Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):m189. doi: 10.1107/S1600536811001139

Bis(2-amino-4-methyl­pyridinium) bis­(pyridine-2,6-dicarboxyl­ato)cuprate(II)

Hossein Aghabozorg a,*, Azadeh Mofidi Rouchi a, Behrouz Notash b, Masoud Mirzaei c
PMCID: PMC3051671  PMID: 21522859

Abstract

The asymmetric unit of the title compound, (C6H9N2)2[Cu(C7H3NO4)2], contains half of a [Cu(pydc)2]2− (pydcH2 is pyridine-2,6-dicarb­oxy­lic acid) anion and one protonated 2-amino-4-methyl­pyridine (2a4mpH)+ counter-ion. The anion is a six-coordinated complex with a distorted CuN2O4 octa­hedral geometry around the CuII ion. N—H⋯O and C—H⋯O hydrogen bonds along with π–π contacts between the pyridine rings of the (2a4mpH)+ cations [centroid–centroid distance = 3.573 (2) Å] stabilize the crystal structure.

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures see: Aghabozorg et al. (2011); Eshtiagh-Hosseini, Aghabozorg et al. (2010); Eshtiagh-Hosseini, Gschwind et al. (2010); Sharif et al. (2010).graphic file with name e-67-0m189-scheme1.jpg

Experimental

Crystal data

  • (C6H9N2)2[Cu(C7H3NO4)2]

  • M r = 612.06

  • Monoclinic, Inline graphic

  • a = 24.034 (5) Å

  • b = 14.231 (3) Å

  • c = 7.9780 (16) Å

  • β = 107.01 (3)°

  • V = 2609.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.9 mm−1

  • T = 298 K

  • 0.45 × 0.15 × 0.10 mm

Data collection

  • Stoe IPDS II diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-RED32; Stoe & Cie, 2005)] T min = 0.743, T max = 0.846

  • 8829 measured reflections

  • 3509 independent reflections

  • 2785 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.119

  • S = 1.15

  • 3509 reflections

  • 201 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001139/bt5449sup1.cif

e-67-0m189-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001139/bt5449Isup2.hkl

e-67-0m189-Isup2.hkl (172.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.92 (4) 1.77 (4) 2.662 (4) 163 (4)
N4—H4A⋯O1i 0.85 (5) 2.22 (5) 3.056 (4) 170 (4)
N4—H4B⋯O3 0.89 (5) 1.97 (5) 2.854 (4) 176 (4)
C7—H7⋯O1ii 0.93 2.58 3.250 (4) 130
C14—H14⋯O4iii 0.93 2.42 3.160 (4) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

supplementary crystallographic information

Comment

Polycarboxylate ligands are widely applied to assemble supramolecular network decorated by coordination bonds, van der Waals interactions, and π –π stacking. Due to the manifold N– and O-donors of pyridine or pyrazine-(di)carboxylic ligands, metal pyridine- or pyrazine dicarboxylates can contrast versatile structural motifs, which finally aggregate to generate various supramolecular architectures with interesting properties. As ones of the dicarboxylate ligands, pydcH2 have drawn extensive attentions. Continuing with our previous works on synthesizing coordination and proton transfer compounds (Aghabozorg et al. 2008, 2011), (Eshtiagh-Hosseini, Aghabozorg et al., 2010, Eshtiagh-Hosseini, Gschwind et al., 2010), (Sharif et al., 2010), herein, we planned the reaction between pydcH2, 2a4mp, and copperII nitrate trihydrate which resulted in the formation of (2a4mpH)+2.[Cu(pydc)2] crystals (Fig. 1). Crystal packing diagram related to the title compound is also rendered in the Fig. 2. In the anionic fragment, the CuII atom is six-coordinated by two nitrogen and four oxygen atoms from the carboxylate groups of two (pydc)2- ligands, with bond length ranges of 1.911 (3)–2.029 (2) Å. The N1—Cu1—N2 [180.000 (1)°], O1—Cu1—O1 [146.67 (5)°] and O3—Cu1—O3 [160.23 (5)°] angles. The coordination environment around CuII is distorted octahedral. In the crystal structure of the title compound, there are intermolecular C—H···O and N—H···O hydrogen bonds (Table 1) and also π-π contacts between pyridine rings of (2a4mpH)+ with centroid-centroid distance Cg1···Cg1i equel to 3.573 (2) Å [symmetry code: (i) 2 - x, 2 - y,1 - z, where Cg1 is the centroid of ring N3/C9—C11/C13—C14]. (Fig. 2) stabilize the structure.

Experimental

A solution of pyridine-2,6-dicarboxylic acid (pydcH2) (167 mg, 1 mmol) in 10 ml me thanol was added to a solution of 2-amino-4-methylpyridine (2a4mp) (216 mg, 0.6 mmol) in 10 ml me thanol and stirred for 4 hrs. Then a solution of Cu(NO3)2.3H2O (240 mg, 1 mmol) in 3 ml me thanol was added to the solution of pydcH2 and 2a4mp. To the resulted precipitate was added 1 ml of DMSO and stirred for several minutes under heating. By slove evaporation of this solution in room temprature, green crystals of the title compound were obtained after three week which were suitable for X-ray analysis (m.p 265–267 °C).

Refinement

The hydrogen atoms of the N—H and NH2 groups were found in a difference Fourier map and refined isotropically without restraint. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H groups and C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (2a4mpH)+2.[Cu(pydc)2] with displacement ellipsoids drawn at 30% probability level (symmetry code: i: -x, y, 3/2 - z).

Fig. 2.

Fig. 2.

The packing diagram of (2a4mpH)+2.[Cu(pydc)2]. The intermolecular N—H···O and C—H···O hydrogen bonds and π-π contacts are shown as blue and orange dashed lines, respectively.

Crystal data

(C6H9N2)2[Cu(C7H3NO4)2] F(000) = 1260
Mr = 612.06 Dx = 1.558 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3509 reflections
a = 24.034 (5) Å θ = 2.9–29.2°
b = 14.231 (3) Å µ = 0.9 mm1
c = 7.9780 (16) Å T = 298 K
β = 107.01 (3)° Needle, blue
V = 2609.3 (10) Å3 0.45 × 0.15 × 0.1 mm
Z = 4

Data collection

Stoe IPDS II diffractometer 3509 independent reflections
Radiation source: fine-focus sealed tube 2785 reflections with I > 2σ(I)
graphite Rint = 0.061
Detector resolution: 0.15 mm pixels mm-1 θmax = 29.2°, θmin = 2.9°
rotation method scans h = −30→32
Absorption correction: numerical [shape of crystal determined optically (X-RED32, Stoe & Cie, 2005)] k = −19→16
Tmin = 0.743, Tmax = 0.846 l = −10→10
8829 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0336P)2 + 5.0605P] where P = (Fo2 + 2Fc2)/3
3509 reflections (Δ/σ)max < 0.001
201 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.04362 (14) 0.1040 (2) 0.8614 (4) 0.0350 (6)
O2 0.13708 (12) 0.1246 (2) 1.0589 (3) 0.0592 (7)
O1 0.07172 (11) 0.23932 (17) 1.0341 (3) 0.0475 (6)
C7 0.04400 (13) 0.5659 (2) 0.7068 (4) 0.0338 (6)
H7 0.0734 0.5980 0.6770 0.041*
C8 0.0000 0.6143 (3) 0.7500 0.0359 (9)
H8 0.0000 0.6796 0.7500 0.043*
Cu1 0.0000 0.29007 (3) 0.7500 0.02835 (14)
N2 0.0000 0.4244 (2) 0.7500 0.0266 (6)
N4 0.11686 (12) 0.2123 (2) 0.4309 (4) 0.0461 (7)
O3 0.07121 (9) 0.31454 (14) 0.6690 (3) 0.0370 (5)
N3 0.19892 (12) 0.14346 (19) 0.3935 (4) 0.0388 (6)
N1 0.0000 0.1521 (2) 0.7500 0.0318 (7)
C9 0.17056 (13) 0.1785 (2) 0.5020 (4) 0.0345 (6)
C11 0.25320 (16) 0.1393 (2) 0.7462 (4) 0.0444 (7)
C10 0.19805 (15) 0.1743 (2) 0.6831 (4) 0.0420 (7)
H10 0.1786 0.1957 0.7608 0.050*
O4 0.12832 (10) 0.43226 (18) 0.6314 (3) 0.0493 (6)
C6 0.04298 (11) 0.46879 (19) 0.7094 (3) 0.0272 (5)
C5 0.08574 (12) 0.4019 (2) 0.6666 (4) 0.0320 (6)
C13 0.28131 (16) 0.1052 (3) 0.6265 (5) 0.0516 (9)
H13 0.3188 0.0808 0.6665 0.062*
C14 0.25339 (15) 0.1082 (3) 0.4529 (5) 0.0485 (8)
H14 0.2719 0.0859 0.3734 0.058*
C12 0.2851 (2) 0.1384 (3) 0.9394 (5) 0.0679 (12)
H12A 0.3097 0.1927 0.9684 0.102*
H12B 0.3084 0.0826 0.9675 0.102*
H12C 0.2574 0.1393 1.0052 0.102*
C1 0.08860 (15) 0.1616 (2) 0.9957 (4) 0.0395 (7)
C3 0.04539 (18) 0.0064 (2) 0.8605 (5) 0.0485 (8)
H3 0.0770 −0.0255 0.9339 0.058*
C4 0.0000 −0.0425 (3) 0.7500 0.0591 (15)
H4 0.0000 −0.1079 0.7500 0.071*
H3A 0.1810 (18) 0.148 (3) 0.275 (5) 0.057 (11)*
H4B 0.1012 (19) 0.245 (3) 0.501 (6) 0.062 (12)*
H4A 0.108 (2) 0.225 (3) 0.322 (7) 0.074 (15)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0432 (17) 0.0305 (14) 0.0316 (14) 0.0044 (12) 0.0116 (13) −0.0005 (11)
O2 0.0498 (15) 0.0694 (18) 0.0477 (14) 0.0226 (13) −0.0024 (12) −0.0063 (12)
O1 0.0519 (14) 0.0415 (13) 0.0427 (12) 0.0065 (11) 0.0036 (11) −0.0087 (10)
C7 0.0291 (14) 0.0305 (14) 0.0372 (14) −0.0073 (11) 0.0026 (12) 0.0014 (11)
C8 0.033 (2) 0.0240 (18) 0.042 (2) 0.000 −0.0011 (18) 0.000
Cu1 0.0325 (3) 0.0218 (2) 0.0336 (2) 0.000 0.01408 (19) 0.000
N2 0.0261 (16) 0.0261 (15) 0.0273 (15) 0.000 0.0072 (13) 0.000
N4 0.0400 (14) 0.0526 (17) 0.0444 (15) 0.0111 (14) 0.0100 (12) −0.0122 (15)
O3 0.0376 (11) 0.0338 (11) 0.0444 (11) 0.0037 (9) 0.0193 (10) −0.0036 (9)
N3 0.0367 (14) 0.0414 (14) 0.0378 (13) 0.0074 (11) 0.0102 (11) −0.0009 (11)
N1 0.042 (2) 0.0233 (15) 0.0304 (16) 0.000 0.0112 (15) 0.000
C9 0.0320 (14) 0.0303 (13) 0.0410 (15) −0.0003 (11) 0.0104 (12) −0.0066 (11)
C11 0.0478 (18) 0.0351 (16) 0.0440 (17) −0.0024 (14) 0.0033 (14) −0.0012 (14)
C10 0.0445 (18) 0.0415 (16) 0.0399 (16) 0.0009 (14) 0.0120 (14) −0.0061 (13)
O4 0.0357 (12) 0.0546 (14) 0.0658 (15) −0.0093 (11) 0.0279 (12) −0.0084 (12)
C6 0.0249 (13) 0.0304 (13) 0.0254 (11) −0.0025 (10) 0.0059 (10) −0.0004 (10)
C5 0.0304 (14) 0.0357 (14) 0.0305 (13) −0.0020 (11) 0.0098 (11) −0.0030 (11)
C13 0.0375 (18) 0.049 (2) 0.062 (2) 0.0101 (15) 0.0032 (16) −0.0013 (16)
C14 0.0394 (18) 0.051 (2) 0.058 (2) 0.0144 (15) 0.0181 (16) −0.0010 (16)
C12 0.080 (3) 0.058 (2) 0.049 (2) 0.000 (2) −0.008 (2) 0.0008 (18)
C1 0.0470 (18) 0.0404 (17) 0.0294 (14) 0.0049 (14) 0.0086 (13) −0.0005 (12)
C3 0.065 (2) 0.0306 (15) 0.0484 (18) 0.0147 (15) 0.0148 (17) 0.0050 (13)
C4 0.088 (4) 0.022 (2) 0.067 (3) 0.000 0.022 (3) 0.000

Geometric parameters (Å, °)

C2—N1 1.346 (3) N3—C14 1.351 (4)
C2—C3 1.390 (4) N3—H3A 0.92 (4)
C2—C1 1.520 (4) N1—C2i 1.346 (3)
O2—C1 1.243 (4) C9—C10 1.403 (4)
O1—C1 1.246 (4) C11—C10 1.367 (5)
C7—C6 1.382 (4) C11—C13 1.407 (5)
C7—C8 1.387 (4) C11—C12 1.507 (5)
C7—H7 0.9300 C10—H10 0.9300
C8—C7i 1.387 (4) O4—C5 1.217 (3)
C8—H8 0.9300 C6—C5 1.511 (4)
Cu1—N2 1.911 (3) C13—C14 1.352 (5)
Cu1—N1 1.964 (3) C13—H13 0.9300
Cu1—O3 2.029 (2) C14—H14 0.9300
Cu1—O3i 2.029 (2) C12—H12A 0.9600
N2—C6 1.330 (3) C12—H12B 0.9600
N2—C6i 1.330 (3) C12—H12C 0.9600
N4—C9 1.338 (4) C3—C4 1.374 (5)
N4—H4B 0.89 (5) C3—H3 0.9300
N4—H4A 0.85 (5) C4—C3i 1.374 (5)
O3—C5 1.292 (4) C4—H4 0.9300
N3—C9 1.344 (4)
N1—C2—C3 121.6 (3) C10—C11—C12 121.8 (3)
N1—C2—C1 116.5 (3) C13—C11—C12 119.3 (3)
C3—C2—C1 121.8 (3) C11—C10—C9 120.5 (3)
C6—C7—C8 118.3 (3) C11—C10—H10 119.7
C6—C7—H7 120.8 C9—C10—H10 119.7
C8—C7—H7 120.8 N2—C6—C7 119.8 (3)
C7i—C8—C7 120.5 (4) N2—C6—C5 112.5 (2)
C7i—C8—H8 119.8 C7—C6—C5 127.6 (3)
C7—C8—H8 119.8 O4—C5—O3 126.4 (3)
N2—Cu1—N1 180.000 (1) O4—C5—C6 120.1 (3)
N2—Cu1—O3 80.12 (6) O3—C5—C6 113.5 (2)
N1—Cu1—O3 99.88 (6) C14—C13—C11 119.4 (3)
N2—Cu1—O3i 80.12 (6) C14—C13—H13 120.3
N1—Cu1—O3i 99.88 (6) C11—C13—H13 120.3
O3—Cu1—O3i 160.24 (12) N3—C14—C13 120.7 (3)
C6—N2—C6i 123.2 (3) N3—C14—H14 119.6
C6—N2—Cu1 118.39 (17) C13—C14—H14 119.6
C6i—N2—Cu1 118.39 (17) C11—C12—H12A 109.5
C9—N4—H4B 117 (3) C11—C12—H12B 109.5
C9—N4—H4A 116 (3) H12A—C12—H12B 109.5
H4B—N4—H4A 120 (4) C11—C12—H12C 109.5
C5—O3—Cu1 115.23 (17) H12A—C12—H12C 109.5
C9—N3—C14 122.2 (3) H12B—C12—H12C 109.5
C9—N3—H3A 118 (3) O2—C1—O1 127.6 (3)
C14—N3—H3A 120 (3) O2—C1—C2 116.4 (3)
C2i—N1—C2 118.9 (4) O1—C1—C2 115.9 (3)
C2i—N1—Cu1 120.56 (18) C4—C3—C2 119.3 (3)
C2—N1—Cu1 120.56 (18) C4—C3—H3 120.3
N4—C9—N3 118.0 (3) C2—C3—H3 120.3
N4—C9—C10 123.8 (3) C3i—C4—C3 119.2 (4)
N3—C9—C10 118.2 (3) C3i—C4—H4 120.4
C10—C11—C13 118.8 (3) C3—C4—H4 120.4
C6—C7—C8—C7i −0.48 (18) Cu1—N2—C6—C7 179.50 (19)
O3—Cu1—N2—C6 −2.65 (14) C6i—N2—C6—C5 −179.4 (2)
O3i—Cu1—N2—C6 177.35 (14) Cu1—N2—C6—C5 0.6 (2)
O3—Cu1—N2—C6i 177.35 (14) C8—C7—C6—N2 1.0 (4)
O3i—Cu1—N2—C6i −2.65 (14) C8—C7—C6—C5 179.7 (2)
N2—Cu1—O3—C5 4.56 (19) Cu1—O3—C5—O4 176.0 (3)
N1—Cu1—O3—C5 −175.44 (19) Cu1—O3—C5—C6 −5.4 (3)
O3i—Cu1—O3—C5 4.56 (19) N2—C6—C5—O4 −178.1 (2)
C3—C2—N1—C2i 1.8 (2) C7—C6—C5—O4 3.2 (5)
C1—C2—N1—C2i −174.4 (3) N2—C6—C5—O3 3.2 (3)
C3—C2—N1—Cu1 −178.2 (2) C7—C6—C5—O3 −175.5 (3)
C1—C2—N1—Cu1 5.6 (3) C10—C11—C13—C14 0.3 (5)
O3—Cu1—N1—C2i −114.82 (16) C12—C11—C13—C14 −178.2 (4)
O3i—Cu1—N1—C2i 65.18 (16) C9—N3—C14—C13 1.3 (5)
O3—Cu1—N1—C2 65.18 (16) C11—C13—C14—N3 −0.1 (6)
O3i—Cu1—N1—C2 −114.82 (16) N1—C2—C1—O2 −157.6 (3)
C14—N3—C9—N4 179.6 (3) C3—C2—C1—O2 26.2 (5)
C14—N3—C9—C10 −2.6 (5) N1—C2—C1—O1 24.9 (4)
C13—C11—C10—C9 −1.6 (5) C3—C2—C1—O1 −151.3 (3)
C12—C11—C10—C9 176.8 (3) N1—C2—C3—C4 −3.6 (5)
N4—C9—C10—C11 −179.6 (3) C1—C2—C3—C4 172.4 (3)
N3—C9—C10—C11 2.7 (5) C2—C3—C4—C3i 1.7 (2)
C6i—N2—C6—C7 −0.50 (19)

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O2ii 0.92 (4) 1.77 (4) 2.662 (4) 163 (4)
N4—H4A···O1ii 0.85 (5) 2.22 (5) 3.056 (4) 170 (4)
N4—H4B···O3 0.89 (5) 1.97 (5) 2.854 (4) 176 (4)
C7—H7···O1iii 0.93 2.58 3.250 (4) 130
C14—H14···O4iv 0.93 2.42 3.160 (4) 136

Symmetry codes: (ii) x, y, z−1; (iii) x, −y+1, z−1/2; (iv) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5449).

References

  1. Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.
  2. Aghabozorg, H., Mofidi Rouchi, A., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o54. [DOI] [PMC free article] [PubMed]
  3. Eshtiagh-Hosseini, H., Aghabozorg, H., Mirzaei, M., Amini, M. M., Chen, Y.-G., Shokrollahi, A. & Aghaei, R. (2010). J. Mol. Struct. 973, 180–189.
  4. Eshtiagh-Hosseini, H., Gschwind, F., Alfi, N. & Mirzaei, M. (2010). Acta Cryst. E66, m826–m827. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Sharif, M. A., Tabatabaee, M., Adinehloo, M. & Aghabozorg, H. (2010). Acta Cryst. E66, o3232. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stoe & Cie (2005). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811001139/bt5449sup1.cif

e-67-0m189-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001139/bt5449Isup2.hkl

e-67-0m189-Isup2.hkl (172.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES