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ABSTRACT

Summary: The top-scoring pair (TSP) and top-scoring triplet (TST)
algorithms are powerful methods for classification from expression
data, but analysis of all combinations across thousands of human
transcriptome samples is computationally intensive, and has not yet
been achieved for TST. Implementation of these algorithms for the
graphics processing unit results in dramatic speedup of two orders
of magnitude, greatly increasing the searchable combinations and
accelerating the pace of discovery.
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1 INTRODUCTION
Rapidly improving technologies have made large amounts of gene
expression data available for analysis and classification. The NCBI
Gene Expression Omnibus (GEO) database contains hundreds of
thousands of samples representing a wide range of diseased and
healthy tissue for which gene expression has been measured. As
next-generation RNA sequencing technology (Cloonan et al., 2008)
becomes ubiquitous, GEO and other databases will further increase
in size and accuracy of information. Researchers have sought to
use this expression data to identify distinct gene relationships that
classify disease states, allowing for accurate diagnosis of diseases
given the expression patterns of a few genes. Such methods include
support vector machines (Brown et al., 2000), decision trees (Zhang
et al., 2003) and neural networks (Khan et al., 2001). The top-scoring
pair (TSP) algorithm and its variants have demonstrated similar
accuracies to these methods while remaining relatively simple,
resistant to overfitting and consistent across data normalization
methods (Geman et al., 2004; Lin et al., 2009; Price et al., 2007;
Tan et al., 2005). Classifiers identified using these algorithms have
been used to predict cancer outcomes and model disease progression
(Eddy et al., 2010). Despite these advantages, the TSP and especially
the top-scoring triplet (TST) algorithm are computationally intensive
and therefore slow. Because increasing the accuracy of predictions
may require analysis of thousands of samples across tens of
thousands of transcripts, it is important to improve the speed of
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these algorithms. Faster algorithms also enable more comparisons
to be made, including automated data mining across many sample
sets.

While primarily known for gaming applications, the graphics
processing unit (GPU) is increasingly applied to computationally
challenging scientific problems including molecular dynamics
simulations (Stone et al., 2010), quantum chemistry (Ufimtsev
and Martinez, 2008), and medical imaging (Stone et al., 2008).
The GPU is designed for massive parallelism involving thousands
of simultaneous executing threads, but requires different coding
than that which runs on CPUs. Algorithms well suited for such
parallelism can run tens to hundreds of times faster on GPUs than
a corresponding CPU implementation. GPUs are also now widely
available to researchers via National Center for Supercomputing
Applications (NCSA) clusters and businesses such as Amazon Web
Services EC2 Cloud Computing. Here, we present implementations
of the TSP algorithm and the TST algorithm on the GPU. As
the TST algorithm is particularly computationally demanding, this
GPU implementation enables the first comprehensive search of all
possible TSTs for classification.

2 ALGORITHMS
Given two classes of samples C = {C1, C2} with expression values
for Ngenes {x1,...,xN }, the TSP algorithm identifies the marker gene
pair (xi,xj) in which the TSP score

�i,j =
∣
∣Pr[xi <xj|C =C1]−Pr[xj <xi|C =C2]∣∣,i �= j

is maximized. The algorithm performs all pairwise comparisons
between the genes of the dataset and calculates the TSP score for
each, then selects the maximum or set of maximum scores. Multiple
pairs may then be combined to improve classification (Tan et al.,
2005). The TSP algorithm exhibits O(N2) time complexity.

The TST algorithm extends the TSP algorithm to triplets of genes
(Lin et al., 2009). The TST algorithm is calculated similarly to TSP:
all possible triplets of gene ranks are compared, and the probabilities
of each permutation within each triplet are calculated and scored.
The algorithm finds the maximum TST score from all triplets in
O(N3) time complexity. Extended details of both algorithms can be
found in the Supplementary Material.

3 METHODS
Modern (compute 1.2 and higher) NVIDIA CUDA GPU architectures
contain multiple (2–30) streaming multiprocessors (SM), each consisting
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Fig. 1. Logical organization of the TSP algorithm on the GPU. Each portion
of the output TSP matrix is calculated independently of the others by each
thread block. Each thread outputs a single element of the TSP matrix.

of multiple cores. Each core can execute one floating point or integer
instruction per clock cycle in parallel with all other cores of that SM.
Programming this device involves organizing executing code into threads;
each thread is executed by a single core, and runs in parallel with all other
threads currently being executed on the SM. The GPU implements the
single instruction, multiple data (SIMD) design: each parallel thread in a
multiprocessor executes the same instruction simultaneously, but on different
data. Threads are logically organized into thread blocks, which map loosely
onto each streaming multiprocessor. The TSP and TST algorithms exhibit
characteristics that make them ideal for a GPU implementation: there is no
data dependence between individual scores; therefore each score may be
calculated in parallel (Fig. 1). Detailed descriptions of the implementation
of these algorithms on the GPU are in the Supplementary Material.

4 RESULTS
The algorithms described above have been implemented in C with
CUDA extensions and compiled into MEX files for use within the
MATLAB computing environment; a standalone application is also
available. Two existing CPU implementations of the TSP algorithm,
tspair (Leek, 2009) and RXA (Lin et al., 2009) were used for speed
comparisons with the GPU code. One existing CPU implementation
of the TST algorithm (RXA) was used for speed comparisons. Both
CPU software packages are implemented in the C programming
language as packages for the statistical environment R. All CPU
speed tests were performed on an Intel Xeon x5680 3.33 GHz 6-core
processor. The GPU tests were performed on a NVIDIA Tesla T10
and an NVIDIA GeForce GTX480. Source code and executables
for all GPU implementations are available at http://www.igb.illinois.
edu/labs/price/downloads/.

Figure 2 shows the results of the running time comparisons.
The results for RXA and tspair are plotted separately due to the
fact that RXA implements the Wilcoxon rank sum test to filter for
only the most differentially expressed genes, whereas tspair does
not. As the number of genes increases, the speedup on the GPU
improves, therefore further speedup might be expected for larger
tests. All GPU timings include the device data transfer as well as
computation times. The Tesla T10 executes the algorithms 77X to
255X faster than the corresponding CPU implementations, and the
GTX480 executes the algorithms 228X to 455X faster. Processing
10 000 genes on the CPU version of the TST algorithm would
take over 6.5 months, while the GPU implementation of the TST
algorithm on this dataset was completed in <9 h. Using the GPU
enables the discovery of accurate marker gene pairs and triplets that

Fig. 2. Plot of RXA TSP algorithm versus GPU implementation (left).
Both algorithms filter for most differentially expressed genes using the
Wilcoxon rank-sum test. Maximum speedup is 255X (Tesla T10) and
455X (GTX480). Plot of tspair TSP algorithm versus GPU implementation.
Maximum speedup is 83X (Tesla T10) and 228X (GTX480) (center). Plot of
RXA TST algorithm versus GPU implementation. Maximum speedup is 77X
(Tesla T10) and 301X (GTX480) (right). The dataset used had 350 samples
in Class 1 and 306 samples in Class 2. All data points are the mean of three
independent runs of the software. Dotted lines indicate extrapolation from
previous data points using a quadratic (TSP) or cubic (TST) polynomial fit.

are infeasible with the CPU implementations, while also allowing
more stringent error estimation methods than are currently possible
due to previous computational time constraints.
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