Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 29;67(Pt 2):m265. doi: 10.1107/S1600536811002960

{rac-5-[Meth­oxy(phen­yl)meth­yl]-10,20-diphenyl­porphyrinato}nickel(II)

Mathias O Senge a,*, Katja Dahms a
PMCID: PMC3051756  PMID: 21522916

Abstract

The title compound, [Ni(C40H28N4O)], was obtained from a Grignard reaction of the respective formyl­porphyrin to yield {5-[hy­droxy(phen­yl)meth­yl]-10,20-diphenyl­porphyrinato}nickel(II), followed by crystallization from methyl­ene chloride/methanol. The mol­ecule exhibits a ruffled macrocycle with an average deviation of the 24 macrocycle atoms from their least-squares plane (Δ24) of 0.26 Å and an average Ni—N bond length of 1.931 (2) Å. In line with the asymmetrical substituent pattern, the degree of distortion is slightly larger at point of attachment of the meth­oxy(phen­yl)methyl residue than at the unsubstituted meso position. The meth­oxy group attached to the chiral C atom is disordered in a 0.534 (4):0.466 (4) ratio.

Related literature

For related literature on the conformation of porphyrins, see: Senge (2000). For the chemistry of porphyrins with mixed meso substituents, see: Dahms et al. (2007); Senge et al. (2010). For Ni(II) porphyrin structures, see: Fleischer et al. (1964); Gallucci et al. (1982); Hoard (1973); Lee & Scheidt (1987), Senge (2000) and Senge et al. (2000). For handling of the crystals, see: Hope (1994).graphic file with name e-67-0m265-scheme1.jpg

Experimental

Crystal data

  • [Ni(C40H28N4O)]

  • M r = 639.37

  • Triclinic, Inline graphic

  • a = 10.869 (2) Å

  • b = 11.984 (2) Å

  • c = 12.332 (3) Å

  • α = 72.356 (6)°

  • β = 85.305 (8)°

  • γ = 74.219 (7)°

  • V = 1473.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 123 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.873, T max = 0.873

  • 29300 measured reflections

  • 7270 independent reflections

  • 6754 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.108

  • S = 1.10

  • 7270 reflections

  • 436 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002960/go2001sup1.cif

e-67-0m265-sup1.cif (31.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002960/go2001Isup2.hkl

e-67-0m265-Isup2.hkl (355.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant from Science Foundation Ireland (SFI P·I. 09/IN.1/B2650).

supplementary crystallographic information

Comment

The title compound (I) crystallized as the racemic form in the triclinic space group P1. It was obtained from a Grignard reaction of the respective formylporphyrin to yield {5-[hydroxy(phenyl)methyl]-10,20-diphenylporphyrinato}nickel(II), (II) (Fig. 2), followed by crystallization from methylene chloride/methanol. I.e., substitution of the hydroxy group by a methoxy group occurred during the crystallization. The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

The molecule exhibits a ruffled macrocycle with an average deviation of the 24 macrocycle atoms from their least-squares-plane (Δ24) of 0.26 Å and an average Ni–N bond length of 1.931 (2) Å. In line with the unsymmetrical substituent pattern the degree of distortion is slightly larger at C5 (the methoxyphenylmethyl residue) then at C15 (the unsubstituted meso position). This is indicated by the individual displacements of the Cm positions from the least-squares-plane of the four nitrogen atoms. The respective displacement values are -0.64, 0.49, -0.49, 0.47 Å for C5, C10, C15 and C20, respectively. Similarly, the Ca—Cm—Ca angle for C15 is widened (123.2 (2)°) compared to the other three meso positions (average = 121.3 (2)°). In terms of macrocycle distortion modes, the most significant out-of-plane contributor is B1u (ruffled) with some degree of B2u (saddle) mixed in. The most prominent in-plane distortion mode is A1 g, i.e., macrocycle breathing.

The molecules form a close spaced lattice structure characterized by stacking of the porphyrin macrocycles (not shown). The closest intramolecular contacts are Ni–H15 (3.034 Å) and Ni–H203 (2.764 Å). The former is a side-on contact and blocks one face of the porphyrin. The latter involves a meta-phenyl hydrogen atom pointing towards the nickel(II) center.

Experimental

The title compound I was obtained from II (Dahms et al., 2007) upon crystallization from CH2Cl2/CH3OH. Porphyrin II in turn was prepared via Grignard reaction of (5-formyl-10,20-diphenylporphyrinato)nickel(II) with phenyl magnesium bromide.

Refinement

The compound crystallized with crystallographic disorder of the methoxy group at the meso carbon (C51) with the site-occupancy factors of 0.533 (3) and 0.467 (3) for part A and B respectively. The H atoms bonded to C58 and C58a atoms were refined with standard distances of 0.97 Å, for methyl groups with Uiso(H)=1.5Ueq(C) and the H atom for C51 was refined with 0.98Å with Uiso(H)=1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

: View of the molecular structure of I in the crystals. Thermal ellipsoids are drawn for 50% occupancy. Only one of the two enantiomeric forms is shown; hydrogen atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

Schematic representations of (I) and (II).

Crystal data

[Ni(C40H28N4O)] Z = 2
Mr = 639.37 F(000) = 664
Triclinic, P1 Dx = 1.442 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.7107 Å
a = 10.869 (2) Å Cell parameters from 4706 reflections
b = 11.984 (2) Å θ = 2.0–28.3°
c = 12.332 (3) Å µ = 0.70 mm1
α = 72.356 (6)° T = 123 K
β = 85.305 (8)° Prism, red
γ = 74.219 (7)° 0.20 × 0.20 × 0.20 mm
V = 1473.0 (5) Å3

Data collection

Rigaku Saturn724 diffractometer 7270 independent reflections
Radiation source: Sealed Tube 6754 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.040
Detector resolution: 28.5714 pixels mm-1 θmax = 28.4°, θmin = 2.6°
dtprofit.ref scans h = −14→14
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) k = −16→15
Tmin = 0.873, Tmax = 0.873 l = −16→16
29300 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.2452P] where P = (Fo2 + 2Fc2)/3
7270 reflections (Δ/σ)max = 0.001
436 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The compound crystallized with crystallographic disorder of the methoxy group at the meso carbon (C51) with the site-occupancy factors of 0.533 (3) and 0.467 (3) for part A and B respectively. The H atoms bonded to C58 and C58a atoms were refined with standard distances of 0.97 Å, for methyl groups with Uiso(H)=1.5Ueq(C) and the H atom for C51 was refined with 0.98Å with Uiso(H)=1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni 0.06269 (3) 0.66980 (3) 0.41138 (2) 0.02087 (8)
O1 −0.1607 (3) 0.9874 (3) −0.0116 (3) 0.0299 (8) 0.534 (4)
C58 −0.1951 (6) 1.0236 (5) −0.1294 (4) 0.0373 (13) 0.534 (4)
H58A −0.2379 1.1105 −0.1538 0.056* 0.534 (4)
H58B −0.2531 0.9777 −0.1397 0.056* 0.534 (4)
H58C −0.1179 1.0074 −0.1750 0.056* 0.534 (4)
O1A −0.0393 (3) 0.8932 (3) −0.0643 (3) 0.0282 (9) 0.466 (4)
C58A −0.1124 (5) 0.9638 (5) −0.1660 (4) 0.0317 (13) 0.466 (4)
H58D −0.0571 0.9623 −0.2328 0.047* 0.466 (4)
H58E −0.1464 1.0477 −0.1639 0.047* 0.466 (4)
H58F −0.1833 0.9295 −0.1706 0.047* 0.466 (4)
N21 −0.06152 (17) 0.82009 (17) 0.34561 (15) 0.0224 (4)
N22 0.13478 (17) 0.67312 (17) 0.26209 (15) 0.0224 (4)
N23 0.18836 (17) 0.51926 (17) 0.47673 (15) 0.0217 (4)
N24 −0.00879 (17) 0.66697 (17) 0.56101 (15) 0.0229 (4)
C1 −0.1395 (2) 0.8957 (2) 0.40303 (19) 0.0249 (4)
C2 −0.2243 (2) 0.9954 (2) 0.3252 (2) 0.0292 (5)
H2 −0.2845 1.0612 0.3434 0.035*
C3 −0.2025 (2) 0.9785 (2) 0.2211 (2) 0.0292 (5)
H3 −0.2467 1.0287 0.1529 0.035*
C4 −0.0998 (2) 0.8703 (2) 0.23274 (18) 0.0239 (4)
C5 −0.0403 (2) 0.8278 (2) 0.14332 (18) 0.0240 (4)
C6 0.0776 (2) 0.7423 (2) 0.15786 (18) 0.0229 (4)
C7 0.1641 (2) 0.7195 (2) 0.06717 (19) 0.0275 (5)
H7 0.1475 0.7538 −0.0121 0.033*
C8 0.2729 (2) 0.6402 (2) 0.11593 (19) 0.0282 (5)
H8 0.3486 0.6116 0.0774 0.034*
C9 0.2530 (2) 0.6072 (2) 0.23683 (19) 0.0241 (4)
C10 0.3340 (2) 0.5109 (2) 0.31438 (19) 0.0238 (4)
C11 0.2962 (2) 0.4657 (2) 0.42545 (18) 0.0232 (4)
C12 0.3591 (2) 0.3490 (2) 0.50041 (19) 0.0266 (5)
H12 0.4356 0.2948 0.4854 0.032*
C13 0.2880 (2) 0.3315 (2) 0.59614 (19) 0.0265 (5)
H13 0.3039 0.2616 0.6606 0.032*
C14 0.1843 (2) 0.4377 (2) 0.58233 (18) 0.0228 (4)
C15 0.0995 (2) 0.4599 (2) 0.66710 (19) 0.0244 (4)
H15 0.1007 0.3960 0.7354 0.029*
C16 0.0134 (2) 0.5698 (2) 0.65786 (18) 0.0240 (4)
C17 −0.0566 (2) 0.6025 (2) 0.7521 (2) 0.0295 (5)
H17 −0.0589 0.5505 0.8272 0.035*
C18 −0.1184 (2) 0.7206 (2) 0.7145 (2) 0.0312 (5)
H18 −0.1695 0.7687 0.7586 0.037*
C19 −0.0921 (2) 0.7607 (2) 0.59404 (19) 0.0248 (4)
C20 −0.1506 (2) 0.8725 (2) 0.52061 (19) 0.0256 (5)
C51 −0.1098 (2) 0.8703 (2) 0.0298 (2) 0.0336 (6)
H51 −0.0424 0.8493 −0.0262 0.040* 0.534 (4)
H51A −0.1685 0.9511 0.0283 0.040* 0.466 (4)
C52 −0.1998 (2) 0.7901 (2) 0.03594 (19) 0.0280 (5)
C53 −0.3275 (2) 0.8242 (3) 0.0657 (2) 0.0375 (6)
H53 −0.3621 0.9014 0.0775 0.045*
C54 −0.4051 (3) 0.7458 (3) 0.0782 (2) 0.0425 (7)
H54 −0.4926 0.7699 0.0980 0.051*
C55 −0.3551 (3) 0.6327 (3) 0.0621 (2) 0.0386 (6)
H55 −0.4075 0.5785 0.0723 0.046*
C56 −0.2285 (3) 0.5993 (3) 0.0310 (2) 0.0380 (6)
H56 −0.1941 0.5224 0.0184 0.046*
C57 −0.1515 (2) 0.6774 (2) 0.0180 (2) 0.0320 (5)
H57 −0.0646 0.6536 −0.0034 0.038*
C101 0.4587 (2) 0.4433 (2) 0.27784 (18) 0.0240 (4)
C102 0.4646 (2) 0.3764 (2) 0.2015 (2) 0.0281 (5)
H102 0.3881 0.3775 0.1685 0.034*
C103 0.5811 (2) 0.3085 (2) 0.1734 (2) 0.0321 (5)
H103 0.5841 0.2637 0.1211 0.039*
C104 0.6934 (2) 0.3057 (2) 0.2216 (2) 0.0328 (5)
H104 0.7732 0.2597 0.2018 0.039*
C105 0.6885 (2) 0.3702 (2) 0.2984 (2) 0.0323 (5)
H105 0.7651 0.3674 0.3324 0.039*
C106 0.5727 (2) 0.4388 (2) 0.3261 (2) 0.0288 (5)
H106 0.5705 0.4834 0.3785 0.035*
C201 −0.2389 (2) 0.9668 (2) 0.56703 (19) 0.0266 (5)
C202 −0.2094 (2) 1.0755 (2) 0.5560 (2) 0.0307 (5)
H202 −0.1335 1.0907 0.5176 0.037*
C203 −0.2902 (2) 1.1623 (2) 0.6010 (2) 0.0344 (6)
H203 −0.2697 1.2366 0.5927 0.041*
C204 −0.4003 (2) 1.1408 (3) 0.6577 (2) 0.0373 (6)
H204 −0.4542 1.1993 0.6901 0.045*
C205 −0.4319 (2) 1.0338 (3) 0.6670 (2) 0.0391 (6)
H205 −0.5083 1.0195 0.7048 0.047*
C206 −0.3522 (2) 0.9476 (2) 0.6214 (2) 0.0346 (6)
H206 −0.3750 0.8749 0.6271 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.02108 (14) 0.02495 (16) 0.01675 (14) −0.00704 (11) 0.00045 (10) −0.00553 (11)
O1 0.0398 (18) 0.0252 (16) 0.0224 (16) −0.0079 (14) −0.0088 (13) −0.0017 (13)
C58 0.057 (3) 0.030 (3) 0.023 (2) −0.014 (2) −0.018 (2) 0.002 (2)
O1A 0.0301 (18) 0.037 (2) 0.0164 (16) −0.0129 (16) −0.0029 (13) −0.0010 (15)
C58A 0.040 (3) 0.037 (3) 0.017 (2) −0.017 (3) −0.010 (2) 0.001 (2)
N21 0.0231 (9) 0.0254 (10) 0.0191 (9) −0.0073 (7) −0.0012 (7) −0.0057 (8)
N22 0.0234 (9) 0.0257 (10) 0.0190 (9) −0.0084 (7) −0.0007 (7) −0.0057 (8)
N23 0.0218 (8) 0.0264 (10) 0.0174 (8) −0.0077 (7) 0.0009 (7) −0.0060 (7)
N24 0.0232 (9) 0.0257 (10) 0.0188 (9) −0.0064 (7) 0.0001 (7) −0.0052 (8)
C1 0.0235 (10) 0.0269 (11) 0.0242 (11) −0.0070 (9) −0.0003 (8) −0.0071 (9)
C2 0.0264 (11) 0.0285 (12) 0.0287 (12) −0.0031 (9) −0.0002 (9) −0.0062 (10)
C3 0.0268 (11) 0.0302 (12) 0.0254 (11) −0.0038 (10) −0.0036 (9) −0.0031 (10)
C4 0.0241 (10) 0.0270 (11) 0.0195 (10) −0.0082 (9) −0.0018 (8) −0.0036 (9)
C5 0.0273 (11) 0.0255 (11) 0.0196 (10) −0.0125 (9) 0.0013 (8) −0.0028 (9)
C6 0.0271 (10) 0.0264 (11) 0.0169 (10) −0.0117 (9) 0.0022 (8) −0.0049 (9)
C7 0.0324 (12) 0.0297 (12) 0.0193 (10) −0.0090 (10) 0.0024 (9) −0.0051 (9)
C8 0.0309 (12) 0.0319 (13) 0.0218 (11) −0.0089 (10) 0.0049 (9) −0.0084 (10)
C9 0.0250 (10) 0.0275 (11) 0.0211 (10) −0.0097 (9) 0.0023 (8) −0.0070 (9)
C10 0.0238 (10) 0.0281 (12) 0.0222 (11) −0.0096 (9) 0.0013 (8) −0.0091 (9)
C11 0.0219 (10) 0.0275 (11) 0.0213 (10) −0.0073 (9) 0.0004 (8) −0.0080 (9)
C12 0.0244 (10) 0.0282 (12) 0.0257 (11) −0.0056 (9) −0.0005 (9) −0.0069 (10)
C13 0.0269 (11) 0.0279 (12) 0.0230 (11) −0.0080 (9) −0.0018 (9) −0.0036 (9)
C14 0.0229 (10) 0.0259 (11) 0.0193 (10) −0.0083 (9) −0.0014 (8) −0.0040 (9)
C15 0.0243 (10) 0.0292 (12) 0.0191 (10) −0.0103 (9) 0.0006 (8) −0.0036 (9)
C16 0.0248 (10) 0.0287 (12) 0.0179 (10) −0.0099 (9) 0.0007 (8) −0.0035 (9)
C17 0.0305 (11) 0.0362 (13) 0.0197 (11) −0.0074 (10) 0.0033 (9) −0.0068 (10)
C18 0.0333 (12) 0.0366 (13) 0.0202 (11) −0.0041 (10) 0.0029 (9) −0.0085 (10)
C19 0.0243 (10) 0.0290 (12) 0.0217 (11) −0.0064 (9) 0.0019 (8) −0.0091 (9)
C20 0.0232 (10) 0.0288 (12) 0.0249 (11) −0.0072 (9) 0.0009 (9) −0.0082 (10)
C51 0.0384 (13) 0.0414 (15) 0.0207 (11) −0.0202 (12) −0.0057 (10) 0.0014 (11)
C52 0.0312 (12) 0.0362 (13) 0.0175 (10) −0.0137 (10) −0.0020 (9) −0.0039 (10)
C53 0.0349 (13) 0.0457 (16) 0.0378 (14) −0.0124 (12) 0.0019 (11) −0.0196 (12)
C54 0.0331 (13) 0.0645 (19) 0.0391 (15) −0.0219 (13) 0.0060 (11) −0.0218 (14)
C55 0.0464 (15) 0.0505 (17) 0.0279 (13) −0.0288 (13) 0.0011 (11) −0.0104 (12)
C56 0.0460 (15) 0.0415 (15) 0.0306 (13) −0.0152 (12) −0.0032 (11) −0.0124 (12)
C57 0.0314 (12) 0.0405 (14) 0.0249 (12) −0.0099 (11) −0.0016 (9) −0.0099 (11)
C101 0.0243 (10) 0.0265 (11) 0.0204 (10) −0.0082 (9) 0.0034 (8) −0.0051 (9)
C102 0.0293 (11) 0.0308 (12) 0.0254 (11) −0.0081 (10) −0.0004 (9) −0.0096 (10)
C103 0.0390 (13) 0.0303 (13) 0.0266 (12) −0.0060 (11) 0.0036 (10) −0.0112 (10)
C104 0.0299 (12) 0.0299 (13) 0.0329 (13) −0.0039 (10) 0.0078 (10) −0.0064 (11)
C105 0.0250 (11) 0.0379 (14) 0.0345 (13) −0.0103 (10) 0.0018 (10) −0.0100 (11)
C106 0.0274 (11) 0.0334 (13) 0.0288 (12) −0.0112 (10) 0.0028 (9) −0.0115 (10)
C201 0.0254 (11) 0.0326 (12) 0.0218 (11) −0.0049 (9) −0.0013 (9) −0.0099 (10)
C202 0.0280 (11) 0.0344 (13) 0.0306 (12) −0.0071 (10) −0.0013 (10) −0.0113 (11)
C203 0.0340 (13) 0.0359 (14) 0.0337 (13) −0.0036 (11) −0.0062 (10) −0.0144 (11)
C204 0.0304 (12) 0.0461 (16) 0.0336 (13) 0.0036 (11) −0.0042 (10) −0.0200 (12)
C205 0.0243 (11) 0.0518 (17) 0.0403 (15) −0.0053 (11) 0.0039 (11) −0.0174 (13)
C206 0.0276 (12) 0.0398 (14) 0.0383 (14) −0.0093 (11) 0.0025 (10) −0.0144 (12)

Geometric parameters (Å, °)

Ni—N21 1.9224 (19) C15—C16 1.371 (3)
Ni—N23 1.9308 (19) C15—H15 0.9500
Ni—N22 1.9343 (18) C16—C17 1.432 (3)
Ni—N24 1.9368 (18) C17—C18 1.344 (3)
O1—C51 1.314 (4) C17—H17 0.9500
O1—C58 1.434 (5) C18—C19 1.446 (3)
O1—H51A 0.5664 C18—H18 0.9500
C58—H58A 0.9800 C19—C20 1.384 (3)
C58—H58B 0.9800 C20—C201 1.496 (3)
C58—H58C 0.9800 C51—C52 1.529 (3)
O1A—C51 1.336 (4) C51—H51 1.0000
O1A—C58A 1.440 (6) C51—H51A 1.0000
C58A—H58D 0.9800 C52—C57 1.387 (3)
C58A—H58E 0.9800 C52—C53 1.388 (3)
C58A—H58F 0.9800 C53—C54 1.394 (4)
N21—C1 1.383 (3) C53—H53 0.9500
N21—C4 1.387 (3) C54—C55 1.384 (4)
N22—C9 1.380 (3) C54—H54 0.9500
N22—C6 1.390 (3) C55—C56 1.381 (4)
N23—C14 1.377 (3) C55—H55 0.9500
N23—C11 1.379 (3) C56—C57 1.384 (4)
N24—C16 1.376 (3) C56—H56 0.9500
N24—C19 1.382 (3) C57—H57 0.9500
C1—C20 1.393 (3) C101—C102 1.398 (3)
C1—C2 1.432 (3) C101—C106 1.398 (3)
C2—C3 1.352 (3) C102—C103 1.387 (3)
C2—H2 0.9500 C102—H102 0.9500
C3—C4 1.440 (3) C103—C104 1.389 (4)
C3—H3 0.9500 C103—H103 0.9500
C4—C5 1.392 (3) C104—C105 1.383 (3)
C5—C6 1.391 (3) C104—H104 0.9500
C5—C51 1.524 (3) C105—C106 1.384 (3)
C6—C7 1.443 (3) C105—H105 0.9500
C7—C8 1.350 (3) C106—H106 0.9500
C7—H7 0.9500 C201—C202 1.390 (3)
C8—C9 1.436 (3) C201—C206 1.394 (3)
C8—H8 0.9500 C202—C203 1.391 (3)
C9—C10 1.392 (3) C202—H202 0.9500
C10—C11 1.385 (3) C203—C204 1.381 (4)
C10—C101 1.490 (3) C203—H203 0.9500
C11—C12 1.441 (3) C204—C205 1.386 (4)
C12—C13 1.350 (3) C204—H204 0.9500
C12—H12 0.9500 C205—C206 1.385 (3)
C13—C14 1.428 (3) C205—H205 0.9500
C13—H13 0.9500 C206—H206 0.9500
C14—C15 1.375 (3)
N21—Ni—N23 179.60 (8) C16—C17—H17 126.4
N21—Ni—N22 89.80 (8) C17—C18—C19 106.9 (2)
N23—Ni—N22 89.88 (8) C17—C18—H18 126.6
N21—Ni—N24 90.21 (8) C19—C18—H18 126.6
N23—Ni—N24 90.10 (8) N24—C19—C20 124.8 (2)
N22—Ni—N24 179.66 (8) N24—C19—C18 110.0 (2)
C51—O1—C58 113.3 (3) C20—C19—C18 125.0 (2)
C51—O1—H51A 45.3 C19—C20—C1 121.4 (2)
C58—O1—H51A 136.1 C19—C20—C201 119.7 (2)
C51—O1A—C58A 114.3 (4) C1—C20—C201 118.6 (2)
O1A—C58A—H58D 109.5 O1—C51—O1A 80.5 (2)
O1A—C58A—H58E 109.5 O1—C51—C5 116.8 (2)
H58D—C58A—H58E 109.5 O1A—C51—C5 117.0 (2)
O1A—C58A—H58F 109.5 O1—C51—C52 115.3 (2)
H58D—C58A—H58F 109.5 O1A—C51—C52 117.1 (2)
H58E—C58A—H58F 109.5 C5—C51—C52 108.33 (19)
C1—N21—C4 105.40 (18) O1—C51—H51 105.1
C1—N21—Ni 126.87 (15) C5—C51—H51 105.1
C4—N21—Ni 127.52 (15) C52—C51—H51 105.1
C9—N22—C6 105.75 (17) O1A—C51—H51A 104.2
C9—N22—Ni 127.32 (15) C5—C51—H51A 104.2
C6—N22—Ni 126.94 (15) C52—C51—H51A 104.2
C14—N23—C11 104.96 (18) H51—C51—H51A 128.8
C14—N23—Ni 127.10 (14) C57—C52—C53 118.9 (2)
C11—N23—Ni 127.79 (15) C57—C52—C51 119.5 (2)
C16—N24—C19 105.15 (18) C53—C52—C51 121.5 (2)
C16—N24—Ni 126.83 (15) C52—C53—C54 120.3 (3)
C19—N24—Ni 128.03 (15) C52—C53—H53 119.9
N21—C1—C20 126.4 (2) C54—C53—H53 119.9
N21—C1—C2 110.34 (19) C55—C54—C53 120.2 (3)
C20—C1—C2 122.6 (2) C55—C54—H54 119.9
C3—C2—C1 107.1 (2) C53—C54—H54 119.9
C3—C2—H2 126.4 C56—C55—C54 119.6 (3)
C1—C2—H2 126.4 C56—C55—H55 120.2
C2—C3—C4 107.3 (2) C54—C55—H55 120.2
C2—C3—H3 126.3 C55—C56—C57 120.2 (3)
C4—C3—H3 126.3 C55—C56—H56 119.9
N21—C4—C5 124.7 (2) C57—C56—H56 119.9
N21—C4—C3 109.72 (19) C56—C57—C52 120.8 (2)
C5—C4—C3 125.4 (2) C56—C57—H57 119.6
C6—C5—C4 121.2 (2) C52—C57—H57 119.6
C6—C5—C51 119.7 (2) C102—C101—C106 118.5 (2)
C4—C5—C51 119.0 (2) C102—C101—C10 121.4 (2)
N22—C6—C5 125.21 (19) C106—C101—C10 120.0 (2)
N22—C6—C7 109.45 (19) C103—C102—C101 120.5 (2)
C5—C6—C7 125.1 (2) C103—C102—H102 119.7
C8—C7—C6 107.3 (2) C101—C102—H102 119.7
C8—C7—H7 126.4 C102—C103—C104 120.3 (2)
C6—C7—H7 126.4 C102—C103—H103 119.9
C7—C8—C9 107.3 (2) C104—C103—H103 119.9
C7—C8—H8 126.3 C105—C104—C103 119.7 (2)
C9—C8—H8 126.3 C105—C104—H104 120.2
N22—C9—C10 125.3 (2) C103—C104—H104 120.2
N22—C9—C8 110.0 (2) C104—C105—C106 120.3 (2)
C10—C9—C8 124.1 (2) C104—C105—H105 119.8
C11—C10—C9 121.4 (2) C106—C105—H105 119.8
C11—C10—C101 117.1 (2) C105—C106—C101 120.7 (2)
C9—C10—C101 121.2 (2) C105—C106—H106 119.6
N23—C11—C10 125.6 (2) C101—C106—H106 119.6
N23—C11—C12 110.31 (19) C202—C201—C206 118.9 (2)
C10—C11—C12 123.9 (2) C202—C201—C20 120.3 (2)
C13—C12—C11 106.7 (2) C206—C201—C20 120.8 (2)
C13—C12—H12 126.6 C203—C202—C201 120.4 (2)
C11—C12—H12 126.6 C203—C202—H202 119.8
C12—C13—C14 107.1 (2) C201—C202—H202 119.8
C12—C13—H13 126.4 C204—C203—C202 120.2 (2)
C14—C13—H13 126.4 C204—C203—H203 119.9
C15—C14—N23 124.6 (2) C202—C203—H203 119.9
C15—C14—C13 124.2 (2) C203—C204—C205 119.8 (2)
N23—C14—C13 110.83 (19) C203—C204—H204 120.1
C16—C15—C14 123.2 (2) C205—C204—H204 120.1
C16—C15—H15 118.4 C206—C205—C204 120.2 (2)
C14—C15—H15 118.4 C206—C205—H205 119.9
C15—C16—N24 125.3 (2) C204—C205—H205 119.9
C15—C16—C17 123.8 (2) C205—C206—C201 120.5 (2)
N24—C16—C17 110.6 (2) C205—C206—H206 119.8
C18—C17—C16 107.3 (2) C201—C206—H206 119.8
C18—C17—H17 126.4
N22—Ni—N21—C1 −166.05 (18) C14—C15—C16—N24 6.8 (4)
N24—Ni—N21—C1 13.61 (18) C14—C15—C16—C17 −166.5 (2)
N22—Ni—N21—C4 20.04 (18) C19—N24—C16—C15 −173.9 (2)
N24—Ni—N21—C4 −160.30 (18) Ni—N24—C16—C15 6.0 (3)
N21—Ni—N22—C9 163.03 (18) C19—N24—C16—C17 0.1 (2)
N23—Ni—N22—C9 −16.72 (18) Ni—N24—C16—C17 −179.93 (15)
N21—Ni—N22—C6 −17.24 (18) C15—C16—C17—C18 172.1 (2)
N23—Ni—N22—C6 163.01 (18) N24—C16—C17—C18 −2.0 (3)
N22—Ni—N23—C14 −163.01 (18) C16—C17—C18—C19 2.9 (3)
N24—Ni—N23—C14 17.33 (18) C16—N24—C19—C20 −172.9 (2)
N22—Ni—N23—C11 11.83 (18) Ni—N24—C19—C20 7.2 (3)
N24—Ni—N23—C11 −167.83 (18) C16—N24—C19—C18 1.7 (2)
N21—Ni—N24—C16 165.54 (19) Ni—N24—C19—C18 −178.24 (16)
N23—Ni—N24—C16 −14.71 (19) C17—C18—C19—N24 −3.0 (3)
N21—Ni—N24—C19 −14.53 (19) C17—C18—C19—C20 171.6 (2)
N23—Ni—N24—C19 165.21 (19) N24—C19—C20—C1 6.7 (4)
C4—N21—C1—C20 169.3 (2) C18—C19—C20—C1 −167.0 (2)
Ni—N21—C1—C20 −5.7 (3) N24—C19—C20—C201 −179.9 (2)
C4—N21—C1—C2 −1.7 (2) C18—C19—C20—C201 6.3 (4)
Ni—N21—C1—C2 −176.72 (15) N21—C1—C20—C19 −7.6 (4)
N21—C1—C2—C3 2.7 (3) C2—C1—C20—C19 162.5 (2)
C20—C1—C2—C3 −168.8 (2) N21—C1—C20—C201 179.0 (2)
C1—C2—C3—C4 −2.4 (3) C2—C1—C20—C201 −11.0 (3)
C1—N21—C4—C5 175.2 (2) C58—O1—C51—O1A 49.5 (4)
Ni—N21—C4—C5 −9.9 (3) C58—O1—C51—C5 165.0 (3)
C1—N21—C4—C3 0.2 (2) C58—O1—C51—C52 −66.1 (4)
Ni—N21—C4—C3 175.18 (15) C58A—O1A—C51—O1 −48.2 (4)
C2—C3—C4—N21 1.4 (3) C58A—O1A—C51—C5 −163.5 (3)
C2—C3—C4—C5 −173.5 (2) C58A—O1A—C51—C52 65.4 (4)
N21—C4—C5—C6 −11.2 (3) C6—C5—C51—O1 −135.6 (3)
C3—C4—C5—C6 163.0 (2) C4—C5—C51—O1 48.1 (3)
N21—C4—C5—C51 165.1 (2) C6—C5—C51—O1A −42.8 (4)
C3—C4—C5—C51 −20.7 (3) C4—C5—C51—O1A 140.9 (3)
C9—N22—C6—C5 −176.1 (2) C6—C5—C51—C52 92.2 (3)
Ni—N22—C6—C5 4.1 (3) C4—C5—C51—C52 −84.1 (3)
C9—N22—C6—C7 −1.0 (2) O1—C51—C52—C57 145.6 (3)
Ni—N22—C6—C7 179.22 (15) O1A—C51—C52—C57 53.5 (4)
C4—C5—C6—N22 14.0 (3) C5—C51—C52—C57 −81.5 (3)
C51—C5—C6—N22 −162.2 (2) O1—C51—C52—C53 −38.2 (4)
C4—C5—C6—C7 −160.3 (2) O1A—C51—C52—C53 −130.4 (3)
C51—C5—C6—C7 23.4 (3) C5—C51—C52—C53 94.7 (3)
N22—C6—C7—C8 −1.6 (3) C57—C52—C53—C54 0.6 (4)
C5—C6—C7—C8 173.5 (2) C51—C52—C53—C54 −175.6 (2)
C6—C7—C8—C9 3.4 (3) C52—C53—C54—C55 0.5 (4)
C6—N22—C9—C10 −168.4 (2) C53—C54—C55—C56 −1.4 (4)
Ni—N22—C9—C10 11.4 (3) C54—C55—C56—C57 1.1 (4)
C6—N22—C9—C8 3.1 (2) C55—C56—C57—C52 0.0 (4)
Ni—N22—C9—C8 −177.11 (15) C53—C52—C57—C56 −0.9 (4)
C7—C8—C9—N22 −4.2 (3) C51—C52—C57—C56 175.4 (2)
C7—C8—C9—C10 167.4 (2) C11—C10—C101—C102 109.2 (3)
N22—C9—C10—C11 5.4 (3) C9—C10—C101—C102 −64.1 (3)
C8—C9—C10—C11 −164.9 (2) C11—C10—C101—C106 −66.3 (3)
N22—C9—C10—C101 178.4 (2) C9—C10—C101—C106 120.5 (2)
C8—C9—C10—C101 8.0 (3) C106—C101—C102—C103 −0.8 (4)
C14—N23—C11—C10 174.9 (2) C10—C101—C102—C103 −176.3 (2)
Ni—N23—C11—C10 −0.8 (3) C101—C102—C103—C104 0.4 (4)
C14—N23—C11—C12 0.4 (2) C102—C103—C104—C105 0.5 (4)
Ni—N23—C11—C12 −175.32 (15) C103—C104—C105—C106 −1.0 (4)
C9—C10—C11—N23 −10.9 (3) C104—C105—C106—C101 0.6 (4)
C101—C10—C11—N23 175.9 (2) C102—C101—C106—C105 0.3 (4)
C9—C10—C11—C12 162.9 (2) C10—C101—C106—C105 175.9 (2)
C101—C10—C11—C12 −10.3 (3) C19—C20—C201—C202 116.7 (3)
N23—C11—C12—C13 0.9 (3) C1—C20—C201—C202 −69.8 (3)
C10—C11—C12—C13 −173.7 (2) C19—C20—C201—C206 −63.7 (3)
C11—C12—C13—C14 −1.8 (3) C1—C20—C201—C206 109.9 (3)
C11—N23—C14—C15 172.7 (2) C206—C201—C202—C203 1.5 (4)
Ni—N23—C14—C15 −11.5 (3) C20—C201—C202—C203 −178.8 (2)
C11—N23—C14—C13 −1.5 (2) C201—C202—C203—C204 0.4 (4)
Ni—N23—C14—C13 174.25 (14) C202—C203—C204—C205 −1.7 (4)
C12—C13—C14—C15 −172.1 (2) C203—C204—C205—C206 1.1 (4)
C12—C13—C14—N23 2.1 (3) C204—C205—C206—C201 0.9 (4)
N23—C14—C15—C16 −4.0 (4) C202—C201—C206—C205 −2.2 (4)
C13—C14—C15—C16 169.5 (2) C20—C201—C206—C205 178.2 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2001).

References

  1. Dahms, K., Senge, M. O. & Bakar, M. B. (2007). Eur. J. Org. Chem. pp. 3833–3848.
  2. Fleischer, E. B., Miller, C. K. & Webb, L. E. (1964). J. Am. Chem. Soc. 86, 2342–2348.
  3. Gallucci, J. C., Swepston, P. N. & Ibers, J. A. (1982). Acta Cryst. B38, 2134–2139.
  4. Hoard, J. L. (1973). Ann. N. Y. Acad. Sci. 206, 18–31. [DOI] [PubMed]
  5. Hope, H. (1994). Prog. Inorg. Chem. 41, 1–19.
  6. Lee, Y. J. & Scheidt, W. R. (1987). Struct. Bonding (Berlin), 64, 1–69.
  7. Rigaku (2007). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  8. Senge, M. O. (2000). The Porphyrin Handbook, Vol. 10, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–218. San Diego: Academic Press.
  9. Senge, M. O., Renner, M. W., Kalisch, W. W. & Fajer, J. (2000). J. Chem. Soc. Dalton Trans. pp. 381–385.
  10. Senge, M. O., Shaker, Y. M., Pintea, M., Ryppa, C., Hatscher, S. S., Ryan, A. & Sergeeva, Y. (2010). Eur. J. Org. Chem. pp. 237–258.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002960/go2001sup1.cif

e-67-0m265-sup1.cif (31.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002960/go2001Isup2.hkl

e-67-0m265-Isup2.hkl (355.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES