Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 8;67(Pt 2):o249. doi: 10.1107/S160053681005364X

N-Phenyl­succinamic acid

B Thimme Gowda a,*, Sabine Foro b, B S Saraswathi a, Hartmut Fuess b
PMCID: PMC3051503  PMID: 21522943

Abstract

In the crystal structure of the title compound, C10H11NO3, the conformations of N—H and C=O bonds in the amide segment are anti to each other. Further, the conformations of the amide O atom and the carbonyl O atom of the acid segment are anti to each other and to the adjacent –CH2 groups. The C=O and O—H bonds of the acid group are in syn positions with respect to each other. In the crystal, the mol­ecules are packed into infinite chains along the a axis through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For our studies of the effect of substituents on the structures of anilides, see: Gowda et al. (2009, 2010a,b ). For modes of inter­linking carb­oxy­lic acids by hydrogen bonds, see: Leiserowitz (1976). For the packing of mol­ecules involving dimeric hydrogen-bonded association of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994).graphic file with name e-67-0o249-scheme1.jpg

Experimental

Crystal data

  • C10H11NO3

  • M r = 193.20

  • Monoclinic, Inline graphic

  • a = 4.986 (1) Å

  • b = 25.108 (4) Å

  • c = 7.895 (2) Å

  • β = 103.18 (2)°

  • V = 962.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.44 × 0.14 × 0.14 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.958, T max = 0.986

  • 3269 measured reflections

  • 1791 independent reflections

  • 1033 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.135

  • S = 0.99

  • 1791 reflections

  • 133 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681005364X/bq2265sup1.cif

e-67-0o249-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681005364X/bq2265Isup2.hkl

e-67-0o249-Isup2.hkl (88.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (2) 2.22 (2) 3.041 (3) 161 (2)
O3—H3O⋯O2ii 0.88 (2) 1.80 (2) 2.671 (2) 177 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

As a part of studying the effect of ring and side chain substitutions on the crystal structures of anilides (Gowda et al., 2009; 2010a,b), the crystal structure of N-(phenyl)succinamic acid (I) has been determined. The conformations of N—H and C=O bonds in the amide segment are anti to each other. The conformation of the amide oxygen and the carbonyl oxygen of the acid segment are also anti to each other, similar to that observed in N-(2-chlorophenyl)succinamic acid (II) (Gowda et al., 2009) and N-(2-methylphenyl)succinamic acid (III)(Gowda et al., 2010b), but contrary to the syn conformation observed in N-(3-methylphenyl)succinamic acid (IV) and N-(3-chlorophenyl)succinamic acid (V) (Gowda et al., 2010a). Further, the conformation of both the C=O bonds are anti to the H atoms of their adjacent –CH2 groups (Fig. 1) and the C=O and O—H bonds of the acid group are in syn position to each other, similar to that observed in (II), (III), (IV) and (V).

The N—H···O and O—H···O intermolecular hydrogen bonds pack the molecules into infinite chains in the structure (Table 1, Fig.2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Experimental

The solution of succinic anhydride (0.01 mole) in toluene (25 ml) was treated dropwise with the solution of aniline (0.01 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one h and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted aniline. The resultant solid N-(phenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra.

Prism like colorless single crystals used in x-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms of the NH and OH group were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å and O—H = 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C10H11NO3 F(000) = 408
Mr = 193.20 Dx = 1.333 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 702 reflections
a = 4.986 (1) Å θ = 3.1–27.7°
b = 25.108 (4) Å µ = 0.10 mm1
c = 7.895 (2) Å T = 293 K
β = 103.18 (2)° Prism, colorless
V = 962.3 (3) Å3 0.44 × 0.14 × 0.14 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 1791 independent reflections
Radiation source: fine-focus sealed tube 1033 reflections with I > 2σ(I)
graphite Rint = 0.022
Rotation method data acquisition using ω scans θmax = 25.7°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −5→6
Tmin = 0.958, Tmax = 0.986 k = −30→22
3269 measured reflections l = −7→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0703P)2] where P = (Fo2 + 2Fc2)/3
1791 reflections (Δ/σ)max < 0.001
133 parameters Δρmax = 0.15 e Å3
2 restraints Δρmin = −0.13 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3834 (4) 0.31826 (10) 0.9635 (3) 0.0421 (6)
C2 0.1411 (5) 0.33972 (11) 0.8656 (3) 0.0543 (7)
H2 0.0058 0.3177 0.8010 0.065*
C3 0.1030 (6) 0.39415 (12) 0.8651 (4) 0.0649 (8)
H3 −0.0589 0.4086 0.7989 0.078*
C4 0.2995 (6) 0.42738 (12) 0.9604 (4) 0.0702 (9)
H4 0.2712 0.4640 0.9589 0.084*
C5 0.5378 (6) 0.40589 (12) 1.0577 (4) 0.0697 (9)
H5 0.6720 0.4280 1.1229 0.084*
C6 0.5793 (5) 0.35204 (11) 1.0595 (3) 0.0562 (7)
H6 0.7418 0.3379 1.1263 0.067*
C7 0.2674 (5) 0.22230 (10) 0.9613 (3) 0.0448 (6)
C8 0.4033 (4) 0.16836 (10) 0.9852 (3) 0.0484 (7)
H8A 0.5575 0.1683 0.9293 0.058*
H8B 0.4757 0.1622 1.1085 0.058*
C9 0.2123 (4) 0.12352 (9) 0.9121 (3) 0.0504 (7)
H9A 0.0499 0.1255 0.9601 0.060*
H9B 0.1531 0.1280 0.7871 0.060*
C10 0.3391 (5) 0.06985 (10) 0.9496 (3) 0.0491 (7)
N1 0.4434 (4) 0.26322 (8) 0.9654 (3) 0.0483 (6)
H1N 0.616 (3) 0.2572 (10) 0.983 (3) 0.058*
O1 0.0199 (3) 0.22839 (7) 0.9463 (3) 0.0677 (6)
O2 0.5739 (3) 0.06282 (7) 1.0309 (3) 0.0701 (6)
O3 0.1737 (4) 0.03061 (7) 0.8868 (3) 0.0728 (7)
H3O 0.262 (5) 0.0004 (8) 0.913 (4) 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0303 (11) 0.0465 (16) 0.0499 (15) 0.0021 (11) 0.0102 (10) 0.0057 (12)
C2 0.0405 (14) 0.0548 (18) 0.0616 (17) 0.0040 (12) −0.0005 (12) 0.0061 (14)
C3 0.0508 (16) 0.063 (2) 0.077 (2) 0.0145 (15) 0.0075 (14) 0.0158 (17)
C4 0.070 (2) 0.0465 (18) 0.097 (2) 0.0067 (16) 0.0269 (17) 0.0088 (17)
C5 0.0595 (19) 0.052 (2) 0.094 (2) −0.0094 (15) 0.0099 (16) −0.0023 (17)
C6 0.0377 (13) 0.0542 (18) 0.072 (2) −0.0007 (13) 0.0018 (12) 0.0006 (14)
C7 0.0301 (13) 0.0461 (16) 0.0578 (16) 0.0006 (11) 0.0089 (10) −0.0025 (12)
C8 0.0288 (12) 0.0505 (16) 0.0640 (17) 0.0025 (11) 0.0064 (11) −0.0015 (13)
C9 0.0330 (12) 0.0470 (16) 0.0667 (17) 0.0044 (11) 0.0020 (11) 0.0003 (13)
C10 0.0344 (14) 0.0473 (16) 0.0619 (17) −0.0001 (12) 0.0037 (12) 0.0007 (13)
N1 0.0241 (10) 0.0463 (14) 0.0721 (15) 0.0022 (10) 0.0057 (10) 0.0010 (11)
O1 0.0252 (9) 0.0548 (12) 0.1239 (17) 0.0050 (8) 0.0184 (9) 0.0050 (11)
O2 0.0411 (10) 0.0472 (11) 0.1055 (16) 0.0068 (8) −0.0175 (10) −0.0023 (10)
O3 0.0426 (10) 0.0436 (11) 0.1161 (17) −0.0035 (9) −0.0156 (10) 0.0047 (11)

Geometric parameters (Å, °)

C1—C6 1.382 (3) C7—N1 1.347 (3)
C1—C2 1.386 (3) C7—C8 1.507 (3)
C1—N1 1.413 (3) C8—C9 1.503 (3)
C2—C3 1.380 (4) C8—H8A 0.9700
C2—H2 0.9300 C8—H8B 0.9700
C3—C4 1.373 (4) C9—C10 1.489 (3)
C3—H3 0.9300 C9—H9A 0.9700
C4—C5 1.370 (4) C9—H9B 0.9700
C4—H4 0.9300 C10—O2 1.213 (3)
C5—C6 1.367 (4) C10—O3 1.308 (3)
C5—H5 0.9300 N1—H1N 0.852 (16)
C6—H6 0.9300 O3—H3O 0.877 (17)
C7—O1 1.222 (3)
C6—C1—C2 119.0 (2) N1—C7—C8 114.25 (19)
C6—C1—N1 118.2 (2) C9—C8—C7 113.43 (18)
C2—C1—N1 122.8 (2) C9—C8—H8A 108.9
C3—C2—C1 119.2 (2) C7—C8—H8A 108.9
C3—C2—H2 120.4 C9—C8—H8B 108.9
C1—C2—H2 120.4 C7—C8—H8B 108.9
C4—C3—C2 121.3 (3) H8A—C8—H8B 107.7
C4—C3—H3 119.3 C10—C9—C8 113.48 (19)
C2—C3—H3 119.3 C10—C9—H9A 108.9
C5—C4—C3 119.1 (3) C8—C9—H9A 108.9
C5—C4—H4 120.4 C10—C9—H9B 108.9
C3—C4—H4 120.4 C8—C9—H9B 108.9
C6—C5—C4 120.4 (3) H9A—C9—H9B 107.7
C6—C5—H5 119.8 O2—C10—O3 122.7 (2)
C4—C5—H5 119.8 O2—C10—C9 123.5 (2)
C5—C6—C1 121.0 (2) O3—C10—C9 113.83 (19)
C5—C6—H6 119.5 C7—N1—C1 127.64 (19)
C1—C6—H6 119.5 C7—N1—H1N 119.7 (18)
O1—C7—N1 123.0 (2) C1—N1—H1N 112.3 (18)
O1—C7—C8 122.7 (2) C10—O3—H3O 108.8 (19)
C6—C1—C2—C3 0.7 (4) N1—C7—C8—C9 −157.0 (2)
N1—C1—C2—C3 −177.3 (2) C7—C8—C9—C10 −174.8 (2)
C1—C2—C3—C4 −0.4 (5) C8—C9—C10—O2 −0.1 (4)
C2—C3—C4—C5 0.0 (5) C8—C9—C10—O3 179.8 (2)
C3—C4—C5—C6 0.1 (5) O1—C7—N1—C1 3.7 (4)
C4—C5—C6—C1 0.1 (4) C8—C7—N1—C1 −173.5 (2)
C2—C1—C6—C5 −0.5 (4) C6—C1—N1—C7 144.5 (3)
N1—C1—C6—C5 177.5 (2) C2—C1—N1—C7 −37.5 (4)
O1—C7—C8—C9 25.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.85 (2) 2.22 (2) 3.041 (3) 161 (2)
O3—H3O···O2ii 0.88 (2) 1.80 (2) 2.671 (2) 177 (3)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2265).

References

  1. Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2010a). Acta Cryst. E66, o842. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2010b). Acta Cryst. E66, o908. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o399. [DOI] [PMC free article] [PubMed]
  4. Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.
  5. Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681005364X/bq2265sup1.cif

e-67-0o249-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681005364X/bq2265Isup2.hkl

e-67-0o249-Isup2.hkl (88.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES