Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 22;67(Pt 2):m240. doi: 10.1107/S1600536811001942

8-Hy­droxy-2-methyl­quinolinium tetra­chlorido(pyridine-2-carboxyl­ato-κ2 N,O)stannate(IV)

Ezzatollah Najafi a, Mostafa M Amini a, Seik Weng Ng b,*
PMCID: PMC3051689  PMID: 21522895

Abstract

In the reaction of pyridine-2-carb­oxy­lic acid and stannic chloride in the presence of 2-methyl-8-hy­droxy­quinoline, the 2-methyl-8-hy­droxy­quinoline is protonated, yielding the title salt, (C10H10NO)[SnCl4(C6H4NO2)]. The SnIV atom in the anion is N,O-chelated by a pyridine-2-carboxyl­ate in a cis-SnNOCl4 octa­hedral geometry. The cation is linked to the anion by an O—H⋯O hydrogen bond.

Related literature

For other 8-hy­droxy-2-methyl­quinolinium salts, see: Najafi et al. (2010); Sattarzadeh et al. (2009).graphic file with name e-67-0m240-scheme1.jpg

Experimental

Crystal data

  • (C10H10NO)[SnCl4(C6H4NO2)]

  • M r = 542.78

  • Monoclinic, Inline graphic

  • a = 11.5188 (2) Å

  • b = 11.1971 (2) Å

  • c = 15.0257 (2) Å

  • β = 94.563 (2)°

  • V = 1931.83 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010) T min = 0.600, T max = 0.703

  • 9737 measured reflections

  • 4304 independent reflections

  • 3686 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.064

  • S = 1.04

  • 4304 reflections

  • 242 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001942/si2327sup1.cif

e-67-0m240-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001942/si2327Isup2.hkl

e-67-0m240-Isup2.hkl (210.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.84 (3) 1.86 (1) 2.686 (3) 168 (3)

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The direct synthesis of a potentially chelating amino-carboxylic acid with stannic tetrachloride has not been reported. Pyridine-2-carboxylic acid yields a number of derivatives with organotin compounds; these are either synthesized by condensing the amino-carboxylic acids with an organotin oxide/hydroxide or by reacting the amino-carboxylic acids with an organotin chloride in the presence of a proton abstractor. With the latter route, the product may be an organostannate in which the pyridine-2-carboxylate chelates to the chlorine-bonded tin atom. In the reaction of pyridine-2-carboxylic acid and stannic chloride in the presence of 2-methyl-8-hydroxyquinoline, the 2-methyl-8-hydroxyquinoline is protonated to yield the salt, [C10H10NO2]+ [SnCl4(C6H4NO2)]- (Scheme I, Fig. 1). The tin atom in the anion is N,O-chelated by a pyridine-2-carboxylate in an octahedral geometry. The cation is linked to the anion by an O–H···O hydrogen bond (Table 1). The cation been observed in a similar reaction with zinc salts (Najafi et al., 2010; Sattarzadeh et al., 2009).

Experimental

Stannic chloride pentahydrate (0.35 g, 1 mmol), pyridine-2-carboxylic acid (0.13 g, 1 mmol) and 2-methyl-8-hydroxyquinoline (0.16 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Beige crystals were collected from the side arm after several days.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01, O–H 0.84±0.01 Å; their temperature factors were refined.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of [C10H10NO2]+ [SnCl4(C6H4NO2)]– at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

(C10H10NO)[SnCl4(C6H4NO2)] F(000) = 1064
Mr = 542.78 Dx = 1.866 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5318 reflections
a = 11.5188 (2) Å θ = 2.3–29.2°
b = 11.1971 (2) Å µ = 1.90 mm1
c = 15.0257 (2) Å T = 100 K
β = 94.563 (2)° Prism, beige
V = 1931.83 (5) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4304 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3686 reflections with I > 2σ(I)
Mirror Rint = 0.031
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.5°
ω scans h = −13→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010) k = −9→14
Tmin = 0.600, Tmax = 0.703 l = −19→18
9737 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0264P)2] where P = (Fo2 + 2Fc2)/3
4304 reflections (Δ/σ)max = 0.001
242 parameters Δρmax = 0.54 e Å3
2 restraints Δρmin = −0.62 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.739358 (15) 0.452510 (16) 0.285941 (11) 0.01301 (7)
Cl1 0.63844 (6) 0.27357 (6) 0.32327 (4) 0.01928 (15)
Cl2 0.57101 (6) 0.54218 (6) 0.21479 (4) 0.01787 (15)
Cl3 0.81600 (6) 0.36052 (6) 0.15995 (4) 0.02070 (16)
Cl4 0.85945 (6) 0.62635 (6) 0.26734 (4) 0.01903 (15)
O1 0.70258 (16) 0.52449 (16) 0.41026 (12) 0.0163 (4)
O2 0.75372 (17) 0.52641 (17) 0.55626 (12) 0.0202 (4)
O3 0.66210 (17) 0.64322 (18) 0.69025 (12) 0.0206 (4)
H3 0.690 (3) 0.616 (3) 0.6447 (13) 0.031*
N1 0.88239 (18) 0.38362 (19) 0.38018 (13) 0.0131 (5)
N2 0.58299 (19) 0.7069 (2) 0.84655 (14) 0.0154 (5)
H2 0.553 (2) 0.732 (3) 0.7947 (11) 0.023*
C1 0.7667 (2) 0.4919 (2) 0.48003 (17) 0.0153 (6)
C2 0.8656 (2) 0.4085 (2) 0.46593 (17) 0.0138 (5)
C3 0.9373 (2) 0.3617 (2) 0.53524 (18) 0.0180 (6)
H3A 0.9239 0.3787 0.5955 0.022*
C4 1.0291 (2) 0.2895 (2) 0.51533 (18) 0.0196 (6)
H4 1.0788 0.2552 0.5619 0.024*
C5 1.0481 (2) 0.2677 (3) 0.42687 (18) 0.0191 (6)
H5 1.1125 0.2207 0.4119 0.023*
C6 0.9718 (2) 0.3155 (2) 0.36087 (18) 0.0174 (6)
H6 0.9832 0.2994 0.3001 0.021*
C8 0.7199 (2) 0.5982 (2) 0.76441 (17) 0.0155 (6)
C9 0.8168 (2) 0.5276 (2) 0.76669 (18) 0.0194 (6)
H9 0.8488 0.5065 0.7125 0.023*
C10 0.8698 (2) 0.4858 (3) 0.84826 (19) 0.0205 (6)
H10 0.9385 0.4388 0.8483 0.025*
C11 0.8247 (2) 0.5114 (3) 0.92770 (18) 0.0203 (6)
H11 0.8598 0.4796 0.9820 0.024*
C12 0.7261 (2) 0.5851 (2) 0.92813 (18) 0.0161 (6)
C13 0.6761 (2) 0.6306 (2) 0.84629 (17) 0.0149 (6)
C14 0.6737 (2) 0.6196 (3) 1.00615 (18) 0.0211 (6)
H14 0.7031 0.5884 1.0623 0.025*
C15 0.5820 (2) 0.6965 (3) 1.00250 (18) 0.0203 (6)
H15 0.5489 0.7192 1.0559 0.024*
C16 0.5358 (2) 0.7424 (3) 0.91984 (18) 0.0187 (6)
C17 0.4394 (3) 0.8305 (3) 0.91255 (19) 0.0237 (7)
H17A 0.4068 0.8350 0.8504 0.036*
H17B 0.4692 0.9091 0.9318 0.036*
H17C 0.3786 0.8056 0.9506 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.01389 (11) 0.01420 (11) 0.01113 (10) 0.00037 (7) 0.00216 (7) −0.00015 (7)
Cl1 0.0187 (3) 0.0184 (3) 0.0206 (3) −0.0032 (3) 0.0005 (3) 0.0025 (3)
Cl2 0.0166 (3) 0.0192 (3) 0.0174 (3) 0.0018 (3) −0.0008 (3) 0.0015 (3)
Cl3 0.0250 (4) 0.0234 (4) 0.0142 (3) 0.0023 (3) 0.0047 (3) −0.0034 (3)
Cl4 0.0202 (3) 0.0173 (3) 0.0198 (3) −0.0032 (3) 0.0028 (3) 0.0020 (3)
O1 0.0187 (10) 0.0195 (10) 0.0107 (9) 0.0043 (8) 0.0020 (8) −0.0013 (8)
O2 0.0233 (11) 0.0247 (11) 0.0132 (10) −0.0022 (9) 0.0048 (8) −0.0031 (8)
O3 0.0230 (11) 0.0263 (11) 0.0125 (10) 0.0091 (9) 0.0014 (8) −0.0013 (8)
N1 0.0141 (11) 0.0139 (11) 0.0115 (11) −0.0029 (10) 0.0018 (9) −0.0009 (9)
N2 0.0163 (12) 0.0177 (12) 0.0121 (11) 0.0015 (10) 0.0001 (9) −0.0005 (10)
C1 0.0180 (14) 0.0147 (14) 0.0138 (14) −0.0040 (12) 0.0048 (11) −0.0017 (11)
C2 0.0145 (13) 0.0124 (13) 0.0148 (13) −0.0044 (11) 0.0024 (10) 0.0004 (11)
C3 0.0237 (15) 0.0145 (14) 0.0158 (14) −0.0030 (12) 0.0020 (12) −0.0004 (11)
C4 0.0225 (15) 0.0165 (14) 0.0190 (14) 0.0006 (12) −0.0044 (12) 0.0017 (12)
C5 0.0164 (14) 0.0181 (14) 0.0224 (15) 0.0020 (12) −0.0004 (11) −0.0031 (12)
C6 0.0153 (14) 0.0170 (14) 0.0204 (15) 0.0007 (12) 0.0038 (11) −0.0026 (12)
C8 0.0171 (14) 0.0137 (13) 0.0159 (13) −0.0030 (12) 0.0017 (11) −0.0011 (11)
C9 0.0227 (15) 0.0192 (15) 0.0170 (14) 0.0009 (12) 0.0058 (12) −0.0034 (12)
C10 0.0165 (14) 0.0184 (14) 0.0269 (16) 0.0027 (12) 0.0030 (12) 0.0015 (12)
C11 0.0220 (15) 0.0211 (15) 0.0172 (15) 0.0015 (13) −0.0015 (12) 0.0045 (12)
C12 0.0155 (14) 0.0151 (14) 0.0178 (14) −0.0030 (12) 0.0014 (11) 0.0010 (11)
C13 0.0152 (14) 0.0144 (14) 0.0152 (13) −0.0018 (11) 0.0024 (11) 0.0003 (11)
C14 0.0194 (15) 0.0283 (17) 0.0155 (14) −0.0055 (13) 0.0007 (11) 0.0025 (12)
C15 0.0226 (15) 0.0265 (16) 0.0127 (13) −0.0029 (13) 0.0079 (11) −0.0057 (12)
C16 0.0168 (14) 0.0207 (15) 0.0195 (14) −0.0050 (12) 0.0063 (11) −0.0049 (12)
C17 0.0224 (16) 0.0277 (17) 0.0219 (15) 0.0018 (13) 0.0064 (12) −0.0050 (13)

Geometric parameters (Å, °)

Sn1—O1 2.1081 (17) C5—C6 1.380 (4)
Sn1—N1 2.223 (2) C5—H5 0.9500
Sn1—Cl2 2.3626 (7) C6—H6 0.9500
Sn1—Cl3 2.3854 (7) C8—C9 1.365 (4)
Sn1—Cl1 2.4050 (7) C8—C13 1.414 (4)
Sn1—Cl4 2.4171 (7) C9—C10 1.405 (4)
O1—C1 1.286 (3) C9—H9 0.9500
O2—C1 1.229 (3) C10—C11 1.369 (4)
O3—C8 1.350 (3) C10—H10 0.9500
O3—H3 0.84 (3) C11—C12 1.404 (4)
N1—C6 1.332 (3) C11—H11 0.9500
N1—C2 1.347 (3) C12—C13 1.411 (4)
N2—C16 1.327 (3) C12—C14 1.414 (4)
N2—C13 1.371 (3) C14—C15 1.361 (4)
N2—H2 0.88 (3) C14—H14 0.9500
C1—C2 1.502 (4) C15—C16 1.409 (4)
C2—C3 1.380 (4) C15—H15 0.9500
C3—C4 1.382 (4) C16—C17 1.483 (4)
C3—H3A 0.9500 C17—H17A 0.9800
C4—C5 1.386 (4) C17—H17B 0.9800
C4—H4 0.9500 C17—H17C 0.9800
O1—Sn1—N1 76.07 (7) C4—C5—H5 120.6
O1—Sn1—Cl2 91.31 (5) N1—C6—C5 121.7 (3)
N1—Sn1—Cl2 167.32 (6) N1—C6—H6 119.2
O1—Sn1—Cl3 168.94 (5) C5—C6—H6 119.2
N1—Sn1—Cl3 93.06 (6) O3—C8—C9 125.9 (2)
Cl2—Sn1—Cl3 99.60 (2) O3—C8—C13 115.8 (2)
O1—Sn1—Cl1 88.68 (5) C9—C8—C13 118.3 (2)
N1—Sn1—Cl1 84.83 (6) C8—C9—C10 120.8 (3)
Cl2—Sn1—Cl1 93.73 (2) C8—C9—H9 119.6
Cl3—Sn1—Cl1 92.39 (2) C10—C9—H9 119.6
O1—Sn1—Cl4 87.23 (5) C11—C10—C9 121.5 (3)
N1—Sn1—Cl4 87.20 (6) C11—C10—H10 119.3
Cl2—Sn1—Cl4 93.56 (2) C9—C10—H10 119.3
Cl3—Sn1—Cl4 90.27 (2) C10—C11—C12 119.3 (3)
Cl1—Sn1—Cl4 171.72 (2) C10—C11—H11 120.3
C1—O1—Sn1 118.10 (17) C12—C11—H11 120.3
C8—O3—H3 110 (2) C13—C12—C11 118.9 (2)
C6—N1—C2 119.9 (2) C13—C12—C14 116.9 (2)
C6—N1—Sn1 127.34 (17) C11—C12—C14 124.3 (3)
C2—N1—Sn1 112.47 (17) N2—C13—C12 119.2 (2)
C16—N2—C13 124.1 (2) N2—C13—C8 119.7 (2)
C16—N2—H2 119 (2) C12—C13—C8 121.1 (2)
C13—N2—H2 117 (2) C15—C14—C12 121.4 (3)
O2—C1—O1 124.5 (3) C15—C14—H14 119.3
O2—C1—C2 118.5 (2) C12—C14—H14 119.3
O1—C1—C2 117.0 (2) C14—C15—C16 120.3 (3)
N1—C2—C3 121.4 (3) C14—C15—H15 119.9
N1—C2—C1 115.6 (2) C16—C15—H15 119.9
C3—C2—C1 123.0 (2) N2—C16—C15 118.1 (3)
C2—C3—C4 118.7 (3) N2—C16—C17 119.5 (2)
C2—C3—H3A 120.6 C15—C16—C17 122.4 (2)
C4—C3—H3A 120.6 C16—C17—H17A 109.5
C3—C4—C5 119.5 (3) C16—C17—H17B 109.5
C3—C4—H4 120.2 H17A—C17—H17B 109.5
C5—C4—H4 120.2 C16—C17—H17C 109.5
C6—C5—C4 118.7 (3) H17A—C17—H17C 109.5
C6—C5—H5 120.6 H17B—C17—H17C 109.5
N1—Sn1—O1—C1 −5.35 (18) C3—C4—C5—C6 −2.3 (4)
Cl2—Sn1—O1—C1 173.35 (18) C2—N1—C6—C5 0.8 (4)
Cl3—Sn1—O1—C1 −16.0 (4) Sn1—N1—C6—C5 −172.80 (19)
Cl1—Sn1—O1—C1 79.65 (18) C4—C5—C6—N1 1.4 (4)
Cl4—Sn1—O1—C1 −93.15 (18) O3—C8—C9—C10 180.0 (3)
O1—Sn1—N1—C6 −178.3 (2) C13—C8—C9—C10 1.6 (4)
Cl2—Sn1—N1—C6 175.77 (18) C8—C9—C10—C11 1.8 (5)
Cl3—Sn1—N1—C6 −0.3 (2) C9—C10—C11—C12 −2.7 (4)
Cl1—Sn1—N1—C6 91.8 (2) C10—C11—C12—C13 0.2 (4)
Cl4—Sn1—N1—C6 −90.5 (2) C10—C11—C12—C14 −178.6 (3)
O1—Sn1—N1—C2 7.74 (17) C16—N2—C13—C12 0.4 (4)
Cl2—Sn1—N1—C2 1.8 (4) C16—N2—C13—C8 −180.0 (3)
Cl3—Sn1—N1—C2 −174.30 (17) C11—C12—C13—N2 −177.1 (3)
Cl1—Sn1—N1—C2 −82.18 (17) C14—C12—C13—N2 1.7 (4)
Cl4—Sn1—N1—C2 95.58 (17) C11—C12—C13—C8 3.3 (4)
Sn1—O1—C1—O2 −179.3 (2) C14—C12—C13—C8 −177.9 (2)
Sn1—O1—C1—C2 2.3 (3) O3—C8—C13—N2 −2.3 (4)
C6—N1—C2—C3 −2.0 (4) C9—C8—C13—N2 176.3 (3)
Sn1—N1—C2—C3 172.4 (2) O3—C8—C13—C12 177.3 (2)
C6—N1—C2—C1 176.5 (2) C9—C8—C13—C12 −4.1 (4)
Sn1—N1—C2—C1 −9.1 (3) C13—C12—C14—C15 −2.4 (4)
O2—C1—C2—N1 −173.5 (2) C11—C12—C14—C15 176.4 (3)
O1—C1—C2—N1 5.0 (4) C12—C14—C15—C16 0.9 (4)
O2—C1—C2—C3 5.0 (4) C13—N2—C16—C15 −1.9 (4)
O1—C1—C2—C3 −176.5 (2) C13—N2—C16—C17 176.6 (3)
N1—C2—C3—C4 1.1 (4) C14—C15—C16—N2 1.2 (4)
C1—C2—C3—C4 −177.3 (3) C14—C15—C16—C17 −177.2 (3)
C2—C3—C4—C5 1.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2 0.84 (3) 1.86 (1) 2.686 (3) 168 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2327).

References

  1. Agilent Technologies (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Najafi, E., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m1276. [DOI] [PMC free article] [PubMed]
  4. Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001942/si2327sup1.cif

e-67-0m240-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001942/si2327Isup2.hkl

e-67-0m240-Isup2.hkl (210.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES