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Abstract
Here, we define dynamic reciprocity (DR) as an ongoing, bidirectional interaction amongst cells
and their surrounding microenvironment. In the review, we posit that DR is especially meaningful
during wound healing as the DR-driven biochemical, biophysical and cellular responses to injury
play pivotal roles in regulating tissue regenerative responses. Such cell-extracellular matrix
interactions not only guide and regulate cellular morphology, but cellular differentiation,
migration, proliferation, and survival during tissue development, including e.g. embryogenesis,
angiogenesis, as well as during pathologic processes including cancer diabetes, hypertension and
chronic wound healing. Herein, we examine DR within the wound microenvironment while
considering specific examples across acute and chronic wound healing. This review also considers
how a number of hypotheses that attempt to explain chronic wound pathophysiology, which may
be understood within the DR framework. The implications of applying the principles of dynamic
reciprocity to optimize wound care practice and future development of innovative wound healing
therapeutics are also briefly considered.
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INTRODUCTION
Normal wound healing is characterized by a well-coordinated, progressive series of events
designed to restore the barrier function and mechanical integrity of the skin. Like other
developmental processes and tumor growth, wound healing involves interactions between
cells and their microenvironment, of which the extracellular matrix (ECM) is the primary
component.1–3 It is largely through these interactions that cells are directed to differentiate
or dedifferentiate, proliferate or remain quiescent, and assume the architecture and function
of the skin versus that of some other organ.1, 4
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More than 25 years ago, it was noted that interactions between cells and the ECM occur both
ways – that is, they are reciprocal.5, 6 Moreover, it was noted that these interactions were
dynamic, continuously changing in response to cues from the microenvironment.5, 6 These
observations were collectively termed “dynamic reciprocity” indicating the ongoing,
bidirectional interactions between cells and the ECM (Figure 1).

DR conceptually encompasses many types of cell-ECM interactions, which embrace a
number of fields of basic and clinical study, which include developmental biology and the
pathobiology of human disease. Indeed, DR is likely to be relevant during tissue
development, reparative and regenerative processes, and human pathogenesis, including
embryogenesis, angiogenesis, lactogenesis, cancer, and wound healing. Within each of these
basic and clinical research domains, there have been numerous reports that reflect upon the
biochemical and biomechanical effects that cells and their interacting surrounding
microenvironments or ECM have on tissue or organ-specific responses during human
development or disease. Reciprocally responsive biochemical and mechanochemical
interactions between cells and ECM during wound healing and angiogenesis have been
demonstrated and discussed by a number of authors.7–17 These interactions represent
integral features of DR,9, 10 which link a deepened understanding or awareness of how cell-
matrix interactions modulate cellular responses to injury and wound healing in vivo.

One goal of this review is to explore the relevance of DR as it relates to the wound
microenvironment. First, we briefly review the history of DR and then turn to a
consideration of specific examples of DR during each stage of wound healing. It is our
contention that the concept of DR also provides a framework within which to understand the
processes that are disrupted in chronic wounds and how these influence subsequent
interactions in the wound microenvironment. Therefore, a second goal of this review is to
re-consider some hypotheses that attempt to explain chronic wound pathophysiology and
how these might be understood within the framework of DR. We end with a consideration of
the implications of DR for clinical wound healing and future therapeutic development.

History of Dynamic Reciprocity
The phrase “dynamic reciprocity” was coined by Bornstein and colleagues in 1982 to
describe the effects of the ECM on endothelial cell function.6 They noted that endothelial
cells secreted macromolecules that continually modulated cellular behavior and,
presumably, this in turn influenced the identity and quantity of secreted macromolecules.6
Although, at the time, it was not known how the ECM influenced cells, they hypothesized
that these macromolecules may interact with the internal cytoskeleton “to regulate cellular
shape and movement and affect metabolic function by, for example, modulating ionic fluxes
or protein phosphorylation/dephosphorylation.”6

In the same year, Bissell and colleagues published a review elaborating on the concept of
DR and presenting a model by which the ECM could affect gene expression.5 In this model,
the ECM was believed to influence cells via transmembrane receptors that interacted with
the cytoskeleton to eventually alter the pattern of gene expression.5 This paper also outlined
evidence demonstrating the importance of the ECM for cell shape and function, as well as
maintenance of the differentiated state.5 The emphasis in Bissell’s model was that “the
influence of ECM on the cell, both during the developmental process and in established
tissues, appears to evolve continually.” Thus, the ECM was believed to affect the cell, which
in turn altered the composition and structure of the ECM through synthesis or degradation of
ECM components that then influenced the cell, and so on.5
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The model that Bissell and colleagues proposed in 1982 was supported by the discovery and
characterization of integrins several years later.18 Today, integrins are recognized as multi-
domain receptors whose extracellular portion interacts with ECM molecules and whose
intracellular portion interacts with signaling proteins (e.g., kinases) and adaptor proteins that
link to the cytoskeleton (Figure 2).2, 19 These interactions in part regulate this DR through
gene expression, protein synthesis, actin organization, cell polarity, differentiation,
proliferation, migration, and survival. Integrin binding also modulates the signaling by
several other receptor mechanisms, including syndecans, growth factors, and cytokines.20

Cells and the ECM also interact via additional mechanisms such as discoidin domain
receptors, hyaluronan receptors, and cell surface proteoglycans, although the integrin
pathways are the best characterized to date. Conversely, cells regulate the distribution and
affinity of integrins for their matrix ligands. Interactions between cells and the ECM via
integrins have been described as inside-out and outside-in, which describe their mutual
influence.

The concept of DR is well established in cell biology, where it continues to provide a basis
for research into the mechanisms of ECM-cell interactions.1–3 This research has been
instrumental in establishing the ECM as a signaling entity rather than simply an inert
scaffold and support structure for cells.1, 21, 22 These non-structural properties of the ECM
are best demonstrated by the functions of matricellular proteins, such as the
thrombospondins, SPARC and hevin, tenascins and periostin, which influence cell function
in numerous ways.3 Over the years, DR has been expanded to encompass interactions
between cells and their entire microenvironment, which in addition to the ECM, includes
adhesive signals, paracrine signals such as growth factors derived from neighboring cells,
and systemic cues.1

The parallels between wound healing and other types of tissue development – both normal
and pathological – are numerous. In particular, angiogenesis is integral to all of these
processes and has been suggested as an organizing principle underlying wound healing,
tumor formation, diabetic retinopathy, and selected other conditions.23 Angiogenic
abnormalities are characteristic of both tumors24 and chronic wounds.25 Additionally,
similar cytoskeletal mechanisms mediate epithelial cell migration in embryogenesis and
normal, acute wound healing26 and both processes require the coordinated activities of
cytokines and growth factors, cell-cell interactions, and cell-ECM interactions.

Dynamic Reciprocity During Normal Wound Healing
Given the parallels between wound healing and other types of tissue development, it is
reasoned that wound healing is also subject to the principles of DR.5 In the following
sections, we consider examples of DR that occur across the wound healing stages. Rather
than providing a comprehensive review of wound healing biology, this section uses
examples in an attempt to establish that cells and ECM are changed by their interactions
with one another, and the orderly procession of these changes, which occur through a
multitude of different signaling pathways, results in wound healing. In a subsequent section,
we consider how alteration in the sequence, magnitude, or timing of these changes may
contribute to stalled wound healing and/or the formation of aberrant tissue (e.g., fibrin
cuffs).

Hemostasis
Hemostasis begins after the disruption of blood vessels, which leads to a series of events
designed to halt blood loss. Events in this phase of healing include vasoconstriction,
formation of a platelet plug, and coagulation, and involve cells responding to changes in the
ECM and vice-versa.
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Vascular damage leads to the extravasation of blood components and the exposure of ECM
proteins such as collagen, fibronectin, laminin, and the matricellular protein
thrombospondin-1.27 Platelets bind to exposed collagen via integrins of the β1 and β3
families,28 as well as to the glycoprotein (GP) VI immunoglobulin superfamily.27 This
binding initiates an intracellular signaling cascade that activates platelets, causing them to
degranulate and release a multitude of chemokines and other soluble mediators that increase
intracellular calcium, promote reorganization of the cytoskeleton, and activate αIIbβ3
integrins via cytoskeletal proteins (Table 1; Figure 3).27

Blood-derived fibrinogen and von Willebrand factor (VWF) then bind to activated αIIbβ3
integrins, promoting connections between platelets and the formation of a platelet plug
(thrombus).27 Fibrinogen is concurrently converted into fibrin by thrombin as the final step
in the coagulation cascade. Fibrin then polymerizes to form a clot that is further stabilized
by factor XIII. The fibrin clot minimizes blood loss and, together with bound fibronectin,
serves as a provisional matrix that incorporates adherence sites for cells, modulates cell
function, and serves as a reservoir for growth factors, proteases and protease inhibitors.29

Many of the proteins released by platelets are chemoattractants and/or mitogens for
neutrophils, fibroblasts, monocytes/macrophages, and smooth muscle cells (Figure 3).
Among these is platelet-derived growth factor (PDGF), of which several isoforms bind to
heparan sulfate proteoglycan (HSPG), heparin, and other glycosaminoglycans present on
cell surfaces and in the ECM.30, 31 Heparin has been found to potentiate PDGF-α receptor
phosphorylation, to increase the PDGF-induced activation of mitogen-activated protein
(MAP) kinase, and to enhance chemotaxis of Chinese hamster ovary cells.32 Platelets also
store and release transforming growth factor (TGF)-α and TGF -β, which affect proliferation
and matrix metabolism, respectively.

Inflammation
The next phase in healing is the inflammatory phase, which is characterized by the
sequential influx of immune cells that, among their other activities, remove bacteria, debris,
and devitalized tissue. Platelet-derived cytokines are chemotactic for neutrophils, which in
addition to their proteolytic and oxidative functions, initially upregulate factors necessary
for the extravasation and chemotaxis of other immune cells and inflammatory responses.33

Monocytes bind to adhesion molecules on the luminal surface of activated endothelium and
then utilize integrins to migrate from the blood into the wound and bind to ECM proteins
(Table 1). ECM binding also enhances their phagocytic capacity34, resulting in increased
degradation of ECM fragments (Table 1; Figure 3). Monocyte binding to ECM proteins also
induces their differentiation into macrophages and upregulates the production of growth
factors such as PDGF-B and TGF-α.35, 36 Activated monocytes and macrophages produce
and release thrombospondin-1, which is chemotactic for macrophages37, and this effect
correlates with the activated angiogenesis demonstrated by these cells.38 As this phase
progresses, it is critical that macrophages remove apoptotic neutrophils, as failure to do so
results in reduced release of active TGF-β1 and a subsequent reduction in myofibroblast
differentiation and wound contraction.39 This function of macrophages is dependent on the
binding of β2 integrin to ECM proteins.39 TGF-β also stimulates fibroblasts to synthesize
collagen, fibronectin, hyaluronic acid, thrombospondins 1 and 2, tenascin-C, and other
proteins,40–42, in addition to increasing the expression of integrins that bind collagen,
fibronectin, and vitronectin43, 44.

Among the circulating, marrow-derived mononuclear cells that are recruited during
inflammation, there are several populations of cells that express characteristics of
granulation tissue such as collagen expression or endothelial growth factor receptors. The
early wound infiltrate includes cells of the hematopoietic lineage (CD45+; fibrocytes) and
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the mesenchymal lineage (CD45−, CD44+; mesenchymal progenitor cells) that can
transiently contribute to ECM production within the provisional matrix.45–47 Unlike resident
(skin) fibroblasts, these cells also have significant effector functions.

Migration and Proliferation
The proliferative phase is characterized by the formation of granulation tissue – new blood
vessels, macrophages, fibroblasts, and loose connective tissue10 – as well as early wound
contraction and re-epithelialization.

The provisional fibrin matrix supports the ingrowth of cells by incorporating ECM proteins
such as fibronectin and vitronectin, which interact with migratory cells via β1, β3, and β5
integrins. Adhesive interactions permit fibroblasts and endothelial cells to migrate toward
growth factors such as PDGF that are localized in the early wound environment.29, 48 PDGF
induces fibroblast proliferation and the expression of proteoglycans by fibroblasts, which, in
conjunction with integrins, are required for fibroblast migration and binding to the
provisional matrix.49 Furthermore, bioactive lipids modulate cellular injury and reparative
responses, including fibroblast and vascular cell proliferation. Indeed, lysophospholipid-
stimulated cytoskeletal responses impact cellular adhesion, migration, and contraction.50 In
turn, lysophosphatidic acid interaction with ECM proteins have further been demonstrated to
influence fibroblast migration rates in a laminin- and fibronectin-dependent manner. Indeed,
the binding of fibroblasts to fibronectin stimulates the production of collagen, proteoglycans,
and hyaluronic acid (Table 1).51,52 In addition to modifying the mechanical environment,
these molecules serve a host of functions, including cell and growth factor attachment,
increased cellular motility (hyaluronic acid), and interactions with one another (e.g.,
proteoglycans may facilitate collagen fibrillogenesis).10 Chemoattractant signals in the
provisional matrix, including PDGF and TGF-β, activate cognate receptors on fibroblasts
and other adherent cells. Sphingosine-1 phosphate interacts with PDGF to regulate vascular
cell migration and with TGF-β to regulate MMP expression.50 This growth factor signaling
requires the cooperative engagement of integrins. Hyaluronan, an early addition to the
provisional matrix, is recognized by CD44 receptors on migrating cells. Fibroblast binding
to newly-deposited collagen via the β1 integrin receptors facilitates migration and also
stimulates the production of MMPs, which, by degrading matrix components, permit cell
migration.53

Disruption of the epidermis and its association with the ECM of the basement membrane
activates migration and proliferation of keratinocytes. With the MMP-driven breakdown of
the hemidesmosomes, the anchor that held keratinocytes in place at basement membrane is
disrupted, allowing keratinocytes to migrate.54 Unlike mesenchymal and endothelial cells
that migrate through a three-dimensional matrix, polarized epithelial cells migrate as sheets
from the wound edge or remnant skin appendages. In order to migrate, the leading edge of
the sheet detaches from the underlying basal lamina, where hemidesmosomes bind to
laminin and type IV collagen through β4 and β1 integrins, respectively.55, 56 The migrating
keratinocyte relocates collagen-binding β1 integrins from the lateral membrane surface to the
basal surface to permit migration out over the newly-formed granulation tissue bed.
Keratinocytes do not bind to fibrin-fibrinogen because they lack αvβ3 integrins; thus fibrin is
anti-adhesive for these cells.57 Instead, keratinocytes express integrin subtypes that bind to
collagen I, fibronectin, tenascin-C, and vitronectin,58 which guide their migration over
granulation tissue. To resupply the advancing epidermal sheet, these cells rapidly proliferate
just distal to the wound margin under the influence of growth factors.

MMPs and other enzymes are important in generating active ligands. For instance, heparin-
binding epidermal growth factor (Hb-EGF) is initially bound to the membranes of
monocytes/macrophages, T cells, and keratinocytes, where it is released by ectodomain
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shedding in response to MMPs.59 Hb-EGF is abundant in acute porcine wound fluid 1–3
days after injury, where it binds to heparin or heparan sulfate and is mitogenic for
fibroblasts, smooth muscle cells, and epithelial cells.59, 60 The ectodomain shedding of Hb-
EGF bound to keratinocyte membranes is required for keratinocyte migration.61

In humans, capillary sprouts begin to migrate into the wound by day 4 post injury. This
process depends on the degradation of existing basement membrane by MMPs and other
enzymes,62 as well as on the presence of fibrin, vascular endothelial growth factor (VEGF),
fibroblast growth factor (FGF)-2, and other factors.63 Capillary sprouts initially express αvβ3
integrins that allow them to bind to fibrin-fibrinogen.63 As endothelial cells migrate into the
wound, integrin expression is spatiotemporally controlled, with ECM adhesions being
assembled and disassembled at various times and places.64 By analogy with epidermal
migration, endothelial sprouts advancing through the newly-forming ECM switch the types
of integrins they express, leading to differences in adhesion dynamics, cytoskeletal
organization, and signaling pathway activation over the course of angiogenesis.64

FGF, a key player in the regulation of angiogenesis, is an example of a growth factor that
must be bound to the ECM to exert its effects. FGF is made by multiple types of cells (e.g.,
macrophages during the inflammatory phase and fibroblasts and endothelial cells during the
proliferative phase) during wound healing, but FGF interacts with heparin-like moieties in
the ECM and on the plasma membrane in order to stimulate target cells throughout the
phases of wound healing. Heparanase, an enzyme that cleaves heparan sulfate to liberate
bound growth factors from the ECM, has been found to accelerate wound healing primarily
through an enhanced angiogenic response.65 FGF molecules, either secreted from cells or
liberated from the ECM by heparanase, are stabilized by heparan sulfate fragments and
escorted to the FGF receptors by cell surface HSPG to form a tetrameric complex leading to
receptor dimerization and signaling (Figure 3).66 Prevention of FGF-2 binding to heparan
sulfate prevents its ability to support fibroblast growth and reduces binding to its cell-surface
receptors.67, 68

MMPs also liberate angiogenic factors from the ECM proteins to which they are bound, and
they unmask cryptic sites in ECM components or generate bioactive ECM fragments that
can bind to cells via growth factor or other receptors and initiate signaling pathways.62, 69–
71 Endothelial cells express αvβ3 integrin, which binds to fibrin, fibronectin, vitronectin, and
vWF, and mediates endothelial cell adhesion and migration.63 Matrix components regulate
the temporal sequence of endothelial cell proliferation, with laminin inducing a higher
proliferation rate than collagen IV.72 PDGF-B is also mitogenic and chemotactic for
pericytes – cells that surround capillary tubes where they promote new capillary growth and
uniform structure. As angiogenesis progresses, endothelial cells form tubes, which involves
the recruitment of pericytes in response to endothelial cell-derived FGF-2 and PDGF.73

Thrombospondins are potent modulators of angiogenesis.74

Dynamic and reciprocal interactions between cells and ECM are evident not only in the
biochemistry of the wound microenvironment, but also in the biomechanical interactions
that occur at the cell-ECM interface.75 Cell shape is mediated by the tension generated when
cells anchor to ECM via integrins, which are connected to the cytoskeleton. Cell tension and
matrix elasticity interact to regulate cell differentiation. In combination with growth factor
gradients, cell shape and tension generated through cell-ECM adhesions are critical
determinants of cell migration.76 Under homeostatic conditions in adults, the dynamic
interactions between cell traction forces and resistance to these forces by the ECM strike a
balance that maintains cell shape.77 However, during tissue development, including wound
repair, degradation of ECM disrupts mechanical tension and consequently cell shape,
influencing cellular proliferation and migration.75 The altered cell shape caused by changes

Schultz et al. Page 6

Wound Repair Regen. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in the ECM then feeds back to modify cell behaviors such as growth, differentiation,
motility, etc.75

Contraction and Remodeling
During the proliferative phase, fibroblasts that are initially bound to fibronectin via αvβ5 or
αvβ3 integrins migrate and proliferate in response to PDGF, producing an ECM that is
relatively sparse but enriched in hyaluronan and with relatively higher levels of type III
collagen.10 Under the influence of TGF-β and connective tissue growth factor (CTGF),
collagen I becomes the predominant fibrous protein. In the continued presence of TGF-β1, a
fraction of the maturing granulation tissue further differentiates into myofibroblasts (Table
1).78, 79 It has been proposed that integrin-mediated myofibroblast contraction directly
activates latent TGF-β1 from self-generated ECM, thereby restricting the progression of
fibrosis to the area of mechanical stress.80 Lysophosophatidic acid also enhances wound
contraction via activation of G-protein-linked receptors and activation of the Rho and ROK
pathways, eventually leading to increased phosphorylation of myosin light chain by
impacting myosin phosphatase activity and actomyosin interactions.50, 81

One example of ECM-growth factor binding is the interaction between TGF-β and the
protein components of decorin and betaglycan. TGF- β1 induces the synthesis of decorin
and biglycan.82 Binding of TGF-β1 to decorin, betaglycan, and biglycan inhibits its activity,
suggesting a negative feedback loop 83. In addition, the latent TGF-β binding proteins are
closely related to the fibrillins, both of which can affect TGF-β bioavailability. TGF-β1 and
2 are involved in scar formation and TGF- β type II receptors are important in wound
contraction.84

Myofibroblasts interact with collagen bundles and growth factors to contract the wound.85

Macrophages, endothelial cells, and epidermal cells release MMPs that remodel the early
matrix, while myofibroblasts replace it with the stronger collagen type I (Figure 3).86 This
newly deposited collagen is organized along the stress lines of the skin and shows increased
tensile strength. Fibroblasts and myofibroblasts appear to continue to accumulate collagen
until the compliance of the ECM reaches mechanical equilibrium with surrounding tissue. In
hypertrophic scarring, there is an inappropriate response to tensional forces, leading to
excess matrix deposition. The slow remodeling of collagen, including the formation of
bundles and cross-links, progresses over a period of months to form a scar.

What Are the Problems In Chronic Wounds and How Can They Be
Understood Within the Framework of Dynamic Reciprocity?

While most wounds heal in a timely and orderly pattern, the process can be stalled or halted
in individuals with a variety of diseases or conditions, including diabetes mellitus, venous or
arterial insufficiency, and immunosuppression, or following a period of immobility that
leads to prolonged pressure. Chronic wounds may develop in these cases, potentially leading
to pain, immobility, hospitalization, amputation, or even death.87, 88

Viewed in the context of DR, non-healing wounds fail to exhibit the normal sequence of
actions and reactions between cells and ECM that characterizes acute wound healing. This is
not to say that DR does not apply to chronic wounds; on the contrary, the highly organized
nature of the ECM and cells evident in fibrin cuffs of venous stasis ulcers has led to the
suggestion that this tissue is actively synthesized,89 but perhaps inappropriately so.
Additionally, the normal, sequential pattern of these interactions does not occur, and the
disruption of these interactions – potentially at a variety of different points – leads to
downstream effects on other cell-ECM interactions that ultimately delay or preclude healing.
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In the following sections, we consider some of the disruptions in chronic wounds that may
relate to non-healing and examine how they may fit into the framework of DR.

Disruptions due to disease state
No single hypothesis has emerged as a comprehensive explanation for why chronic wounds
such as diabetic foot or venous leg ulcers fail to heal in a timely fashion. In fact, it has been
suggested that more than 100 physiologic factors contribute to wound healing deficits in
individuals with diabetes.90 Diabetes-induced alterations in progenitor cell recruitment and
homing or those that result from excessive nonenzymatic glycation of matrix proteins,
would be expected to alter the dynamic and reciprocal interactions between cells and ECM
that are necessary for wound healing. These changes also would be expected to have
reverberating downstream effects that would interfere with the normal sequential
interactions that characterize wound healing, thereby preventing timely wound closure.
While many processes lead to the occurrence of chronic wounds, such wounds seem to share
a number of characteristics regardless of cause. These include changes in cellular
responsiveness, elevated proteolytic environments, and microvascular abnormalities. Table 2
lists some of the disease-related abnormalities observed in individuals with diabetes or
venous insufficiency and/or animal models of these conditions, any or all of which may
contribute to delayed wound healing.

Elevated proteases
Following observations of elevated levels of various MMPs in chronic wound fluid, it was
hypothesized that these enzymes could be causing excessive degradation of ECM proteins
and chronic tissue turnover that prevented the wounds from healing. In their 1993 study,
Wysocki and colleagues showed that levels of MMP-2 and MMP-9 were increased by 5- to
10-fold in acute wounds, but were increased by another 5- to 10-fold in chronic wounds.91

Both activated enzymes and proenzyme species were present. Numerous subsequent studies
have documented the presence of elevated levels of various MMPs and decreased levels of
tissue inhibitors of metalloproteases (TIMPs) in chronic wounds, or an imbalance between
the levels of MMPs and TIMPs.92–95 Other studies have found a correlation between
elevated MMP levels and non-healing.95–98

In addition to degrading ECM, elevated levels of proteases would also be expected to
degrade growth factors. The evidence indicates that chronic but not acute wound fluid
rapidly degrades PDGF and TGF-β1 – effects that appear to be due to the activity of
neutrophil elastase.99

The process of DR would predict that excessive degradation of the ECM would deprive cells
of attachment sites and signals required for migration, differentiation, and proliferation.
These consequences would interfere with the cell’s response to the normal ECM interactions
(e.g., increased or decreased protein synthesis), which would, in turn, prevent changes in the
matrix composition needed for wound healing to progress. The degradation of growth
factors by excess MMPs would also deprive the cell of critical signals. Finally, high levels
of MMPs may be expected to cleave proteins with cryptic signaling sequences or shed
ectodomains to generate active forms of some membrane-bound precursor proteins such as
Hb-EGF. The flooding of these signaling components into the wound microenvironment,
theoretically followed by their rapid degradation, may further interfere with the carefully
orchestrated interactions of cells with their microenvironment that normally causes wound
healing to progress.
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Biofilm formation
A biofilm is defined as a structured community of bacterial cells enclosed in a self-produced
polymeric matrix that is adherent to an inert or living surface.100 As a result of their
structured community, biofilms are largely resistant to innate immune mechanisms and
antimicrobial agents.101 Furthermore, biofilms provide a continuous source of
inflammation101, 102—one of the hallmarks of chronic wounds. Few studies have evaluated
the extent of biofilm formation in chronic wounds. In one small study using molecular
sequence analyses, 30 of 50 (60%) of chronic venous ulcers contained biofilm (although
40% did not); in contrast, only 1 of 16 (6%) acute wounds contained biofilm.103

From the perspective of the process of DR, the formation of wound biofilm may be expected
to interfere with the effects of leukocytes and their subsequent interactions with the ECM
that would normally lead to differentiation and release of chemokines and growth factors.
For instance, because neutrophils cannot engulf and digest bacteria within the biofilm, they
release large quantities of proinflammatory cytokines that lead to chronic inflammation.101

Biofilm also inhibits the chemotaxis and degranulation of neutrophils104 and phagocytosis
by macrophages.105 Inhibition of these processes and massive release of inflammatory
mediators would be expected to interfere with the sequential series of events that
characterize normal wound healing, resulting in aberrant leukocyte-ECM interactions.

Over the past few years, increasing attention has focused on the hypothesis that chronic
wounds may fail to heal because they have developed biofilms,101, 102 a concept that is
supported by preclinical research.106 However, evidence for a causal relationship between
biofilm formation and delayed wound healing in humans is either inconclusive107 or
requires further analysis. For example, it will be important for wound care practitioners and
wound repair scientists to clarify whether biofilms actually cause non-healing, chronic
wounds or whether the chronic wound microenvironment renders all of these wounds or a
select fraction thereof to become highly susceptible or conducive for biofilm development.
Clearly, more work will be required before any causal relationships between bacterial
biofilms and chronic wound are established.

Integrin switching
Over the course of wound healing, cells are stimulated to change the integrins they express,
allowing them to bind to different ECM components or different parts of a single component
that variously foster migration, differentiation, polarity, survival, and other properties
(Figure 4).108 As in development and morphogenesis, this process is clearly illustrated
during wound healing, when successive interactions between matrix receptors and matrix
ligands exert a critical influence on cell shape and movement.109 In the resting epidermis,
basal keratinocytes are anchored to laminin332 in the underlying basal lamina through α6β4
integrin. Basal keratinocytes maintain lateral associations, in part, through α2β1 and α3β1
integrins, which interact with E-cadherin. After injury, the area beyond the intact epithelial
sheet has no basal lamina. It is initially covered by fibrin and plasma fibronectin, and
subsequently by collagen and cellular fibronectin, as the provisional matrix matures into
granulation tissue.

As basal cells at the wound margin assume a migratory phenotype, several key processes
occur. The β1 integrins shift from the lateral to the basal surface of the cell, where
interactions with collagen occur. There is an increase in β1 integrin and αv integrins that can
interact with fibronectin and other adhesive proteins.109 Furthermore, there is an induction
of the filopodial expression of αvβ6, which also participates in the activation of TGF-β.110,
111 Keratinocytes at the leading edge of the wound beyond the limits of the basal lamina
activate the expression of MMP-9 and MMP-10 (stromelysin 2), whereas the proximal
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proliferating population that supplies the leading edge expresses MMP-3 (stromelysin 1) and
a more distal, intact population expresses MMP-28/epilysin.112, 113 These findings indicate
that different MMPs are required for mobilization from the basal lamina versus
advancement across the granulation tissue.112, 113 Keratinocytes appear to require the ability
to cleave collagen with MMP-1/MMP-13 at their trailing membrane edge in order to migrate
across this substrate.114

As basal lamina components reappear under the advancing epithelial front, αvβ1 and αvβ6
expression disappears. Adherence to laminin resumes, and β1 integrins resume a lateral
location. Concurrently, underlying granulation tissue expresses MT1-MMP, an important
activator of other MMPs and TIMPs, which modulate MMP activity.54

During angiogenesis, endothelial mobilization similarly requires disengagement of
α6β4integrin from laminin in the endothelial basement membrane. The engagement of the
αvβ5 and α5β1 integrins by their insoluble arginine-glycine-aspartic acid (RGD) ligands is
required for the execution of the angiogenic signals from VEGF and FGF-2, respectively.

Integrin switching is also evident in fibroblasts. For instance, fibroblasts expressing α5β1 or
αvβ1 integrins both adhere to fibronectin, which leads to their rapid movement.64 However,
those expressing the former integrin migrate in a random and non-persistent fashion,
whereas those expressing the latter integrin migrate in a highly persistent fashion.64

Deficits in integrin switching would be expected to interfere dramatically with wound
healing,108 and may be a reason that chronic wounds fail to heal. Several studies have found
altered integrin expression in chronic wounds.115, 116 In the mouse, deletion of α1 or α2
integrins produces subtle effects on wound healing. This may reflect the redundancy of the
collagen-binding integrins. However, there are numerous factors that could lead to defects in
integrin switching in chronic wounds, and thus this hypothesis may be consistent with a
variety of other potential explanations.

Clearly, deficits in integrin switching would interfere with the DR that characterizes the
process of wound healing. Lack of appropriate spatial and temporal integrin presentation and
switching would interfere with cell-ECM interactions that guide cell migration and other
processes. Changes in the integrin repertoire can lead to changes in the ECM,19 which
would be expected to further influence the dynamic and reciprocal interactions in the
wound.

Alterations in specific proteins (other than proteases)—Alterations in many other
proteins have been noted in chronic wounds. These include decreased levels of intact
fibronectin, an increase in fibronectin degradation products,117 a loss of type II TGF-β
receptors on fibroblasts,118 reduced levels of PDGF,119 and dramatic down regulation of
keratins in epithelial cells.120 Chronic wounds also show upregulation of β6 integrins, with
overexpression in mice leading to spontaneous chronic wounds in approximately 20% of
animals.116 Venous or diabetic ulcers that heal slowly show decreased levels of intact
fibronectin (Figure 5),89 decreased levels of type II TGF-β receptors,118 increased levels of
inflammatory cytokines, and decreased levels of PDGF.119

In most of these cases, it is not known whether the alterations cause or are caused by
changes in the wound microenvironment. Also in most cases, the alterations in these
proteins may be compatible with one or more hypotheses as to why chronic wounds occur
and/or why they fail to heal. The alterations in individual proteins described in this section
may be a glimpse into disruptions that occur at one slice of time in the chronic wound – a
piece of the overall disrupted sequence of DR in wound healing. Because alterations in each
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of these proteins may be expected to have downstream effects, it is unclear whether
replacement of any single protein would be sufficient to remedy the slowed healing in
chronic wounds. That is, we may be unable to restore the normal pattern of DR with the
addition or deletion of any single component that is altered in cells or extracellular fluid of
chronic wounds. This hypothesis is supported by the variable effects of growth factors on
chronic wounds.

Clinical Manifestations
Given the above data suggesting that normal DR is disrupted in many chronic wounds,
various attempts have been made to re-set the “normal” processes. For example, some
efforts to remove all or part of the ulcer through debridement to restore normality have been
suggested,121 although the quality of the data that supports this approach has been
questioned.122 Recent work proposes that intrinsic factors create a geometry of the wound as
exemplified by biopsies taken from the edge of venous ulcers that heal back to their original
position.123 Cytokines, tissue, and cell therapies have been successful in improving healing
in various wound types,124–127 but, overall, results have been moderate.

What Are the Implications of Dynamic Reciprocity for Chronic Wound
Healing and Future Therapeutic Development?

Multiple biochemical and structural abnormalities have been documented in chronic
wounds.89–91, 117 DR may help us understand how these abnormalities fit together and how
disruptions in one part of the wound healing process may lead to disruptions in subsequent
interactions that ultimately prevent chronic wounds from healing. That is, understanding
how the sequential changes in the ECM lead to specific changes in cells that then lead to
alterations in the ECM and so forth, forces us to think about how defects in the early stages
of wound healing may have downstream effects that eventually preclude wound closure.

Viewed this way, many of the biochemical alterations noted in chronic wounds may be
responses to lack of adhesion to (or detachment from) an ECM of specific structure and
composition at the right time in the wound healing sequence. Of course, this may be due to
the inability of cells to generate the ECM or ECM attachment sites (integrins or other
receptors) appropriate to the particular point in the healing process. Even the over-
production of MMPs in chronic wounds could be viewed as a reaction to inadequate
attachment of cells to the specific variant of the ECM needed at that point, which would
naturally maintain appropriate levels of enzymes. Alternately, the excess MMPs could be an
attempt by cells to degrade ECM that is not matched to the expressed cellular adhesion sites.
Ultimately, a better understanding of the dynamic, reciprocal processes that take place
during wound healing has the potential to influence the development of improved
diagnostics, as well as therapeutics.

In this article, we have used the phrase “dynamic reciprocity” as a point of departure to
explain the pathophysiology of chronic wounds. However, it is important to recognize that
DR does not, in itself, explain the pathophysiology of the complex phenomena and factors
that result in delayed healing. Instead, we view this concept as a working construct that
provides a framework within which to interpret data. It brings together discrete observations
from different fields and will hopefully stimulate ideas as to why chronic wounds don’t heal.

An example of the data that may be integrated under the rubric of DR is the interface
between biochemical and biomechanical cell-ECM interactions. In addition to the widely
appreciated biochemical interactions between cells and ECM, biomechanical interactions are
increasingly recognized as key determinants of cell shape, polarity, and tissue architecture,
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ultimately influencing cell differentiation, proliferation, motility, and survival.75 An
understanding of the combined influence of biomechanical and biochemical factors may be
a cornerstone to the development of future tissue replacement products.
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Figure 1.
DR between cells and ECM. Cells synthesize ECM components, and also degrade and
remodel ECM, the latter events occurring through the production and regulation of matrix
metalloproteases (MMPs) and other enzymes. The ECM regulates cellular tension and
polarity, differentiation, migration, proliferation, and survival. The ECM consists of
collagen, elastin, multidomain glycoproteins (eg, fibronectin), and proteoglycans and
glycosaminoglycans; the exact composition of the ECM varies by tissue and by state of the
tissue (eg, intact adult tissue, healing wound, cancer, etc.)
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Figure 2.
Dynamic and reciprocal signaling through the integrin- and growth factor receptor-rich
plasma membrane. In this stylized representation, integrins (membrane-spanning proteins
shown in green) bind to extracellular matrix components such as fibronectin (red “v”s) and
collagen (yellow striped rods). The cytoplasmic tails of the integrin receptor directly
interacts with the cytoskeleton via talin (yellow), vinculin (purple), and filamentous actin,
blue). Through these dynamic protein-protein interactions, mechano-chemical signaling
cascades are initiated and propagated, which modulate cell adhesion, shape, polarity, cell
proliferation and migration. These reciprocally-regulated interactions can influence gene
expression via effector and adaptor pathways. Molecular components, here, include
members of the focal adhesion complex, including paxillin (shown in red), Crk, Cas, and the
focal adhesion kinase, FAK. FAK and src can signal ‘downstream’ via linked effector
pathways (e.g. shown as green, blue, and purple shapes). Integrins can also laterally interact
with growth factor receptors (membrane-spanning protein shown in pink) via the MEK1
pathway (shown as purple stacked cylinders).
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Figure 3.
Key cellular examples of DR at each wound healing stage. The left-most column
summarizes a general mechanism that invokes DR, beginning with the binding of cell types
to ECM components. This binding (adhesion) or reduced/altered adhesion then leads to
changes in the cells, which in turn leads to changes in the ECM. Examples of DR are
provided at each wound healing stage, using one or two cell types for the purposes of
illustration.
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Figure 4.
Integrin switching helps mediate keratinocyte migration across wounded skin. In this
graphic representation, keratinocytes are depicted as ovals containing the major integrin
subunits they express, and the extracellular matrix is depicted as elongated brown cylinders.
Intact keratinocytes bound to basement membrane are shown on the left and migrating
keratinocytes at the wound edge are shown on the right. MMPs enable migration by
breaking down the underlying basal lamina at the leading edge of the keratinocyte sheet,
where the cells assume a flattened shape and express an array of integrins that permits
migration across the newly-formed granulation tissue. The leading epithelial cells rearrange
their distribution of β1 integrins to engage with type I collagen below the damaged/absent
basement membrane.
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Figure 5.
Degradation of fibronectin in base of chronic venous ulcer (top photo) reverses with
initiation of healing (bottom photo). Reprinted from Am J Pathol 1992, 141:1085–109589

with permission from the American Society for Investigative Pathology.
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Table 2

Selected Disease-Related Abnormalities That May Contribute to Delayed Healing of Diabetic and Venous
Ulcers

Disease Documented Abnormalities

Diabetes Microvascular impairments and defects in endothelium 133

Pericyte degeneration and thickening of basement membrane in skeletal muscle capillaries and glomeruli due to
an increased level of ECM proteins 133–135

Decreased vasodilatory response 136 and abnormal autoregulation 133 of microvascular endothelium

Correlation between tissue oxygenation and ulcer healing 137

Altered blood flow and sensory deficits due to neuropathy 25

Deficits in the bactericidal action of granulocytes 138

Glycation of fibronectin that reduces collagen binding 139

Glycation of collagen and fibronectin that interferes with epithelial cell adherence 140

Glycation of albumin that leads to overproduction of certain growth factors 141

Effects in experimental animals: altered leukocyte infiltration and IL-6 levels in wound fluid during the late
inflammatory phase,142 differential regulation of 27 ECM genes compared with normal rats 143

Venous Insufficiency Microangiopathy, consisting of decreased capillaries, changes in capillary morphology, reduced oxygen content
of skin, increased permeability of capillaries to low-molecular-weight substances, elevated subcutaneous flow,
and diminished vascular reserve 144

Focally extravasated red blood cells and deposits of hemosiderin 89

Prominence of fibrin cuffs: organized structures around blood vessels containing fibrin, laminin, fibronectin,
collagen, and tenascin C, as well as trapped monocytes, macrophages, and polymorphonuclear leukocytes89

Prolonged (>12 month) presence of fibronectin, chondroitin sulfate, and tenascin 145 and impaired angiogenesis
in wound fluid 146

Build up of fibrin slough in wound beds impairs keratinocyte attachment and migration due to lack of αvβ3

integrin receptors on keratinocytes that bind fibrin57

Significant alterations in inflammatory cells, including more macrophages, B cells, and plasma cells than in
chronic wounds 145

ECM=extracellular matrix, IL=interleukin
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