Additional examples designed to mimic cryo EM are worked out in
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Yin et al. (2003) and continued to consider resolution in Prust et al. (2009). More
sophisticated miniature examples are considered in Yin et al. (2004).

Imagine a series of position measurements xi with i = 1, …, N coming from a single-
molecule optical tracking experiment. Typically the observed position shows Gaussian-
distributed errors from measurement noise. One can record a large number of position
measurements and compute for example the MLE of the mean and variance directly from
the measurements.

Suppose that the single molecule under observation undergoes a conformational change
between two states, which we’ll call state 0 and state 1. With this change the reporter group
changes its true x-coordinate between two discrete values. We would like to estimate these
two values. One approach would be to make a histogram of the measured values, as in
Figure 1, and do some sort of fit to the histogram. A more powerful way however is to find
the MLE of the two mean values directly from the measured values.

Computing the likelihood starts with the probability-density function (PDF) of the observed
values, a mixture of two Gaussians,

(2)

In this example we are interested in determining the model parameters Θ = {μ0, μ1}
assuming that the other parameters a0, a1 and σ are already known. The probability of a
particular measured value would be vanishingly small were it not for the fact that any
physical measurement has a finite resolution. Letting ε be the resolution of measurement, the
probability of measuring the first value is

(3)

and the probability of the measurement of the entire data set is

(4)

Since ε does not vary when Θ is changed, it is irrelevant to the maximization process. Thus
in the literature this factor is traditionally ignored; the likelihood is instead written simply as
the probability-density function, which in this case, is a product of simpler PDFs:

(5)

Nevertheless maximizing this product of PDFs appears daunting.

In the case of a single Gaussian distribution, the maximization of the likelihood turns out to
have a very simple form. The ML estimates of the mean and standard deviation are simply
equal to the mean and standard deviation of all the measured values. In this special case
maximum-likelihood and least-squares estimation give the same answer. Is there a way we
can exploit this simple ML estimation approach for the present problem involving a mixture
of two Gaussians?
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We could just set a threshold, and divide the data set into two halves. We would then
compute the average of all the xi values that fell below the threshold, and do the same for all
those above the threshold, and call these our estimates of the means. However, taking the
averages of these two “classes” of measurements will produce estimates that are biased,
being spread more widely than the two correct means.

Estimating the two means would be very simple if we had independent information about
the underlying state of the molecule. Let the yi be a set of “switch” variables such that when
yi = 0 we know that the corresponding xi is obtained from the molecule in state 0, and when
yi = 1 the molecule is in its state 1. Then it is very easy to obtain the means μ0 and μ1 which
are the MLEs of the positions:

(6)

Unfortunately we do not have access to the yi values; they are so-called “hidden variables”.
The EM-ML algorithm however provides a simple way to iteratively converge on the ML
mean values. It starts with an initial guess of the parameters of the two underlying Gaussian
distributions. For example, the initial guess could have means that are too far apart, as in the
top panel of Figure 2A. The first step of the expectation-maximization algorithm is to
provide an estimate of the hidden yi variable corresponding to each measurement xi. The
estimate is computed as the expectation value ŷi, which in this case is simply equal to the
probability of the molecule being in state 1. It is computed from each measurement xi, based
on the current estimate of the Gaussian distributions.

The second step is the maximization step, where we compute the MLEs of the means based
on the inferred ŷ values. In this case the MLEs are simply computed as weighted averages of
the xi values, weighted by either 1 − ŷi or ŷi to yield the two estimates μ0 and μ1. The
calculation is exactly the same as in Eq. (6) except that ŷi replaces yi. This gives us two new
mean values, which we can then use for another round of the EM-ML algorithm.

The remarkable property of the expectation-maximization iteration is that the new estimated
values of the means are guaranteed to result in an increased likelihood of the model. Figure
2 provides an illustration of the EM-ML algorithm. In the figure, histograms are used as a
visualization device, but the underlying computations do not involve the binning or sorting
of events at all. The figure shows one EM-ML iteration, and also the result after 25
iterations, when the parameters have reached a fixed value.

This simple example demonstrates three important features of the EM-ML algorithm.
Firstly, the algorithm “fills in” missing information through the computation of the
expectation values of hidden variables. Secondly, it exploits the hidden variable values to
make the process of computing the MLE much easier. Thirdly, perhaps the most interesting
aspect of the EM-ML algorithm is that it makes use of “fuzzy” estimates of the hidden
variables. Even though the underlying yi values, could we measure them, take only the
values 0 and 1, the expectation values ŷi vary continuously over the range of 0 to 1. The
maximization of the likelihood nevertheless converges correctly when these expectation
values are used.

Relevance to SPR problems
The features of this simple example are mirrored in the much more complex computations
involved in single-particle reconstruction. In EM-ML processing of particle images, “hard”
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values for the orientation angles of each particle are not assigned. Instead the orientation of
each particle is described in a fuzzy way as a probability density function, giving the
probability that the particle assumes each possible orientation. Similarly, when EM-ML is
used to simultaneously reconstruct several different conformations (i.e. distinct 3D maps)
from images of mixed populations of particles, the assignment of a given particle image to a
given conformation is treated as a hidden variable, and is made in a “fuzzy” way.

This chapter reviews applications of the EM-ML algorithm to a range of image processing
tasks across various cryo-EM modalities. First, a formal description of the theory is
presented along with a typical example from cryo-EM image processing. This theoretical
framework is then used as a common basis to describe existing EM-ML approaches for the
analysis of single-particles (with and without symmetry), 2D crystals and sub-tomograms. In
addition, the validity of the most common statistical data model and possible alternatives is
discussed and an overview of approaches to accelerate the intensive EM-ML computations
are presented. The chapter concludes with a discussion on the perspectives of the statistical
approach for cryo-EM image processing.

Theoretical basis
The Maximum Likelihood Estimator

At the heart of the maximum likelihood method lies a parameterized, statistical model that is
used to describe the underlying physics of the data formation process. Again, we will denote
the set of model parameters by Θ, and our data set of N independent measurements by  =
(X1, X2, …, XN). Then, the statistical model is expressed in the form of the probability
density function P( |Θ), the probability of observing the data given Θ. For a given set of
model parameters, the PDF will show that some data are more probable than others. In the
practical situation however, we are interested in the opposite. We have already observed the
data and are looking for those model parameters that best fit the data. In particular, we want
to find those model parameters that make the data “more likely” than any other parameter
set would make them.

To that purpose, and as explained in more detail in the introduction, we define the likelihood
function (Θ) = P( |Θ) as a function of Θ. Whereas the PDF is defined as a function of the
data given a particular set of model parameters, the likelihood function is a function of the
model parameters for a given data set. The method of maximum likelihood aims at finding
the set of parameters that maximizes (Θ). This is the maximum likelihood estimator
(MLE) of Θ:

(7)

Assuming that all observations are statistically independent, the likelihood can be written as
a product of the PDFs of the individual observations:

(8)

and since maxima are unaffected by monotone transformations, for computational
convenience one often takes the logarithm of this expression:

Sigworth et al. Page 5

Methods Enzymol. Author manuscript; available in PMC 2011 March 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(9)

Depending on the form of P(Xi|Θ), finding the maximum of L(Θ) may be straightforward or
extremely difficult. As we will describe in the example below, analytical expressions to
obtain the MLE may be obtained directly for simple problems. For many other problems
direct optimization of the likelihood function is analytically intractable and more elaborate
techniques, like the EM-ML algorithm must be employed.

An example of direct MLE calculation in cryo-EM
One example of straightforward likelihood optimization in cryo-EM is the estimation of the
underlying signal from a series of noisy, structurally homogeneous and aligned 2D images.
Let’s assume the following data model:

(10)

where Xi are the observed images of J pixels each and with pixel values Xij; A is the
underlying 2D image (with pixel values Aj) that is common to all images; and Gi are images
of independent noise with pixel values Gij taken from a Gaussian distribution with zero
mean and unity standard deviation.

Note that in this case our set of model parameter set Θ consists of image A and parameter σ.
The PDF of observing pixel value Xij is then given by a Gaussian distribution centered at Aj
and with standard deviation σ (see Figure 3). Furthermore, because we assume independence
between all pixels, the PDF of observing the entire image Xi may be expressed as the
multiplication over the PDFs of all individual pixels:

(11)

where ||Xi − A||2 denotes the sum of the squared residuals over all pixels .

Thereby, the log-likelihood function, as defined in Eq. (9) reduces to:

(12)

The MLE for the underlying signal may then be obtained directly by setting the partial
derivatives of Eq. (12) with respect to Aj equal to zero, and solving for Aj. This yields the
well-known equation to calculate the average image:
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(13)

Similarly, the MLE for σ would yield the formula for calculating the root mean square
deviation between the average and the observed images.

Equation (12) illustrates that under the assumption of independent, Gaussian noise with
equal standard deviation, the MLE is equal to the least squares estimator (LSE), which aims

at minimizing . This equality has been used erroneously to argue against the
application of maximum likelihood methods in cryo-EM. However, as we will see below,
for more complicated problems the method of maximum-likelihood will actually yield very
different results from conventional approaches based on least-squares estimation.

Incomplete data problems
For many problems the likelihood function cannot be optimized directly, but it can be
simplified by assuming the existence of additional, “hidden” variables. Without the hidden
variables, the data is considered to be incomplete. The complete data would comprise both
the observed and the hidden variables, and finding the MLE for the complete data problem
would be a trivial task. In some cases the hidden variables actually correspond to
incompleteness in the data vectors themselves, due to problems in the data collection
process. More often however, the hidden variables correspond to aspects of physical reality
that could in principle be measured but are not observed for practical reasons.

Let  be the incomplete, observed data and assume that a complete data set ( , ) exists.
Then, the MLE is determined by the so-called marginal likelihood of the observed data:

(14)

where P( |Θ) is the unconditional probability of , regardless of the values of , and this
probability is obtained by integrating the joint probabilities over all possible values of .
This is called marginalization. P( | , Θ) is the probability of  given that  has happened,
and P( |Θ) is the prior probability of  happening.

It is important to note that because of the marginalization Eq. (14) is only a function of Θ
and not of the hidden variables . Thereby, the problem at hand is only to find those
parameter values ΘMLE that maximize the marginal likelihood function.

An example of an incomplete data problem in cryo-EM
The first description of a maximum-likelihood approach for an incomplete data problem in
cryo-EM was described by Sigworth (1998). He considered the problem of finding AMLE, cf
Eq. (13), for a set of noisy 2D images with unknown in-plane rotations and translations. Or
in other words, he presented a ML approach for the 2D alignment of a structurally
homogeneous set of images. In this case, the data are modelled as:

(15)
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where Rφi denotes the in-plane transformation that brings the common underlying signal in
register with the ith image. This transformation comprises a single rotation αi and two
translations in perpendicular directions xi and yi.

The incompleteness of the observed data lies in the fact that the relative orientations of all
images have remained unobserved in the experiment. The complete data set would be ( ,

), with  = (φ1, φ2, …, φN), and finding the MLE for the complete data set would be as
trivial as described in the simple example above.

For the incomplete case, the marginal log-likelihood function, cf. Eq. 14, is given by:

(16)

For any given transformation φ and parameter set Θ, the conditional probability of observing
image Xi is again expressed as a multiplication over J Gaussian distributions, this time
centered at the correspondingly oriented reference image RφA:

(17)

Note that, apart from the model parameters Θ, this probability is also a function of the
hidden variable φ. This concept is further illustrated in Figure 4.

An additional advantage of the maximum likelihood approach is the natural way in which
prior knowledge about the hidden variables may be handled. The term P(φ|Θ) provides a
statistical description of the distribution of the hidden variables. If we assume that the in-
plane rotations are evenly distributed and that particle picking has left residual origin offsets
with Gaussian distributions in both directions, the probability density of φ may be calculated
as:

(18)

where ξx and ξy are the expected values for the in-plane translations in directions x and y,
and σxy is the standard deviation in the translations in either direction.

Thereby, prior knowledge that large origin offsets are less likely than small offsets is
translated in an effective downweighting of larger offsets in the probability calculations of
all possible orientations. Although a similar term may also be incorporated into maximum
cross-correlation approaches (Sigworth, 1998), this is not common practice in conventional
approaches for the alignment of cryo-EM images. Instead, one often expresses this prior
knowledge in a less powerful way: by limiting the searches for the optimal offsets to a user
defined maximum value in all directions.

From Eqs. (17) and (18), we can see that Θ = (A, σ, ξx, ξy, σxy) and the task at hand is to find
those parameters ΘMLE that maximize the marginal likelihood function as defined in Eq.
(16).
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The EM-ML algorithm
The EM-ML algorithm is a general tool to find MLEs for incomplete data problems
(Dempster et al., 1977). The intuitive idea behind this algorithm is an old one. Because one
does not know parameter estimates Θ nor the hidden variables , one iteratively alternates
between estimating both. For a given set of model parameters Θ one estimates the hidden
variables, for the resulting hidden variables one finds the best model parameters, and one
repeats this process until the model parameters no longer change.

However, rather than finding the best  given an estimate Θ(n) at the nth iteration, the EM-
ML algorithm computes a distribution over all possible values of . To this purpose, in the
so-called expectation (E) step one first calculates the expected value of the complete-data
log-likelihood function with respect to the missing data , given the observed data  and
the current parameter estimates Θ(n):

(19)

Here, P( | , Θ(n)) is the conditional probability of the missing variables in terms of the
observed measurements and the current model parameters, which is calculated using Bayes’
rule:

(20)

The integration of P( | , Θ(n)) over all possible values of  represents the above-mentioned
distribution of the hidden variables. Given this distribution, in the subsequent maximization
(M) step one computes new estimates for the model parameters by maximizing the
corresponding expectation:

(21)

The new model parameters are then used for the next E-step, and the process is repeated as
necessary. It can be shown that each iteration is guaranteed to increase the log-likelihood
and the algorithm is guaranteed to converge to a local maximum of the likelihood function
(Dempster et al., 1977).

An example of EM-ML in cryo-EM
For the example of aligning a set of structurally homogeneous images described above, the
E-step of the EM-ML algorithm yields:

(22)

which can be rewritten by substitution of Eqs. (17) and (18), and by separating terms C that
are not related to A:
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(23)

In the subsequent M-step one maximizes Q(Θ, Θ(n)) with respect to the model parameters.
From Eq. (23) it can be readily seen that obtaining new estimates for A corresponds to
solving a weighted least-squares problem with weights P(φ|Xi, Θ(n)). The result is a
weighted average comprising contributions from all possible values of φ for every image Xi:

(24)

The concept of calculating A(n+1) as a probability weighted average is further illustrated in
Figure 5. All other model parameters are updated using similar probability-weighted average
calculations.

Comparison with conventional methods
It is interesting to compare the EM-ML approach with conventionally more popular methods
in cryo-EM. In particular, it has been common practice to include the hidden variables as
part of the unknown model parameters. For the example of single-reference 2D-alignment
described above, the model thereby comprises the estimate for the underlying signal (A) and
the optimal orientations for each of the individual observations (  for i = 1, …, N). One
typically minimizes the following least squares target:

(25)

by iteratively alternating between estimating the underlying signal and estimating the
orientations. For a given estimate A(n), one calculates the optimal orientation  for each
image Xi as the one that minimizes the squared difference ||Xi − RφiA||2. Then, one calculates
a new estimate for the underlying signal by:

(26)

The orientation that minimizes the squared difference term mentioned above in turn
maximizes the inner product between images Xi and RφiA. This inner product is also called
the cross-correlation, and hence the term “maximum cross-correlation” approach.

Comparison of Eqs. (25) and (16) illustrates that the maximum cross-correlation and
maximum likelihood approaches pursue different objectives. The principal difference lies in
the marginalization over the hidden variables in the latter. Consequently, in the maximum
likelihood approach model parameters are calculated as probability-weighted averages over
all possible orientations, while only the “best” orientation is considered for each image in
the maximum cross-correlation approach, cf. Eqs. (26) and (24).
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The advantages of the maximum likelihood approach appear at low signal to noise ratios.
The higher the level of noise in the data, the higher the number of false peaks that occur in
the cross-correlation function. Thereby, the orientations that maximize the cross-correlation
function are less likely to reflect the optimal ones. The statistical description of the noise in
the maximum likelihood approach allows to deal with these ambiguities in the cross-
correlation function. Correspondingly, the maximum likelihood approach will yield better
results than the maximum cross-correlation approach for data with high levels of noise.
Interestingly, the two approaches become equivalent in the absence of noise: when σ
approaches zero, probability distributions P(φ|Xi, Θ(n)) become delta functions centered at

. In other words, the maximum cross-correlation approach may be considered as a special
case of the maximum likelihood method that ignores the presence of noise in the data.

EM-ML approaches in cryo-EM
The EM-ML algorithm has been applied to a variety of tasks in cryo-EM image processing.
Although the actual applications differ widely, the theoretical framework described in the
previous section may be employed to put all these approaches on a common basis. Most
approaches share the assumption of independent Gaussian noise in the data. Thereby, the
optimization strategy typically remains the same and the differences between the existing
approaches lie in the unknown model parameters (Θ) and the hidden variables ( ).

Single particle analysis
As described in the example above, it was Sigworth (1998) who introduced the concept of
optimizing a marginal likelihood function to the field. His approach to align a structurally
homogeneous set of 2D images was tested on simulated data that were in accordance with
the assumption of white and Gaussian noise. These simulations showed that the ML
approach has a reduced sensitivity towards the choice of the starting model and allows
recovering the underlying signal from much noisier data than the maximum cross-
correlation method. This paper was followed by a series of contributions applying similar
ideas to single-particle analysis (see Table 1).

Firstly, Pascual-Montano et al. (2001) described a neural network for the classification of a
set of pre-aligned 2D images called kerdenSOM, for kernel-density self-organizing map. In
this work, the data model comprises multiple 2D models (Ak with k = 1, …, K) and the
assignments ki of the experimental images to these models are treated as hidden variables.
This results in a ML variant of the conventional k-means classifier [see Frank (2006)], where
experimental images are not assigned to a single model but contribute to all models with
varying weights. In addition, this contribution considered the K models to be arranged in a
2D map and defined a regularization term to the log-likelihood in order to impose similarity
between neighbouring models in the map. Thereby, the behaviour of a neural network, or
self-organizing map, was achieved. This has the additional advantage that K does not
necessarily needs to reflect the number of different classes in the data. The efficiency of this
approach was demonstrated for cryo-EM images of large T-antigen and for rotational
spectra of negatively stained particles of hexameric helicase G40P.

Secondly, Scheres et al. (2005a) proposed a 2D multi-reference alignment scheme, called
ML2D. As for the kerdenSOM algorithm, in this algorithm Θ comprises multiple 2D images
Ak with k = 1, …, K. In this case however, the problems of alignment and classification were
tackled simultaneously by treating both the in-plane transformations φi = (αi, xi, yi) and the
class assignments ki as hidden variables. The ML method was again shown to yield much
better model estimates than the maximum cross-correlation approach for simulated data with
white Gaussian noise. It was also shown that these advantages were strongly reduced for
simulated data with dependent noise. Nevertheless, for experimental cryo-EM images the
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ML2D algorithm was shown to be robust to the choice of the initial starting models and
reference-free alignments and classifications could be obtained by starting the multi-
reference alignments from averages of random subsets of the unaligned images. Application
of this approach to cryo-EM images of large-T antigen particles led to the first-time
visualization of an overhanging dsDNA probe in this complex.

The next EM-ML approach to single particle analysis concerned a 3D multi-reference
refinement scheme (Scheres et al., 2007a). In this case K 3D reference maps Vk are refined
simultaneously against a structurally heterogeneous set of projections. The hidden variables
of this problem comprise six parameters for every image: its class assignment ki and its 3D
orientation as described by three Euler angles and two in-plane translations φi = (αi, βi, γi, xi,
yi).

For 3D refinements, the maximization step of the EM-ML algorithm is more complicated
than in the 2D case. By expressing the 3D electron densities of the K models as weighted
sums of smooth radial basis functions called blobs (Marabini et al., 1998) the reconstruction
problem was expressed as a system of linear equations. Optimization of the log-likelihood
function was shown to correspond to finding a weighted least squares solution to the
reconstruction problem, for which purpose a modified version of the algebraic
reconstruction technique (ART) (Eggermont et al., 1981) was developed.

Again, the ML approach was shown to be robust to high levels of noise and relatively
insensitive to the starting model. Most significantly, it allowed separation of projections
from distinct 3D structures by starting multi-reference refinements from random variations
of a single, strongly low-pass filtered initial model. Thereby, the classification protocol,
termed ML3D, is unsupervised as it does not depend on any prior knowledge about the
structural variability in the data. Its efficiency and potentially wide applicability was
demonstrated for two challenging cryo-EM data sets. ML3D classification separated
projections of 70S E. coli ribosomes in a ratcheted conformation and in complex with
elongation factor G (EF-G) from unratcheted ribosomes without EF-G. Projections of large-
T antigen were classified according to various degrees of bending along the central axis of
the dodecameric complex.

More recently, ML3D classification was observed to yield suboptimal results in certain
cases. For structurally heterogeneous cryo-EM data sets on E. coli 70S ribosomes and on
human RNA polymerase II, rather than separating different conformations reconstructions at
distinct intensities were obtained. The origin of the problem was found in a typical cryo-EM
preprocessing step: image normalization.

In the normalization process one aims to minimize additive and multiplicative variations in
the signal among all images. Since the abundant noise makes it impossible to normalize the
signal itself, it is common practice to normalize the noise instead. However, variations in
signal-to-noise ratios or artifacts in the images often lead to small, remaining variations in
the signal. These variations can often be ignored in conventional refinement schemes
because normalized cross-correlation coefficients are invariant to additive or multiplicative
factors. In ML refinements however, the squared distance metric inside the PDF calculation,
see Eq. (15), is highly sensitive to these variations.

To reduce the corresponding sensitivity of the ML approach to normalization errors, the
model parameter set Θ was extended with a multiplicative and an additive factor for the
signal in each experimental image (si, respectively ni in Table 1). For both the 70S ribosome
and the RNA polymerase II data sets, the corresponding approach, which was termed
MLn3D, successfully classified distinct structural states (Scheres et al., 2009b). For the 70S
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ribosome, this resulted in a previously unobserved conformation with spontaneous
ratcheting and two tRNAs in hybrid states (Julian et al., 2008).

Icosahedral viruses
The computation of structures having icosahedral symmetry from cryo-EM images is a
particular case of single particle analysis. However, because of the high-order rotational
symmetry of the icosahedral group, several special approaches have been developed which
are described in this section.

Incorporation of the icosahedral symmetry is often done by representing the electron
scattering intensity of the particle as a weighted sum of basis functions. Because all of the
operations in the icosahedral group are rotational operations, it is most natural to use the
spherical coordinate system (r,θ, φ) in which case the symmetry constrains the angular
behavior of the basis functions (i.e., θ and φ) but not the radial behavior of the basis
functions (i.e., r). The usual choice is to use basis functions that are a product of angular and
radial functions where the angular part is a linear combination of spherical harmonics as
introduced by Laporte (1948) and developed in subsequent years by many authors including
Zheng & Doerschuk (1996). The experimental images are roughly linear transformations of
the unknown weights in the weighted sum of basis functions, which is important for
practical computation of the 3D reconstruction. However, as in the general single-particle
case described above, this 3D reconstruction is dependent on unknown parameters, e.g., the
projection orientations φi and class assignments ki. Different types of maximum likelihood
estimators result depending on the treatment of these parameters.

In the original work of Vogel et al. (1986); Provencher & Vogel (1988); Vogel &
Provencher (1988), which resulted in the “ROSE” algorithm, a Gaussian maximum
likelihood estimator is used which estimates both the weights in the weighted sum of basis
functions and the parameters that determine the linear transformation. That is, rather than
treating the unkown projection orientations φi and class assignments ki as hidden variables
as described for the general single-particle case, this approach includes these parameters in
the model Θ. The advantage of this approach is that no probabilistic information on the
behavior of the parameters is required with the disadvantage of having to solve a difficult
optimization problem, especially as the number of images grows.

This type of approach was further developed by Doerschuk & Johnson (2000) and Yin et al.
(2001, 2003) who proposed to treat the projection orientations and class assignments as
hidden variables ( ) and use an EM-ML algorithm to optimize the corresponding marginal
likelihood function of Eq. 14. In addition, these authors use alternative radial basis functions
that are linear combinations of spherical Bessel functions. These functions have two
advantages over the Laguerre polynomials used in the ROSE algorithm. The first advantage
is that they are non-zero only for a range of r, which allows straightforward masking of the
2D images and 3D reconstruction. The second advantage is that the 3D Fourier transform of
the product of the angular and radial basis functions can be computed symbolically so the
projection slice theorem can be used to compute the projection of the electron scattering
intensity in an arbitrary direction. Kam & Gafni (1985) describe an alternative approach
using much of the same mathematics for the description of the electron scattering intensity.
However, the optimization problem that is solved does not appear to be a maximum
likelihood problem.

The approach of locking symmetry into the basis functions is general although, depending
on the number of operators in the symmetry group, it is more or less valuable in terms of
reducing computation. Zheng & Doerschuk (1996) describe the necessary basis functions for
all of the platonic symmetries. Prust et al. (2009) describes application of the approach to the
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rotational symmetry of the tail of infectious bacteriophage P22. Chen (2008) describes
application of the approach to objects with helical symmetry using standard basis functions
(Moody, 1990), Lee et al. (2009) describes new basis functions focused on helical symmetry
and Lee (2009) uses these basis functions to solve 3D reconstruction problems for objects
with helical symmetry. Even in the case where there is no symmetry, describing the electron
scattering intensity of the object by a weighted sum of basis functions is possible.
Approaches based on weighted sums of basis functions for this case appear to be essentially
the same as the single-particle methods described above.

Besides providing numerical values for each of the unknown parameters, maximum
likelihood theory also provides some information on the size of the errors. The key result
(Efron & Hinkley, 1978) is that the error between the MLE and the true values of the model
parameters is approximately Gaussian distributed with mean vector 0 and a covariance
matrix that is the negative inverse of the matrix of mixed second-order partial derivatives,
i.e. the Hessian, of the log likelihood function with respect to the model parameter vector.
However, there are at least two important challenges in using this result in cryo-EM. First, it
may be more or less difficult to connect these error estimates with the most common method
for measuring the performance of a cryo EM 3D reconstruction, which is the Fourier Shell
Correlation (FSC) (Harauz & van Heel, 1986). Second, in the case where the connection can
be made, it is quite likely that there are computational complexity issues since the number of
model parameters is typically so large that computation of the Hessian matrix is impractical.
Still, these ideas have been used to create a maximum likelihood variant of the FSC for a
virus problem with symmetry, specifically, in the ab initio 3D reconstruction of the tail of
the infectious bacteriophage P22 (Prust et al., 2009). In this situation the first challenge was
solved by a Monte Carlo procedure and the second challenge was not present because the
resolution was low so the number of parameters was relatively small. In a higher resolution
problem, it is probably necessary to make a diagonal approximation to the Hessian matrix.

The theory in the previous paragraph describes performance once the data is recorded. An
analogous theory may be used to “predict” performance before any data is recorded. Given a
PDF P( |Θ), the Cramer-Rao bound (CRB) [e.g., Marzetta (1993)] will give the minimal
achievable variance for any unbiased estimator, including the unbiased MLE. Thereby, one
could design the optimal experiment by computing this bound for different experimental
strategies and choosing the experiment that makes the bound as small as possible. The
required calculations are similar to the calculations described in the previous paragraph and
have been demonstrated in a tentative way in Doerschuk & Johnson (2000).

2D crystallography
Electron crystallography is a cryo-EM method that has provided the highest-resolution
structures of protein assemblies. Because the penetration distance of electrons is limited to
approximately 100 nm, the acquisition of data from 3D protein crystals—as are used for X-
ray crystallography—is not practical. However, planar 2D crystals, composed of a single
layer or double-layer of proteins, can be imaged in the electron microscope. Of particular
interest are 2D crystals formed of membrane proteins embedded in a lipid bilayer
membrane, as analysis of these crystals provides the most reliable structural information for
these proteins. For further details on 2D crystallization and the subsequent structure
determination process the reader is referred to the chapters by Stahlberg and by Walz in this
issue.

In a 2D crystal there are fewer lattice contacts than in 3D crystals, and the crystal lattice
often shows substantial disorder. Fortunately, in the electron microscope an image can be
formed of a 2D crystal, and the lattice disorder can be removed by
computational ”unbending” of the crystal image. In this process the micrograph is analyzed
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to locate the center of each unit cell. To the extent that its center deviates from an ideal
lattice, each unit cell is then shifted to bring it into the proper position.

In the end, the goal of analysis of a crystal image is to estimate the 2D density of a unit cell
of the lattice. The “unbending” method is equivalent to a conventional alignment and
averaging of 2D images, and a superior alternative is ML estimation of the unit-cell image
as in Eq. (24). Zeng et al. (2007) implemented the EM-ML algorithm, where each data
image Xi is a unit cell in the micrograph, and the transformations φ are constrained to small
translations from lattice points and to a small angular deviations from the lattice directions.
That is, the hidden variables φi are modeled as Gaussian-distributed with small standard
deviations which are estimated as part of the model. The result is improved resolution in
structures obtained from 2D crystals having substantial disorder. In the ML estimation it was
assumed that the disorder in the crystals was confined to in-plane translations and rotations;
however, a further extension can be imagined in which a 3D algorithm similar to ML3D
could be employed to account for small out-of-plane deviations of the unit cells as well. In
addition, one might envision improvements by relating the disorder parameters of
neighbouring unit cells to each other, as crystal disorder is often to some extent a continuous
phenomenon.

Tomography
In electron tomography a reconstruction of a unique 3D object, for example an entire cell, is
obtained by combining a series of projections that are recorded at different tilt angles. The
process of tomographic reconstruction is described in more detail in the chapter by Amat in
this issue, and its application to HIV-1 is described in the chapter by Liu. Electron
tomograms are typically extremely noisy because the electron dose over the whole tilt series
needs to be limited in order to prevent radiation damage. Still, averaging over multiple
copies of the same macromolecular complex may improve the signal-to-noise ratios
provided that the individual sub-tomograms may be aligned (and classified in the case of
structural heterogeneity). Apart from the increased dimensionality of the data vectors, sub-
tomogram averaging is conceptually very similar to 2D averaging approaches in single-
particle analysis. Again, the unkown orientations φi = (αi, βi, γi, xi, yi, zi) and/or the class
assignments ki of the individual sub-tomograms may be treated as hidden variables and the
EM-ML algorithm may be employed to obtain MLEs of the underlying signals.

The first reported ML approach to sub-tomogram averaging was the application of the
kerdenSOM algorithm to aligned sub-tomograms of insect flight muscles (Pascual-Montano
et al., 2002). In this case, as for the classification of 2D images described above, the class
assignments ki are treated as hidden variables and an additional regularization term to the
marginal log-likelihood function results in a neural network-like behaviour of the K output
classes. However, compared to 2D averaging an additional complication arises in sub-
tomogram averaging that was not taken into account in the kerdenSOM approach. Due to
experimental limitations on the tilt angle, electron tomography data cannot be measured in
its totality. In the case of single-axis tilting, a wedge-shaped region in Fourier space remains
experimentally inaccessible. This region is commonly referred to as the missing wedge and
sub-tomogram averaging procedures that do not take the missing wedges into account have
been observed to yield suboptimal results (Walz et al., 1997). A variant of the kerdenSOM
algorithm that takes missing wedges into account was mentioned in a structural study on
cadherins (Al-Amoudi et al., 2007), but details concerning this algorithm were never
described.

Conventional alignment and classification approaches for sub-tomograms have typically
restricted the cross-correlation measure to the observed regions in Fourier space.
Subtomogram averaging may then be performed by weighted averaging, i.e. by dividing the
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sum of all sub-tomograms by the times that each point in Fourier space has been measured.
However, the EM-ML algorithm itself may provide a more elegant solution to the missing
wedge problem, since this algorithm was ultimately designed to deal with incomplete data
problems. Apart from the unknown orientations φi and the class assignments ki, one may
also treat the data points inside the missing wedges as hidden variables. An EM-ML
algorithm that optimizes the corresponding marginal log-likelihood function was recently
introduced (Scheres et al., 2009a). This algorithm “estimates” the missing data points by
calculating probability-weighted averages over all possible values, just like it does for the
orientation and class assignments. However, the possible values for each of the missing data
points range from minus infinity to infinity, which obviously prohibits the use of numerical
integrations. Fortunately, an analytical solution exists where the missing data points for each
individual subtomogram are replaced by the corresponding values in the (oriented) reference
to which the subtomogram is compared. In this way, the incomplete experimental data are
complemented with the currently available information from the model. Therefore, this
algorithm does not need to divide the sum of all sub-tomograms by the number of times
each point in Fourier space was observed, which prevents numerical instabilities for data
points that were (almost) never observed.

Similar to the ML2D approach, the EM-ML algorithm for sub-tomogram averaging tackles
the problems of alignment and classification simultaneously through a multi-reference
refinement scheme (with hidden variables φi and ki). Moreover, the algorithm may be run in
a completely unsupervised manner by starting the multi-reference refinements from
averages of random subsets of sub-tomograms in random orientations. The advantages of
this approach were illustrated using simulated data and reference-free class averages were
obtained for experimental sub-tomograms of groEL and groEL/groES complexes. In
addition, the same approach was shown to be effective for the reference-free alignment of
random conical tilt (RCT) reconstructions from single particle experiments on p53. Note that
just like sub-tomograms, RCT reconstructions are 3D data vectors with missing regions in
Fourier space, although RCT reconstructions have missing cones rather than missing
wedges. An alternative maximum likelihood approach for the alignment of RCT
reconstructions was mentioned by Sander et al. (2006), although also for this algorithm the
details have not yet been presented.

The statistical data model
The data model that underlies the PDF calculations plays a crucial role in the EM-ML
approach. The PDF defines the log-likelihood target function and is used to calculate the
probability distributions over the hidden variables in the model updates. If the model does
not describe the data accurately, the benefits of the statistical approach may be lost
altogether. All approaches described above share similar assumptions about the signal and
they all assume that the noise is independent, additive and Gaussian. As outlined above this
model results in a computationally attractive algorithm, but how accurately does this model
describe cryo-EM images?

Thin samples of biological molecules fulfil the weak phase approximation, the theory of
image formation which is used to describe the phase-contrast images of weakly scattering
specimens. Under this approximation, the contrast in cryo-EM images is linearly related to
the projected object potential. The latter justifies the use of standard X-ray integrals in the
projection operators of the 3D approaches described above. The same theory is also used to
derive imaging effects of the electron microscope in the form of the contrast transfer
function (CTF). The accuracy of this model, at least for thin specimens, is reflected in the
(near-)atomic resolutions that have been obtained with it for single particles and 2D crystals
(Cheng & Walz, 2009). However, of all the ML approaches described above only those for
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icosahedral viruses [e.g. Yin et al. (2003)] include an explicit description of the CTF. All the
other approaches simply ignore the CTF or employ suboptimal CTF correction strategies
[e.g. Zeng et al. (2007)]. Consequently, these approaches may fail to provide good model
estimates in cases where the CTF plays an important role, as is often the case in medium-
high resolution refinements. For more details on image restoration and the importance of
CTF correction, the reader is referred to the chapter by Penczek in this issue.

The noise term in the data model is used to represent all features in the observed images that
are not explained by the description of the signal. In cryo-EM images the major source of
noise is shot noise. This type of noise follows a Poisson distribution and arises from
statistical fluctuations in the small number of imaging electrons (typically 10–20 electrons
per squared Angstrom). EM-ML algorithms for Poisson distributions are computationally
more complicated than those for Gaussians. But as the Poisson distribution approaches the
Gaussian for larger numbers of imaging electrons, the latter provides a good approximation
for pixels that span many squared Angstroms (Sigworth, 2004). Apart from the abundant
shot noise, several other sources of noise exist. Structural noise arises from the
irreproducible density of the ice that surrounds the particle or the carbon layer that is used to
support it. Also structural variability in the particles that is not described by the data model
may be considered as a source of structural noise. Detector noise arises from the stochastic
nature of the interactions of electrons with the detector—the digital camera or photographic
film which is used to acquire the image. The result is a random variation in both the point-
spread function and amplitude of the single-electron response of the detector. Baxter et al.
(2009) experimentally measured the relative contributions of the different types of noise. For
typical cryo-EM images on a well-behaved ribosome sample they found the combination of
shot noise and detector noise to be one order of magnitude larger than the structural noise.
The latter was found to be approximately of the same power as the underlying signal in the
images. Taken together one may assume that, at least for pixels that span multiple squared
Angstroms, Gaussian distributions describe the combination of the various independent
sources of noise in cryo-EM images reasonably well.

The assumption of independent noise may be more problematic. The independence between
all pixels was used in Eq. (11) to relate the PDF of an entire image with the PDFs of the
individual pixels, and ultimately allows for fast calculations of the probabilities. Independent
noise is uncorrelated from pixel to pixel and has a flat power spectrum. Therefore, it is also
called white noise. Although shot noise is intrinsically white, the background noise in a
cryo-EM micrographs is typically not white for several reasons. Most importantly, there is a
fall-off with resolution of both the signal and the noise due to the point spread functions of
the microscope and the electron detector. In addition, various sources of structural noise,
such as density for the ice or carbon support or structural variations in the particles are
expected to have strong correlations among nearby pixels. Ignoring these correlations in the
PDF calculations will lead to a suboptimal behaviour of the EM-ML approach.

Two approaches to deal with non-white noise in cryo-EM images have been proposed. In the
most straightforward approach, the data are adapted to the white-noise model by so-called
pre-whitening of the observed images (Zeng et al., 2007; Sigworth, 2004). In this
preprocessing step the higher frequencies in the images are boosted based on an estimate for
the power spectrum of the noise. The resulting images have a flat power spectrum and are
processed using the conventional ML approach. Alternatively, the model itself may be
adapted to describe non-white data. The latter was achieved by reformulation of the PDF in
the Fourier domain. Assuming independent, Gaussian noise on all Fourier components, the
PDF may be calculated in a way that is highly similar to Eq. (11) but involves Fourier
components rather than image pixels. The uniqueness of the expression in the Fourier
domain lies in the possibility to estimate the standard deviation of the noise (σ) as a function
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of spatial frequency, thereby explicitly modeling non-white noise. In addition, the
formulation in the Fourier domain allows for a convenient incorporation of the CTF into the
data model. This approach was called MLF, for Maximum Likelihood in the Fourier
domain, and it was implemented for the problems of 2D and 3D multi-reference refinements
in single particle analysis (Scheres et al., 2007b). For simulated CTF-filtered images, the
MLF approach was shown to be superior to the ML approach for white noise and its
usefulness in the experimental situation was illustrated for structurally heterogeneous cryo-
EM data sets on 70S E. coli ribosomes and large-T antigen complexes.

Perhaps the most basic of all assumptions in the data models discussed above is the one that
is violated most often. By including an image in the data set one assumes it contains signal.
However, especially for smaller particles (with molecular weights well under 1 MDa) it is
often extremely difficult to distinguish genuine particles of interest from artifacts in the
micrographs. Consequently many cryo-EM data sets contain large amounts of particles that
do not contain a common underlying signal. This problem typically becomes more severe
with the use of (semi-) automated particle selection procedures, which are still outperformed
by expert human beings (Zhu et al., 2004). Currently, none of the available ML approaches
can distinguish between genuine and artifactual particles, but one approach does aim to
provide robustness against outliers in the data (Scheres & Carazo, 2009). This approach uses
t-distributions, which have wider tails than Gaussians, to accomodate atypical observations.
The resulting algorithm downweights images with relatively large residuals. However,
application to cryo-EM images did not show clear advantages over the Gaussian algorithm,
probably because typical artifacts in the data have relatively small residuals compared to the
high levels of noise.

Reducing computational requirements
Perhaps the major obstacle for a more wide-spread use of the EM-ML approach in cryo-EM
image processing is currently its computational load. For many applications the exhaustive
integrations over the hidden variables in the expectation step require large amounts of
computing time. For example, in single-particle analysis the integrations over the 3D
rotations and in-plane translations span a five-dimensional space that is extended to even six
dimensions in the multi-reference case. That is, for each 3D rotation (αi, βi,γi) and each class
ki, all J possible in-plane translations (xi, yi) are to be considered. Conventional approaches
typically divide this problem into several lower-dimensional ones, e.g. by searching in-plane
translations only for a single 3D rotation. Although this strategy is not guaranteed to
converge, it does provide major speed-ups, e.g. of two orders of magnitude, compared to the
exhaustive integrals in the ML approach. Consequently, the latter has become known as a
computationally expensive technique.

Several contributions have been made to reduce the computational requirements of ML
approaches in cryo-EM. Two approaches for single-particle analysis are based on the
observation that many of the alignment parameters give rise to near-zero probabilities,
especially when the algorithm nears convergence (Tagare et al., 2008; Scheres et al., 2005b).
Consequently, the ML approach can be speeded up considerably by domain reduction
strategies, where the integrals over the hidden variables are restricted to those alignments
that contribute significantly to the weighted averages.

The first proposal to domain reduction involved skipping part of the integrations over all in-
plane translations (Scheres et al., 2005b). In this approach optimal translations from the
previous iteration are used to calculate probabilities for pre-centered images as a function of
the in-plane rotation for each 2D reference (or projection of the 3D references). Then, for
those in-plane rotations where this probability is smaller than a cut-off value times its
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maximum, the integration over all translations is skipped. Although in a strict sense the
resulting algorithm is not guaranteed to converge, in practice a 7-fold acceleration could be
obtained for a small 2D problem without notably changing the convergence behavour. For
larger 3D problems (Scheres et al., 2007a), the same approach was estimated to yield 10–20
fold accelerations (unpublished results).

Even higher speed-ups of 30–60 times are reported by combining a related domain reduction
strategy with an additional grid interpolation strategy (Tagare et al., 2008). The latter is
based on the observation that the squared difference terms in Eq (17) vary much more
smoothly with φ than the probability terms themselves. Consequently, one may calculate the
squared difference terms on a relatively coarse grid and use B-spline interpolation to
evaluate the corresponding values on a much finer grid. A similar approach had previously
been proposed for the maximum-seeking problem in conventional cross-correlation based
strategies (Sander et al., 2003).

Whereas domain reduction and grid interpolation provide approximations of the original
EM-ML algorithm, the ML approach for icosahedral viruses in (Doerschuk & Johnson,
2000) may be reformualted in an exact manner that is much faster (Lee et al., 2007). In the
original approach, the spherical harmonics themselves already provide a highly efficient
way to sample 3D rotations and to restrict the resolution of the model. Still, using an idea
from Navaza (2003), the same problem may be expressed more efficiently by application of
a linear transformation to the observed data, which allows expressing the expectation step in
terms of lower-dimensional integrations over the hidden variables. Although the resulting
approach thus involves an additional precomputation step, each expectation step itself is
accelerated up to 25 times and has reduced storage complexity.

Outlook
With the rapid increase of available computing power and continuing efforts to accelerate
EM-ML approaches, the applicability of ML methods is expected to increase significantly in
the near future. Already with relatively modest computer clusters, which soon will be
replaced by multi-core desktop computers, medium-resolution single-particle multi-
reference refinements are feasible within the time span of only a few days (also see part II of
this contribution).

Preliminary investigations further indicate that the EM-ML approach may be particularly
suitable for acceleration by general purpose computing on the graphical processing unit
(GPU), which provides high computing power at relatively low cost (Tagare, Sigworth et al,
in preparation).

In addition, apart from continuing developments in domain reduction and grid interpolation
strategies, one may employ algorithms to optimize log-likelihood targets with faster
convergence rates than the classical EM-ML algorithm. For example, similar to block-
Kaczmarz methods for iterative reconstruction (Eggermont et al., 1981), one may perform
partial expectation steps by processing the experimental images in subsets, or blocks.
Thereby, convergence is speeded by incorporating new information faster into the model
(Neal & Hinton, 1998). In single-photon (SPECT) and positron emission tomography (PET)
this approach has resulted in an order of magnitude speed-up (Hudson et al., 1994), and
investigations into the efficiency of a similar approach for cryo-EM single-particle analysis
are currently underway (Scheres et al, in preparation).

However, the most important future contributions are not expected from making ML
methods faster but from efforts to make them better. As explained above, the statistical data
model and in particular the assumptions about the noise in the data remain apt for
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improvement and also the robustness to artifactual particles in the data still needs to be
improved. Moreover, there are various aspects of ML theory for which applicability to cryo-
EM image processing remains open for more in-depth investigations. While structure
validation and resolution assessments remain critical areas of research in the field, ML
theory promises reliable error estimates on the model parameters through the use of the
Hessian to the log-likelihood. The first indication that these estimates may indeed be useful
is the successful definition of a ML equivalent of the FSC as recently explored by Prust et
al. (2009). In addition, Cramer-Rao lower bounds to the log-likelihood function may be
employed to design optimal experimental setups, as was tentatively explored in (Doerschuk
& Johnson, 2000).

Finally, there may be improvements to be gained from using maximum a posteriori (MAP)
estimation instead of ML estimation. As was mentioned in conjunction with Eq. (1), the
inclusion of prior information in the form of a prior probability P(Θ) should improve the
quality of final models. The advantage of MAP estimation appears when the amount of
experimental data is limited, so that the prior probability term makes a substantial
contribution. An important example of a prior probability function, well known in X-ray
crystal structure determination, is one that penalizes all 3D models in which the density
outside the particle boundary (the “solvent” or “ice” density of the map) is nonzero. This
choice of a prior probability function is the formal basis of the well known “solvent
flattening” process.

In summary, we have seen that the theory of maximum-likelihood estimation provides
improved methods for the processing of cryo-EM data. Of particular interest is its flexible
theoretical framework, which allows the limitations of experimental data—heterogeneity,
noise, missing wedges, and so on—to be readily and rigorously modeled. With these data
models, the process of determining macromolecuar structures is both improved and placed
on a firmer statistical foundation.
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Figure 1.
Histogram of values of a random variable x. The values were drawn from a distribution
consisting of a mixture of two Gaussians with means of 0 and 2.5.
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Figure 2.
EM-ML estimation of the means and amplitudes in a mixture of two Gaussians as in Figure
1. A, top panel, a histogram of 1000 simulated measurements is shown, along with two
Gaussian components computed on the basis of initial guesses for the mean and amplitude
of the components. The middle panel shows how the expectation ŷ varies with the measured
value x. Instead of there being a strict classification of x values into one or the other
component, these ŷ values take on intermediate values in the range of x values where the
components overlap. The bottom panel illustrates how a weighted average can give rise to
the mean value for the left-hand component. The bins of the histogram have been scaled by
the values of ŷ, while the initial guess of the PDF is plotted as a smooth curve. The center of
mass of the weighted histogram yields the new estimate for μ1. B, the same plots are shown
after the two Gaussian components have been updated with new means and amplitudes by
one EM-ML iteration. C, the result after convergence with 24 iterations. The simulation was
based on means of 0 and 2.5. The EM-ML estimated means were −0.06 and 2.46.
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Figure 3.
An example of direct MLE calculation. A, an image A with a zoom window centered on one
individual pixel value with value Aj is shown. B, three copies of image A with different
instances of white Gaussian noise are shown together with zoom windows on the same pixel
j with pixel values X1j, X2j and X3j. C, the PDF of the jth pixel in the noisy images is shown

as a Gaussian curve centered at Aj and with standard deviation σ. Direct calculation of 
is performed by averaging over X1j, X2j and X3j. D, the MLE of the entire image A is shown

together with a zoom window, centered on . Note that the MLE of the image will
approach the image in A if larger numbers of noisy images are available.
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Figure 4.
The PDF of a noisy image as a function of its relative orientation with respect to a reference
image. A, Xi, a rotated and noisy version of reference image A from Figure 3A is shown. B,
top panel, the probability P(Xi|φ, Θ) of observing Xi given a model Θ that comprises image
A is shown (on an arbitrary scale) as a function of the relative orientation φ. The bottom
panel shows RφA, i.e. image A rotated according to φ. Note that P (Xi|φ, Θ) is highest when
φ corresponds to the correct orientation of Xi.
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Figure 5.
Reference image calculation by probability-weighted averaging. A, three noisy versions of
reference image A from Figure 3A in different orientations (Xi, with i = 1, 2, 3). B, images

 for all sampled φ. The opacity of the images is used to illustrate the weight P(φ|Xi,
Θ(n)) in the weighted average calculation that produces the updated estimate of the reference
A(n+1), see Eq. (24). Note that X1 corresponds to the same image that was shown in Figure
4A and that the columns correspond to the same orientations as in Figure 4B.
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Table 1

An overview of EM-ML approaches in single-particle analysis.

Approach Data model Model Parameters Θ Hidden variables 

Sigworth 1998 Xi = Rφi A + σGi A, σ, ξx, ξy, σxy αi, xi, yi

kerdenSOM Xi = Aki+ σGi Ak, σ, πk ki

ML2D Xi = Rφi Aki + σGi Ak, σ, πk, σxy ki, αi, xi, yi

ML3D Xi = Pφi Vki + σGi Vk, σ, πk, σxy ki, αi, βi, γi, xi, yi

MLn3D Xi = siPφi Vki + σGi + ni Vk, σ, πk, σxy, si, ni ki, αi, βi, γi, xi, yi

Symbols Xi, Rφi, A, σ, αi, xi, yi, ξx, ξy and σxy were defined in the section that provided the theoretical basis. Subscripts k, with k = 1, …, K are

used to indicate the kth model in multi-reference refinement schemes. Then πk are prior probabilities of that model and ki indicates that model k is
the correct one for the ith observed image. Vk indicates a three-dimensional model and Pφi is a projection operation, with φi = (αi, βi, γi, xi, yi)
comprising three Euler angles and two in-plane translations. si and ni are multiplicative and additive parameters for each ith image.
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