Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 15;67(Pt 2):m213. doi: 10.1107/S1600536811001620

Diaqua­bis­[5-(1-oxidopyridin-1-ium-2-yl)-1,2,3,4-tetrazolido]manganese(II) di­hydrate

Feng Gao a,*, Chang-Sheng Yao a, Zai-Sheng Lu a, Yan-Hui Shi a
PMCID: PMC3051705  PMID: 21522876

Abstract

In the title compound, [Mn(C6H4N5O)2(H2O)2]·2H2O, the MnII ion is situated on an inversion centre and is coordinated by the O and N atoms of two bis-chelating 5-(2-pyridyl-1-oxide)tetra­zolate ligands and two O atoms of two water mol­ecules in a distorted octa­hedral geometry. All the water H atoms are involved in O—H⋯N and O—H⋯O hydrogen bonds with uncoordinated water O atoms and tetra­zole N atoms, which link the mol­ecules into a three-dimensional network.

Related literature

For backgroud to tetra­zolate derivatives in coordination chemistry, see: Jiang et al. (2007); Song et al. (2009); Zhang (2009). For related structures, see: Facchetti et al. (2004); Lin et al. (2005); Vrbova et al. (2000)graphic file with name e-67-0m213-scheme1.jpg

Experimental

Crystal data

  • [Mn(C6H4N5O)2(H2O)2]·2H2O

  • M r = 451.29

  • Monoclinic, Inline graphic

  • a = 6.4808 (13) Å

  • b = 12.034 (2) Å

  • c = 12.787 (4) Å

  • β = 116.24 (2)°

  • V = 894.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.925, T max = 0.939

  • 7432 measured reflections

  • 1579 independent reflections

  • 1102 reflections with I > 2σ(I)

  • R int = 0.115

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078

  • wR(F 2) = 0.133

  • S = 1.14

  • 1579 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001620/lx2180sup1.cif

e-67-0m213-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001620/lx2180Isup2.hkl

e-67-0m213-Isup2.hkl (77.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2 0.88 2.15 3.010 (5) 164
O2—H2A⋯O3i 0.84 2.01 2.756 (5) 147
O2—H2B⋯N3ii 0.86 2.06 2.858 (5) 154
O3—H3B⋯N4ii 0.82 2.10 2.917 (6) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Xuzhou Normal University (grant No. 09XLA06) and the National Natural Science Foundation of China (grant No. 21071121).

supplementary crystallographic information

Comment

Tetrazole as functional group plays an important role in coordination chemistry, medicinal chemistry and materials science applications (Song et al., 2009; Jiang et al., 2007; Zhang, 2009). It's interesting for the study of tetrazolate complexes to delineate the ways in which tetrazoles bind to metal centres. Here we report the structure of a novel substituted tetrazolato-metal complex, diaquabis(5-(2-pyridyl-1-oxide)tetrazolato)manganese(II) dihydrate.

The crystal structure of the title complex consists of the mononuclear manganese (II) unit [Mn(C6H4N5O)2(H2O)2], and two lattice water molecules (Fig. 1). In the mononuclear unit, manganese(II) ion is in a distorted octahedral environment, being six-coordinated by two N atoms and two O atoms from two bidentate 5-(2-pyridyl-1-oxide)tetrazolato-ligands, and two O atoms of two coordinated water molecules with Mn–O distances from 2.090 (4)Å to 2.209 (3) Å, Mn–N bond length of 2.255 (4)Å and O1–Mn1–N1 angle of 79.47 (14)°, which are comparable with the values observed in other metal-tetrazolate complexes (Vrbova et al., 2000; Lin et al., 2005; Facchetti et al., 2004). The pyridine and tetrazole rings are twisted against each other by 20.466 (190)°. In the crystal structure, all the water H atoms are involved in O–H···N and O–H···O hydrogen bonds with the solvate water O (O3W) and the tetrazole N (N2, N4) atoms. The interactions link the molecules into a three dimensional network (Table 1 and Fig. 2).

Experimental

A solution of 5-(2-pyridyl-1-oxide)tetrazole (32.6 mg, 0.2 mmol) and K2CO3 (13.8 mg, 0.1 mmol) in H2O (10 ml) was dropped slowly into a solution of Mn(ClO4).6H2O (36.2 mg, 0.1 mmol) dissolved in methanol (10 ml). The resulting brown suspension solution was stirred for 24 h at room temperature and filtered. Yellow crystals were separated from filtrate after about one month and collected for X-ray analysis (m.p. >573 K).

Refinement

H atoms were placed in calculated positions, with C–H = 0.93Å and O–H = 0.82-0.88 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) - x + 1, - y + 1, - z + 1. ]

Fig. 2.

Fig. 2.

A view of the O–H···O and O–H···N hydrogen bonds (dotted lines) in the crystal structure of the title compound.

Crystal data

[Mn(C6H4N5O)2(H2O)2]·2H2O F(000) = 462
Mr = 451.29 Dx = 1.676 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7005 reflections
a = 6.4808 (13) Å θ = 3.1–27.6°
b = 12.034 (2) Å µ = 0.80 mm1
c = 12.787 (4) Å T = 293 K
β = 116.24 (2)° Block, yellow
V = 894.5 (4) Å3 0.10 × 0.10 × 0.08 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 1579 independent reflections
Radiation source: fine-focus sealed tube 1102 reflections with I > 2σ(I)
graphite Rint = 0.115
Detector resolution: 10.0 pixels mm-1 θmax = 25.0°, θmin = 3.4°
φ and ω scans h = −7→7
Absorption correction: multi-scan (SADABS; Bruker, 2000) k = −14→14
Tmin = 0.925, Tmax = 0.939 l = −15→15
7432 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078 Hydrogen site location: difference Fourier map
wR(F2) = 0.133 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0354P)2 + 1.2794P] where P = (Fo2 + 2Fc2)/3
1579 reflections (Δ/σ)max < 0.001
133 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.5000 0.5000 0.5000 0.0282 (3)
C1 0.4458 (9) 0.2469 (4) 0.4227 (4) 0.0260 (12)
C2 0.3159 (8) 0.2280 (4) 0.4903 (4) 0.0276 (12)
C3 0.2946 (10) 0.1223 (5) 0.5282 (5) 0.0406 (15)
H3 0.3648 0.0631 0.5099 0.049*
C4 0.1752 (11) 0.1017 (6) 0.5912 (5) 0.0531 (18)
H4 0.1668 0.0303 0.6168 0.064*
C5 0.0688 (10) 0.1883 (6) 0.6155 (5) 0.0508 (17)
H2 −0.0165 0.1759 0.6568 0.061*
C6 0.0860 (9) 0.2922 (5) 0.5800 (5) 0.0407 (15)
H1 0.0140 0.3510 0.5979 0.049*
N1 0.5349 (7) 0.3443 (3) 0.4111 (3) 0.0289 (10)
N2 0.6423 (7) 0.3211 (4) 0.3443 (4) 0.0338 (11)
N3 0.6179 (8) 0.2138 (4) 0.3188 (4) 0.0368 (12)
N4 0.4943 (7) 0.1654 (4) 0.3670 (4) 0.0346 (11)
N5 0.2085 (7) 0.3114 (4) 0.5179 (4) 0.0344 (11)
O1 0.2069 (6) 0.4131 (3) 0.4819 (4) 0.0491 (11)
O2 0.2698 (6) 0.5780 (3) 0.3322 (3) 0.0396 (10)
H2A 0.1657 0.5331 0.2904 0.048*
H2B 0.2775 0.6340 0.2925 0.048*
O3 0.8363 (6) 0.4852 (3) 0.2336 (3) 0.0447 (10)
H3A 0.7951 0.4450 0.2787 0.054*
H3B 0.7388 0.5334 0.2038 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0324 (7) 0.0249 (6) 0.0313 (7) −0.0007 (6) 0.0178 (5) −0.0026 (6)
C1 0.028 (3) 0.024 (3) 0.025 (3) 0.001 (2) 0.011 (3) 0.002 (2)
C2 0.027 (3) 0.027 (3) 0.027 (3) 0.003 (2) 0.011 (3) −0.005 (2)
C3 0.053 (4) 0.037 (4) 0.040 (4) −0.001 (3) 0.028 (3) −0.002 (3)
C4 0.069 (5) 0.050 (4) 0.046 (4) −0.012 (4) 0.030 (4) 0.000 (3)
C5 0.046 (4) 0.069 (5) 0.038 (4) −0.010 (4) 0.019 (3) 0.005 (4)
C6 0.033 (3) 0.061 (4) 0.035 (4) 0.005 (3) 0.021 (3) −0.014 (3)
N1 0.030 (2) 0.033 (3) 0.026 (2) 0.000 (2) 0.016 (2) −0.003 (2)
N2 0.032 (3) 0.041 (3) 0.032 (3) −0.001 (2) 0.018 (2) −0.003 (2)
N3 0.038 (3) 0.042 (3) 0.034 (3) 0.003 (2) 0.019 (2) −0.007 (2)
N4 0.043 (3) 0.032 (3) 0.035 (3) −0.002 (2) 0.024 (3) −0.009 (2)
N5 0.035 (3) 0.029 (3) 0.034 (3) 0.004 (2) 0.011 (2) 0.002 (2)
O1 0.043 (3) 0.038 (2) 0.076 (3) −0.0019 (19) 0.035 (2) 0.000 (2)
O2 0.049 (2) 0.038 (2) 0.030 (2) −0.0062 (19) 0.016 (2) 0.0060 (18)
O3 0.046 (2) 0.040 (2) 0.055 (3) 0.005 (2) 0.028 (2) 0.012 (2)

Geometric parameters (Å, °)

Mn1—O1 2.090 (4) C4—H4 0.9300
Mn1—O1i 2.090 (4) C5—C6 1.351 (8)
Mn1—O2 2.209 (3) C5—H2 0.9300
Mn1—O2i 2.209 (3) C6—N5 1.369 (6)
Mn1—N1 2.255 (4) C6—H1 0.9300
Mn1—N1i 2.255 (4) N1—N2 1.348 (5)
C1—N4 1.329 (6) N2—N3 1.324 (6)
C1—N1 1.344 (6) N3—N4 1.341 (6)
C1—C2 1.467 (7) N5—O1 1.306 (5)
C2—N5 1.353 (6) O2—H2A 0.8446
C2—C3 1.390 (7) O2—H2B 0.8583
C3—C4 1.363 (7) O3—H3A 0.8803
C3—H3 0.9300 O3—H3B 0.8172
C4—C5 1.359 (8)
O1—Mn1—O1i 180.0 C5—C4—C3 118.3 (6)
O1—Mn1—O2 85.11 (15) C5—C4—H4 120.9
O1i—Mn1—O2 94.89 (14) C3—C4—H4 120.9
O1—Mn1—O2i 94.89 (15) C6—C5—C4 120.4 (6)
O1i—Mn1—O2i 85.11 (14) C6—C5—H2 119.8
O2—Mn1—O2i 180.000 (1) C4—C5—H2 119.8
O1—Mn1—N1 79.47 (14) C5—C6—N5 120.4 (5)
O1i—Mn1—N1 100.53 (14) C5—C6—H1 119.8
O2—Mn1—N1 92.20 (14) N5—C6—H1 119.8
O2i—Mn1—N1 87.80 (14) C1—N1—N2 104.9 (4)
O1—Mn1—N1i 100.53 (14) C1—N1—Mn1 121.7 (3)
O1i—Mn1—N1i 79.47 (14) N2—N1—Mn1 133.4 (3)
O2—Mn1—N1i 87.80 (14) N3—N2—N1 108.6 (4)
O2i—Mn1—N1i 92.20 (14) N2—N3—N4 109.9 (4)
N1—Mn1—N1i 180.000 (1) C1—N4—N3 104.9 (4)
N4—C1—N1 111.7 (4) O1—N5—C2 121.8 (4)
N4—C1—C2 122.4 (4) O1—N5—C6 116.5 (5)
N1—C1—C2 125.9 (4) C2—N5—C6 121.6 (5)
N5—C2—C3 116.4 (5) N5—O1—Mn1 124.4 (3)
N5—C2—C1 122.3 (5) Mn1—O2—H2A 110.5
C3—C2—C1 121.2 (5) Mn1—O2—H2B 135.8
C4—C3—C2 122.8 (6) H2A—O2—H2B 111.6
C4—C3—H3 118.6 H3A—O3—H3B 107.3
C2—C3—H3 118.6
N4—C1—C2—N5 −160.1 (5) O2i—Mn1—N1—N2 −109.1 (4)
N1—C1—C2—N5 21.7 (8) C1—N1—N2—N3 −0.5 (5)
N4—C1—C2—C3 19.1 (8) Mn1—N1—N2—N3 177.0 (3)
N1—C1—C2—C3 −159.1 (5) N1—N2—N3—N4 0.4 (5)
N5—C2—C3—C4 −0.7 (8) N1—C1—N4—N3 −0.1 (6)
C1—C2—C3—C4 180.0 (5) C2—C1—N4—N3 −178.5 (4)
C2—C3—C4—C5 1.4 (9) N2—N3—N4—C1 −0.2 (5)
C3—C4—C5—C6 −1.4 (9) C3—C2—N5—O1 −176.5 (5)
C4—C5—C6—N5 0.8 (9) C1—C2—N5—O1 2.8 (7)
N4—C1—N1—N2 0.3 (6) C3—C2—N5—C6 0.1 (7)
C2—C1—N1—N2 178.7 (5) C1—C2—N5—C6 179.3 (5)
N4—C1—N1—Mn1 −177.5 (3) C5—C6—N5—O1 176.6 (5)
C2—C1—N1—Mn1 0.9 (7) C5—C6—N5—C2 −0.1 (8)
O1—Mn1—N1—C1 −27.4 (4) C2—N5—O1—Mn1 −50.6 (6)
O1i—Mn1—N1—C1 152.6 (4) C6—N5—O1—Mn1 132.7 (4)
O2—Mn1—N1—C1 −112.1 (4) O2—Mn1—O1—N5 146.5 (4)
O2i—Mn1—N1—C1 67.9 (4) O2i—Mn1—O1—N5 −33.5 (4)
O1—Mn1—N1—N2 155.5 (4) N1—Mn1—O1—N5 53.3 (4)
O1i—Mn1—N1—N2 −24.5 (4) N1i—Mn1—O1—N5 −126.7 (4)
O2—Mn1—N1—N2 70.9 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···N2 0.88 2.15 3.010 (5) 164
O2—H2A···O3ii 0.84 2.01 2.756 (5) 147
O2—H2B···N3iii 0.86 2.06 2.858 (5) 154
O3—H3B···N4iii 0.82 2.10 2.917 (6) 176

Symmetry codes: (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2180).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Facchetti, A., Abbotto, A., Beverina, L., Bradamante, S., Mariani, P., Stern, C. L., Marks, T. J., Vacca, A. & Pagani, G. A. (2004). Chem. Commun. pp. 1770–1771. [DOI] [PubMed]
  3. Jiang, T., Zhao, Y.-F. & Zhang, X.-M. (2007). Inorg. Chem. Commun. 10, 1194–1197.
  4. Lin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388–2394. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Song, W.-C., Li, J.-R., Song, P.-C., Tao, Y., Yu, Q., Tong, X.-L. & Bu, X.-H. (2009). Inorg. Chem. 48, 3792–3799. [DOI] [PubMed]
  7. Vrbova, M., Baran, P., Boca, R., Fuess, H., Svoboda, I., Linert, W., Schubert, U. & Wiede, P. (2000). Polyhedron, 19, 2195–2201.
  8. Zhang, L. (2009). Acta Cryst. E65, m871–m872. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811001620/lx2180sup1.cif

e-67-0m213-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811001620/lx2180Isup2.hkl

e-67-0m213-Isup2.hkl (77.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES