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Introduction
In eukaryotic cells, the nuclear envelope (NE) separates the cyto­
plasm and the nucleus, where the chromosomes are confined. 
The NE is composed of a double membrane, the inner and outer 
nuclear membranes, which are connected at particular sites, the 
nuclear pore complexes (NPCs). These mediate all nucleocyto­
plasmic exchanges during interphase (Tran and Wente, 2006).

During cell division cytoplasmic microtubules nucleated 
from the centrosomes need to access mitotic chromosomes in 
order to establish a mitotic spindle and allow proper chromo­
some segregation in the two daughter cells. In vertebrates, this 
is achieved in prophase by nuclear envelope breakdown (NEBD), 
when the NE and its underlying lamina dismantle, whereas the 
NPC constituents—the nucleoporins—are dispersed into the 
mitotic cytoplasm in subcomplexes. At the end of mitosis, these 
soluble complexes and NE components are reused to form new 
NPCs and NEs within the two daughter cells (Antonin et al., 
2008, Kutay and Hetzer, 2008).

A major player in both post-mitotic NPC reassembly and 
de novo assembly of NPCs during interphase is the evolution­
arily conserved Nup107–160 complex, which is stably associ­
ated on both sides of the NPC and is composed of nine subunits 
in metazoans (Nup107, Nup160, Nup133, Nup96, Nup43, 
Nup85, Nup37, Sec13, and Seh1; Doucet et al., 2010; Wozniak 
et al., 2010). In addition, a fraction of the Nup107–160 com­
plex localizes at spindle poles and proximal spindle fibers in 
prometaphase and at kinetochores from early prophase to late 
anaphase in mammalian cells, and throughout reconstituted 
spindles in Xenopus egg extracts (Belgareh et al., 2001; Harel 
et al., 2003; Loïodice et al., 2004; Orjalo et al., 2006). In the 
Xenopus in vitro system, immunodepletion of the entire 
Nup107–160 complex revealed its involvement at late stages of 
mitotic spindle assembly or stabilization (Orjalo et al., 2006). 
In mammalian cells, efficient depletion of this complex from 
kinetochores leads to an altered recruitment of a subset of  
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anchoring of the dynein/dynactin complex to the NE  

in prophase. Nup133 exerts this function through an inter-
action network via CENP-F and NudE/EL. We show that 
this molecular chain is critical for maintaining centrosome 
association with the NE at mitotic entry and contributes to 
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Results
The N-terminal domain of hNup133 is 
largely dispensable for NPC assembly
Structural studies have revealed that hNup133 is composed  
of an N-terminal domain with a -propeller structure and an  
-solenoid C-terminal domain, which is able to bind to hNup107 
and to localize at NPCs (Berke et al., 2004; Boehmer et al., 
2008; see also Fig. 2 A). Consistently, the C-terminal domain of 
hNup133 (aa 545–1156, subsequently referred as hNup133CTD) 
fused to GFP accumulated at the nuclear rim in interphase and 
colocalized with CENP-F and Hec1 at kinetochores in mitotic 
cells, like the full-length protein (Fig. 1 B and Fig. S1 A).

To dissect the function of the N-terminal domain of 
hNup133, we established HeLa cell lines stably expressing 
RNAi-resistant GFP-hNup133CTD or full-length mouse GFP-
Nup133. After depleting endogenous hNup133 with specific 
siRNAs (Fig. 1 A), these cells allowed us to test which functions 
of Nup133 specifically depend on the N-terminal -propeller 
domain. Depletion of hNup133 is known to cause the degrada­
tion and mislocalization of the other members of the Nup107–
160 complex, as well as a number of additional nucleoporins 
(Walther et al., 2003; Fig. 1, A and B). hNup107 was stabilized 
when depletion of endogenous hNup133 (reduced to 20% as 
compared with the level of hNup133 present in wild-type HeLa 
cells) was rescued with either GFP-hNup133CTD or GFP-
mNup133 (Fig. 1 A). In addition, both Nup133CTD and full-
length Nup133 restored the NE localization of Nup107 and the 
subset of nucleoporins recognized by the mAb414 antibody 
(Fig. 1 B). In some cells solely expressing GFP-hNup133CTD, 
the increased occurrence of cytoplasmic foci labeled by both the 
anti-Nup107 and mAb414 antibodies and likely corresponding to 
annulate lamellae may reflect a contribution of the N-terminal 
domain of Nup133 to some aspects of NPC biogenesis. Consis­
tently, a membrane curvature-sensing domain (ALPS) located 
within the -propeller domain of Nup133 (Drin et al., 2007) 
was recently demonstrated to be dispensable for post-mitotic NPC 
formation but required for the incorporation of the Nup107–160 
complex into newly assembled NPCs during interphase (Doucet 
et al., 2010). Nevertheless, our study showed that the C-terminal 
domain of Nup133 is sufficient to assemble stable Nup107–160 
complexes and that the N-terminal domain of Nup133 is largely 
dispensable for NPC assembly.

The N-terminal domain of hNup133 
mediates the targeting of CENP-F to the 
NPC at the G2/M transition
We previously identified CENP-F as an interaction partner of 
hNup133 by yeast two-hybrid and immunoprecipitation experi­
ments (Zuccolo et al., 2007). Further two-hybrid mapping of 
hNup133 domains showed that the N-terminal domain is neces­
sary to interact with CENP-F whereas, as previously reported, 
the C-terminal domain mediates the interaction with hNup107 
(Belgareh et al., 2001; Berke et al., 2004; Boehmer et al., 2008; 
Fig. 2 A). Moreover, a two-hybrid screen using the N-terminal 
domain of Nup133 (aa 1–500) as a bait identified the C-terminal 
domain of CENP-F as the only prey with very high confidence 

kinetochore constituents and impairs mitotic progression 
(Zuccolo et al., 2007; Platani et al., 2009; Mishra et al., 2010; 
Wozniak et al., 2010).

A mitosis-specific interaction partner of the Nup107–160 
complex is CENP-F (also called mitosin; Zuccolo et al., 2007), 
a large cell cycle–regulated protein that shows a very dynamic 
localization pattern: CENP-F is mainly found in the nucleus in 
G2, then binds to the NE at the G2/M transition before its accu­
mulation at nascent kinetochores in early prophase, where it re­
mains until anaphase onset. CENP-F subsequently localizes to 
the spindle midzone, and finally undergoes proteasome degra­
dation in early G1 (Varis et al., 2006). Several studies, focusing 
on the mitotic role of CENP-F at kinetochores, showed that its 
depletion leads to a checkpoint-dependent mitotic delay, a 
phenotype likely underlying its requirement as an upstream 
recruitment factor for the kinetochore motor proteins dynein 
and CENP-E (Varis et al., 2006; Mao et al., 2010). Although 
CENP-F has also been implicated in centrosomal microtubule 
nucleation in mouse embryonic fibroblasts (Moynihan et al., 
2009) and in timely G2/M progression (Hussein and Taylor, 
2002), nothing was known so far about its specific function at 
the NE at the G2/M transition.

At the G2/M transition, the morphology of the NE is dra­
matically affected by mitotic microtubules, which are nucleated 
by the separating centrosomes that push on the nuclear surface 
and form pocket-like distortions of the NE, also termed pro­
phase NE invaginations (PNEI; Robbins and Gonatas, 1964).  
At that stage, microtubules were found to facilitate NEBD by 
exerting pulling forces on the NE and thus contributing to its 
disruption, and by subsequently clearing the chromatin area 
from the NE membrane network (Beaudouin et al., 2002; Salina 
et al., 2002; Mühlhäusser and Kutay, 2007). The minus end– 
directed motor dynein and its regulatory complex dynactin, 
which interact with microtubules and are recruited to the NE 
specifically in early prophase, were shown to contribute to these 
processes (Busson et al., 1998; Salina et al., 2002; Mühlhäusser 
and Kutay, 2007). More recently, Ndel1 and Lis1, which associ­
ate with cytoplasmic dynein, were reported to localize at the NE 
in prophase cells and to contribute to dynein-dependent PNEI 
(Hebbar et al., 2008).

Although these studies suggested that NEBD and spindle 
formation are closely coordinated processes, how Ndel1 and in 
turn dynein/dynactin bind to the NE and how the localization 
of a subset of proteins at the NE in prophase may help to co­
ordinate proper cell division remained unanswered. Recently,  
Splinter et al. (2010) demonstrated that RanBP2/Nup358,  
a nucleoporin that localizes at the cytoplasmic side of the NPC, 
contributes to dynein/dynactin recruitment and centrosome 
positioning, by recruiting BICD2 to NPCs in G2. We report 
here the characterization of a distinct prophase pathway, operat­
ing via the Nup133 subunit of the Nup107–160 nuclear pore 
subcomplex. We show that the N-terminal domain of Nup133 
recruits CENP-F, which itself tethers NudE/NudEL to NPCs in 
prophase. The contribution of this molecular chain, along with 
the previously described RanBP2/Nup358-BICD2 pathway, in 
maintaining centrosome association with the NE at mitotic 
entry is further characterized.

http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
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phospho-histone H3 staining. All control cells showed a distinct 
NE labeling of CENP-F (Fig. 2, B and C). In GFP-hNup133CTD 
cells treated with scramble siRNAs, CENP-F was localized at 
the NE in prophase, indicating that endogenous Nup133 in this 
cell line provides sufficient binding sites for CENP-F (Fig. 2 C). 
In contrast, knockdown of hNup133 abolished CENP-F local­
ization to the NE (Fig. 2 B). CENP-F accumulation at the NE 

in the interaction (representing 25 out of 38 positive clones),  
indicating that this domain is sufficient to mediate interaction 
with CENP-F (Fig. 2 A).

We next asked whether the NE localization of CENP-F at 
the G2/M transition relies on the N-terminal domain of hNup133. 
Because CENP-F localizes at the NE only at the G2/M transi­
tion, we selected late G2 and prophase HeLa cells based on 

Figure 1.  The N-terminal domain of 
hNup133 is largely dispensable for NPC  
assembly. (A) Control HeLa cells (WT) or 
cell lines stably expressing GFP-hNup133CTD 
or GFP3x-mNup133 were transfected with a 
scramble siRNA or with a hNup133 siRNA 
that does not target hNup133CTD and only 
mildly impacts mNup133 expression. After 3 d, 
whole-cell extracts were analyzed by Western 
blot using anti-hNup133 (which also recog-
nizes mouse Nup133, albeit less efficiently 
than human Nup133) or anti-hNup107 anti
bodies. Anti–-tubulin was used as loading 
control. To allow quantifications, decreasing 
amounts of the reference sample were loaded 
(0.2-, 0.5-, and 1-fold equivalent). (B) Cells 
transfected with siRNAs as in A were fixed 
after 3 d and processed for immunofluores-
cence using anti-Nup107 and mAb414 anti-
bodies. Bar, 20 µm.
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Figure 2.  The N-terminal domain of hNup133 tethers CENP-F at the NE in prophase. (Aa) Schematic representation of hNup133 constructs used in this 
study outlining its previously described -propeller (N-terminal domain, NTD, blue) and -solenoid (C-terminal domain, CTD, red) domains (adapted from 
Berke et al., 2004). (Ab) Yeast two-hybrid interactions between hNup133 (aa 12–1156), hNup133CTD (aa 466–1156) or hNup133NTD (aa 1–500), and 
hNup107 (aa 784–924), or CENP-F (aa 2644–3065) were analyzed as described in Materials and methods. Empty bait and prey vectors were used as 
negative controls (). (B and C) Control HeLa cells (wild-type) or cell lines stably expressing GFP-hNup133CTD or GFP3x-mNup133 were transfected with a 
scramble siRNA (siScr) or with an siRNA duplex targeting the N-terminal domain of human Nup133. Cells were fixed after 3 d and processed for immuno
fluorescence using anti-RanGAP1, anti-CENP-F, and anti–phospho-H3 antibodies. Typical G2/M phospho-H3–positive cells are presented. Bars, 10 µm. 
In C, the anti-RanGAP1 signal is shown for cells on the bottom row. Line scans (with distances in pixels) measuring the intensity of CENP-F (red lines) and 
RanGAP1 (blue lines) reveal the peak of CENP-F that colocalizes with RanGAP1 at the NE in GFP-hNup133CTD treated with the scramble siRNA duplexes 
(left panels) or in GFP3x-mNup133 cells depleted for endogenous Nup133 (right panels), but not in Nup133-depleted GFP-hNup133CTD cells (middle panels). 
In some prophase cells, the bright intranuclear foci reflect the early recruitment of CENP-F at kinetochores.
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the interaction of CENP-F with dynein/dynactin at the NE.  
As anticipated, a fraction of NudE/EL localized at the NE spe­
cifically at the G2/M transition, a stage at which NudE/EL  
already localizes at kinetochores in most cells (Fig. 3 and  
Fig. S2). Both NE and kinetochore targeting of NudE/EL were 
abolished by CENP-F knockdown in HeLa cells (Fig. 3 and  
Fig. S2). Furthermore, the NE localization of the dynactin sub­
unit p150Glued was reduced in prophase cells expressing GFP-
hNup133CTD as the only form of Nup133 (in which CENP-F is 
still expressed but no longer localized at the NE), as well as in 
CENP-F–depleted cells (Fig. 4 A and Fig. S3). Combined de­
pletion of both NudE and NudEL (siNudE/EL) more severely 
reduced p150Glued localization at the NE in prophase (Fig. 4 Ab 
and Fig. S3). Consistent with previous studies (Guo et al., 2006), 
NudE/EL depletion also impaired the recruitment of p150Glued at 
the centrosome. In contrast, centrosomal localization of p150Glued 
was not significantly altered upon depletion of endogenous 
Nup133 in GFP-hNup133CTD cells or in CENP-F–depleted cells 
(Fig. 4 A and Fig. S3).

Together, our results demonstrate that an interaction net­
work starting from the N-terminal domain of Nup133 via CENP-F 
and NudE/EL contributes to the recruitment of dynein/dynactin 

was largely rescued by full-length GFP-mNup133 but not by 
GFP-hNup133CTD (Fig. 2, B and C). Thus CENP-F localization 
to the NE in prophase requires the N-terminal domain of hNup133 
(see Fig. 4 B).

The effect of Nup133 depletion was specific to prophase 
NE localization of CENP-F because its localization at kineto­
chores was not affected under those conditions (Fig. 2, B and C 
and Fig. S1 A). Together with previous studies (Hussein and 
Taylor, 2002), we can conclude that the NPC targeting of CENP-F 
at the G2/M transition is not required for its accumulation at  
kinetochores, but likely has a separate function.

CENP-F anchors dynein/dynactin at the 
nuclear envelope via NudE/EL in prophase
Recent studies have demonstrated a role for CENP-F in indi­
rectly recruiting dynein/dynactin to kinetochores via NudE 
and/or NudEL (also termed Ndel1), two highly related proteins 
that interact with both CENP-F and dynein (Liang et al., 2007; 
Stehman et al., 2007; Vergnolle and Taylor, 2007). Moreover, 
Ndel1, dynein, and dynactin accumulate at the NE in prophase 
cells (Busson et al., 1998; Salina et al., 2002; Hebbar et al., 
2008). We therefore investigated whether NudE/EL could mediate 

Figure 3.  CENP-F depletion impairs the NE localization of 
NudE/EL at the G2/M transition in HeLa cells. HeLa cells 
transfected with scramble or CENP-F siRNA duplexes were 
preextracted, fixed, and stained with anti-NudE/EL, anti- 
RanGAP1, and anti–phospho-H3 antibodies. Bars, 10 µm. 
See also Fig. S2.

http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
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Figure 4.  hNup133 contributes to dynactin anchoring at the NE at the G2/M transition via CENP-F and NudE/EL. (A) GFP-hNup133CTD or GFP3x-mNup133 
cells (a) or wild-type HeLa cells (b) transfected with the indicated siRNA duplexes were processed for immunofluorescence using anti-p150Glued and anti–
phospho-H3 antibodies. Bars, 10 µm. See also Fig. S3. (B) Schematic representation of the interaction networks connecting Nup133 to dynein/dynactin. 
Proteins are represented on approximate scale except for CENP-F. Boxes indicate the minimal domains involved in the interactions between Nup133 and 
CENP-F (black boxes; this paper and Zuccolo et al., 2007), CENP-F and NudE/EL (gray boxes), and between NudE/EL and dynein (dashed area overlap-
ping with the CENP-F interaction domain; Liang et al., 2007; Stehman et al., 2007; Vergnolle and Taylor, 2007). Although not represented on this scheme, 
association of CENP-F with the pool of Nup133 localized on the nuclear side of NPCs cannot be excluded.

http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
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where chromosomes (H2B-mCherry) and microtubule plus tips 
(EB3-GFP) were fluorescently labeled. The increased levels 
of EB3 and its accumulation around centrosomes in late  
G2/prophase cells (Ban et al., 2009) enabled us to identify cells 
about to enter mitosis.

Five different methods to disrupt the NPC–dynein/dynactin 
interaction, namely hNup133 depletion in the GFP-hNup133CTD 
cell line (n = 10 cells recorded at high resolution), transfection 
of siRNAs targeting CENP-F (n = 14) or NudE/EL (n = 6), or 

represented by p150Glued to the NE in late G2/prophase HeLa  
cells (Fig. 4 B).

The Nup133–CENP-F–NudE/EL–dynein/
dynactin network tethers the centrosomes 
to the nucleus in prophase
To understand the function of the Nup133-anchored dynein/ 
dynactin network at the nuclear pore in prophase, we assayed 
mitotic progression by confocal time-lapse microscopy in cells 

Figure 5.  Interfering with Nup133-anchored 
dynein/dynactin impairs the tethering of 
centrosomes to the NE. (A) Time-lapse imag-
ing of HeLa cells expressing EB3-GFP (green) 
and H2B-mCherry (red) and transfected with 
CENP-F (c and c), NudE/EL siRNA duplexes 
(d and d), or with a CFP-p50/dynamitin con-
struct (e), or of cells stably expressing GFP-
hNup133CTD treated with hNup133 siRNAs 
and subsequently transfected with plasmids 
encoding EB3-GFP and H2B-mCherry (b). Time 
(in min:sec) was set at 0:00 when centrosome 
splitting just became detectable. Bars, 10 µm. 
See also Videos 1–6. (B) Tracks representing 
centrosome (CTR) movements in a control and 
a CENP-F–depleted cell (see Aa, Ac, and 
Videos 1 and 4). Trajectories before centrosome 
separation (red) and tracks of the separated 
centrosomes (blue and green) were super
imposed on a schematic representation of the 
cell border and nuclear position (gray shading) 
at the beginning of the video. White and black 
dots indicate the positions of centrosomes at 
the beginning and at the end of the videos, re-
spectively. (C) Analysis of the centrosome–NE 
distance over time in HeLa cells expressing 
EB3-GFP and H2B-mCherry and treated with 
scramble or CENP-F siRNA duplexes. For each 
cell entering mitosis, the maximum distance 
between the centrosomes and the NE reached 
during the G2/M transition was plotted over 
the time centrosomes spent >3 µm away from 
the NE. Each dot represents a single cell. The 
number of cell quantified is indicated.

http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
4
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videos performed at lower resolution revealed a significant  
(>3 µm) detachment of centrosomes from the NE in 70% of 
CENP-F–depleted prophase cells, with more than 50% of the 
cells displaying at least one centrosome >3 µm apart from the 
NE for at least 5 min, a phenotype only rarely observed in cells 

overexpression of dominant-negative dynactin inhibitors,  
CFP-p50/dynamitin (n = 10) and dsRed-p150cc1 (n = 9), all 
frequently caused centrosomes to detach from the nuclear pe­
riphery at the G2/M transition, albeit to various extents (Fig. 5, 
Videos 1–6, and unpublished data). Quantitative analysis of 

Figure 6.  The Nup133-anchored network 
tethers centrosomes to the NPCs specifically 
in prophase. (A) GFP3x-mNup133 or GFP-
hNup133CTD cells treated for 3 d with scramble 
or hNup133 siRNAs (a), HeLa cells treated for 
2 d with scramble, CENP-F, or NudE/EL siRNA 
duplexes (b), or HeLa cells transfected with a  
GFP-p50/dynamitin or a DsRec-p150cc1 
construct (c) were processed for immunofluo-
rescence using anti-pericentrin and anti– 
phospho-H3 antibodies. In b, cells were incu-
bated before fixation with 40 µM BrdU for 3 h 
and anti-BrdU antibodies were further used. 
Bars, 10 µm. (B) Distances between centro-
somes and the NE were measured on cells pro-
cessed as in A. Prophase cells were identified 
by phospho-H3 staining and S/early G2 cells 
as BrdU-positive cells after a 3-h pulse with BrdU  
(G1 cells were not analyzed because centri-
oles were reported to be very mobile at that 
stage of the cell cycle; Piel et al., 2000). 
Distances are represented as box-plots using  
KaleidaGraph (see Materials and methods). 
The black and red bars indicate the median 
and mean values, respectively. The total 
number of cells quantified is indicated (n).  
***, P < 105; **, P < 103; ns, P > 0.1 ob-
tained using the Student’s t test.

http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
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was indistinguishable in S and early G2 between control cells 
and cells depleted for either CENP-F or NudE/EL (Fig. 6,  
Ab and B). Together, our data show that Nup133-mediated NE 
recruitment of dynein/dynactin is required to anchor centro­
somes to the NE at the G2/M transition.

Centrosome detachment from the NE in 
CENP-F or NudE/EL-depleted cells requires 
microtubules and Eg5 activity
Tracking centrosomes in cells in which the Nup133-anchored 
dynein/dynactin pathway is impaired revealed that centrosomes 
moved in a directional manner with velocities around 0.4 µm/min, 
although peak velocities up to 0.8 µm/min were observed (Fig. 5 B), 
consistent with microtubule motor-mediated movements. In addi­
tion, centrosome movement appeared to be most pronounced 
after centrosome separation (Fig. 5, A and B), suggesting the 
implication of Eg5, a plus end–directed kinesin involved in cen­
trosome separation (Tanenbaum et al., 2008; Splinter et al., 2010). 
Live-cell analysis revealed that acute depolymerization of micro­
tubules by nocodazole at the onset of prophase microtubule 
nucleation as well as acute inhibition of Eg5 with the specific in­
hibitor monastrol (Mayer et al., 1999) largely abolished centro­
some movement in CENP-F–depleted cells (Fig. S4). These re­
sults were confirmed quantitatively in fixed CENP-F–depleted 
prophase cells (Fig. 7, A and B). This quantitative analysis also re­
vealed that centrosome detachment was strongly reduced, albeit 
not completely abolished, upon nocodazole or monastrol treat­
ment of NudE/EL-depleted prophase cells (Fig. 7, A and B).  
Together, our data show that microtubules and Eg5 activity move 
centrosomes away from the nucleus in prophase cells if they are 
not tethered by the Nup133-anchored dynein/dynactin network.

treated with scrambled siRNAs (Fig. 5 C). In cells solely ex­
pressing GFP-hNup133CTD or depleted for CENP-F, detachment 
from the NE could sometimes be detected before centrosome 
separation (Videos 2 and 4) but became more pronounced once 
centrosomes started to move apart (Fig. 5, Ab–Ac and B; 
Videos 2–4). In contrast, unseparated centrosomes were more 
frequently observed far away from the NE, sometimes reaching 
cell borders, in NudE/EL-depleted cells (Fig. 5, Ad–d; Video 5) 
or, consistent with a recent study by Splinter et al. (2010), in 
cells overexpressing CFP-p50/dynamitin (Fig. 5 Ae; Video 6). 
Analysis of cells recorded over 24 h (Fig. 5 Ad’) indicated that 
NudE/EL depletion induces either an earlier detachment of cen­
trosomes from the NE or a delayed recruitment of EB3-GFP to 
centrosomes in prophase (a feature reminiscent of the decreased 
recruitment of p150Glued previously observed in these cells; Guo  
et al., 2006; Fig. 4 Ab and Fig. S3). Nevertheless, as observed in 
other conditions that disrupt the NPC–dynein/dynactin inter­
action (this paper and Splinter et al., 2010), centrosome move­
ment away from the NE specifically occurred at the G2/M 
transition in NudE/EL-depleted cells (Fig. 5 Ad’).

We confirmed and further quantitated these phenotypes by 
measuring the centrosome–NE distance in fixed cells at various 
stages of the cell cycle (Fig. 6). In control cells centrosomes 
were rarely >2 µm away from the nuclear periphery in prophase. 
The mean centrosome–NE distance was significantly increased 
in prophase cells solely expressing GFP-hNup133CTD or de­
pleted for CENP-F (Fig. 6, Aa–b and B). Consistent with our 
observations on live cells, this phenotype was even more pro­
nounced upon depletion of NudE/EL (Fig. 6, Ab and B) or upon 
overexpression of CFP-p50 or DsRed-p150cc1 (Fig. 6, Ac and B; 
see also Splinter et al., 2010). In contrast, centrosome position 

Figure 7.  Centrosome movement away from the nuclear periphery requires microtubules and Eg5 activity. (A) HeLa cells transfected with scramble, CENP-F,  
or NudE/EL siRNA duplexes were either fixed (top row) or incubated with 20 µM nocodazole for 30 min or with 100 µM monastrol for 1 h before 
fixation. They were then stained with anti-pericentrin and anti–Phospho-H3 antibodies. Note that under those conditions, all phospho-H3–positive cells 
had entered prophase in the absence of microtubules or before Eg5 activation. All images arise from a single experimental dataset, although they were 
captured at different times using slightly different acquisition settings. Either a unique plane or maximum intensity projections of stacks are presented, as 
needed, depending on the locations of the centrosomes relative to the focal plane. Bar, 10 µm. (B) Distances between centrosomes and the NE, measured 
in phospho-H3–positive cells processed as above, are represented as box-plots using KaleidaGraph (see Materials and methods). The black and red bars 
indicate the median and mean values, respectively. The total number of cells quantified is indicated (n). ***, P < 105; **, P < 103; *, P < 0.05 obtained 
using the Student’s t test.

http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
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the NE (Fig. S5). Although this might reflect the existence of 
distinct modes of centrosome tethering among various cell 
lines, we could not exclude a nonoptimal depletion of BICD2 in 
HeLa cells (Fig. S5 B, see also the following paragraphs and 
Discussion). We thus decided to perform these studies in the 
U2OS cell line, used by Splinter et al. (2010), which has a more 
robust centrosome position adjacent to the nucleus (compare 
control cells in Fig. 6 B with those in Fig. 8 A) and sustains two 
successive rounds of siRNA depletion.

Analysis of prophase U2OS cells revealed that CENP-F 
depletion leads to a mild detachment of the centrosome from 

The Nup133–CENP-F–NudE/EL network 
tethers centrosomes to the NE in  
G2/prophase cells without interfering with 
the RanBP2–BICD2-dependent pathway
Because two distinct NPC-anchored networks (Nup133–CENP-F– 
NudE/EL, this study; and RanBP2-BICD2, Splinter et al., 
[2010]) contribute to dynein/dynactin recruitment at the NE and 
to centrosome positioning in G2/prophase cells, we next inves­
tigated whether there could be a cross talk between these two 
pathways. Unlike anticipated, BICD2 depletion in HeLa cells 
did not induce a significant detachment of the centrosomes from 

Figure 8.  Relationship between the Nup133–CENP-F–NudE/EL and RanBP2–BICD2 pathways in centrosome tethering to the NE in U2OS cells. (A) Dis-
tances between centrosomes and nuclear periphery, measured in phospho-H3–positive U2OS cells treated for 3 d with scramble, CENP-F, BICD2, a combi-
nation of CENP-F and BICD2, or NudE/EL siRNA duplexes. Distances are represented as box-plots using KaleidaGraph (see Materials and methods). The 
black and red bars indicate the median and mean values, respectively. The total number of cells quantified is indicated (n). ***, P < 105; **, P < 103; 
ns, P > 0.1 obtained using the Student’s t test. (B) Extracts from U2OS cells treated with the indicated siRNA duplexes were analyzed by Western blot using 
anti-BICD2 antibodies. Decreasing amounts of the reference sample (scramble siRNA) were loaded (1-, 0.5-, and 0.25-fold equivalent) and anti–-tubulin 
was used as loading control. (C and D) U2OS cells transfected with the indicated siRNA duplexes were preextracted, fixed, and stained with anti–CENP-F 
and anti-RanGAP1 (C) or anti-BICD2 (D), along with anti–phospho-H3 antibodies and DAPI. Bars, 10 µm.

http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
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from the nuclear periphery at NEBD onset (1 cell; unpublished 
data). Despite these early defects, a bipolar spindle eventually 
formed after NEBD, and chromosomes aligned on the metaphase 
plate and were correctly segregated to the two daughter cells. 
Time-lapse analysis of a broader number of Nup133CTD cells sta­
bly expressing GFP-CENP-A and treated with either scrambled 
or Nup133 siRNA duplexes did not reveal any significant mitotic 
delay or chromosome segregation defect in Nup133-depleted 
cells as compared with control cells (Fig. 9 B). These data indi­
cate that, unlike recently reported for cells with multipolar spin­
dle poles (Ganem et al., 2009; Silkworth et al., 2009), the mild 
and transient detachment of centrosomes recorded in cells lack­
ing the N-terminal domain of Nup133 does not, per se, lead to 
major alterations of cell cycle progression and chromosome 
missegregation (see Discussion).

Immunofluorescence analysis of mitotic NudE/EL-depleted 
U2OS cells revealed similar albeit more drastic mitotic defects: 
in most prometaphase cells, at least one centrosome was away 
from the chromosome mass, and major alteration of the mitotic 
spindles was also apparent upon RanGAP1 staining (Fig. 9 C). 
Nevertheless, 50% of the NudE/EL-depleted prometaphase/
metaphase cells displayed a bipolar spindle (Fig. 9 C), indicating 
that even major alteration of centrosome positioning can be sub­
sequently compensated by additional mechanisms to ensure  
bipolar spindle formation (see Discussion). Because of the addi­
tional contribution of NudE/EL to kinetochore functions (Liang 
et al., 2007; Stehman et al., 2007; Vergnolle and Taylor, 2007), 
the specific contribution of centrosome positioning to chromo­
some segregation could not be analyzed in these cells. However, 
the altered centrosome positioning in mitosis likely contributes, 
along with the reported kinetochore alterations, to the defects in 
metaphase chromosome alignment previously recorded upon 
NudE depletion (Vergnolle and Taylor, 2007).

Discussion
Nup133 is the base of a molecular network 
that tethers dynein/dynactin to the NE at 
the G2/M transition in mammalian cells
The Nup107–160 complex had previously been implicated at 
various stages of the cell cycle, notably spindle assembly, proper 
kinetochore function, cytokinesis, NPC reassembly at mitotic 
exit, and de novo NPC assembly in interphase (Doucet et al., 
2010; Wozniak et al., 2010). This study uncovers an additional 
function, carried by a structurally defined domain of the Nup133 
subunit, at the G2/M transition.

The CENP-F–NudE/EL–dynein/dynactin network, defined 
using biochemical and two-hybrid approaches had so far been 
shown to function at kinetochores in prometaphase (Liang  
et al., 2007; Stehman et al., 2007; Vergnolle and Taylor, 2007). We 
show here that the same molecular network is also used at the nu­
clear pore to tether centrosomes to the nucleus just before NEBD. 
The nucleoporin Nup133—structurally embedded in the NPC via 
its C-terminal -solenoid domain (Boehmer et al., 2008)— 
anchors the C-terminal domain of CENP-F (residues 2644– 
3065; Zuccolo et al., 2007) via its N-terminal domain. CENP-F in 
turn uses a second, more central domain (residues 2122–2447; 

the NE, similar to the one recorded in HeLa cells (Fig. 8 A).  
As already observed in HeLa cells (Figs. 6 and 7), NudE/EL de­
pletion led to a more pronounced phenotype as compared with 
CENP-F or BICD2 depletion (Fig. 8 A). In this cell line, how­
ever, NudE/EL depletion phenocopied the phenotypes observed 
upon dynein heavy chain depletion or overexpression of CFP-p50 
or DsRed-p150cc1 (Splinter et al., 2010 and Fig. 6 B). Some­
how unexpectedly, the combined use of siRNAs targeting 
CENP-F and BICD2 did not lead to an additive or synergistic 
effect (Fig. 8 A). Although various cellular mechanisms may 
explain the lack of additive effect (see Discussion), we cannot 
formally rule out interference from multiple siRNA treatments 
done simultaneously as revealed by the slightly less efficient 
depletion of BICD2 under these conditions (Fig. 8, B–D). Immuno­
fluorescence analyses further revealed that perturbation of the 
Nup133-dependent pathway does not significantly affect the 
localization of RanGAP1 whose NPC localization relies on 
RanBP2/Nup358 (Saitoh et al., 1997; Fig. 8 C, see also Fig. 2, 
B and C, Fig. 3 A, and Fig. S3). In addition, neither CENP-F nor 
NudE/EL depletion altered the NE localization of BICD2 (Fig. 8 D 
and Fig. S5). This indicates that the Nup133-anchored network 
does not interfere with the NE recruitment of RanBP2 or BICD2. 
Conversely, BICD2 depletion did not affect the recruitment of 
CENP-F at the NE (Fig. 8 C).

Together, these data reveal the lack of cross talk between 
the Nup133–CENP-F–NudE/EL and RanBP2–BICD2 pathways 
for tethering of centrosomes to the NE at the G2/M transition.

Centrosome tethering to the nucleus at 
the G2/M transition is required for timely 
establishment of a properly positioned 
mitotic spindle
CENP-F or NudE/EL RNAi, as well as overexpression of dyn­
actin subunits, all impair kinetochore assembly and function.  
In contrast, as far as we can judge, the lack of the Nup133  
N-terminal domain did not interfere with kinetochore assembly 
(Fig. S1). The GFP-hNup133CTD cell line thus provided a unique 
tool to specifically assess the consequences of centrosome de­
tachment on spindle assembly and chromosome segregation. 
We assayed these functions in GFP-hNup133CTD cells with fluores­
cently labeled centromeres (GFP-CENP-A) and microtubules 
(mCherry-MAP4; Fig. 9 Aa and Video 7).

Time-lapse analysis of cells lacking the N-terminal domain 
of Nup133 revealed that spindle assembly initiated abnormally to 
various degrees depending on the position of centrosomes rela­
tive to the nucleus before NEBD (Fig. 9 A and Videos 8 and 9; see 
also Fig. 5 A and Video 2). When both centrosomes were on the 
same side and at similar distance from the nucleus, a horseshoe-
shaped spindle-like structure was frequently observed (5 out of 
18 cells; Fig. 9 Ab and Video 8; see also Fig. 5 Ab and Video 2). 
When one centrosome was closer to the NE than the other, micro­
tubules nucleated by the proximal centrosome captured most 
chromosomes, leading to a transient formation of a monopolar 
spindle and sometimes an “isolated centrosome” (6 cells; Fig. 9 
Ac and Video 9). More rarely, the two centrosomes were posi­
tioned on opposite sides of the nucleus, from where they effec­
tively formed a bipolar spindle, despite the increased distance 

http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
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Figure 9.  Centrosome disconnection from the NE causes transiently aberrant spindle structures. (A) Cells stably expressing GFP-hNup133CTD and GFP-
CENP-A (green) were transfected with a plasmid encoding the microtubule-binding protein mCherry-MAP4 (red) and with scramble (a) or hNup133 (b and c) 
siRNAs. Cells were imaged from prophase on. Top panels: mCherry-MAP4 signal; bottom panels: overlay of the mCherry-MAP4 and GFP-CENP-A + 
GFP-hNup133CTD signals (note that the GFP-hNup133CTD signal is hardly detectable over the GFP-CENP-A signal). Time is in min:sec. Times of NEBD, meta-
phase plate formation, and metaphase/anaphase transition are indicated. Bar, 10 µm. See also Videos 7–9. (B) Time spent from chromosome condensa-
tion to metaphase/anaphase transition for cells stably expressing GFP-hNup133CTD and GFP-CENP-A treated with scramble or hNup133 siRNA duplexes 
as indicated. Each dot represents a single cell, and the dashed line represents the average mitotic duration. Cells that display major mitotic defects (red 
dots) or minor chromosome segregation defects (one mis-segregated or lagging chromosome; black dots) are indicated. The number of cell quantified, 
the average mitotic duration, and standard deviation are indicated. ns, the difference between control and Nup133-depleted cells was not statistically 

http://www.jcb.org/cgi/content/full/jcb.201007118/DC1
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(Hebbar et al., 2008). Because kinetochores were frequently 
positive for CENP-F or NudE/EL in cells that also exhibited NE 
localization for these proteins (Fig. 2, B and C, Fig. 3, and Fig. S2), 
we anticipate that this network might be recruited to NPCs later 
in G2 as compared with BICD2. At that stage, the extremely 
stable association of Nup133 with NPCs (Rabut et al., 2004) 
may be required to efficiently counteract the activity of Eg5 that 
pushes the two centrosomes away from the nucleus and apart 
from each other.

Importantly, perturbation of the Nup133-dependent 
pathway did not affect the NPC localization of BICD2 and con­
versely, BICD2 depletion did not affect CENP-F recruitment 
to the NE. This indicates that, as also observed at kineto­
chores (Mao et al., 2010) and at the NE in C. elegans hyp7 
cells (Fridolfsson et al., 2010), two distinct pathways indepen­
dently recruit dynein/dynactin to the NPC in G2/prophase cells. 
These two distinct NPC-anchored pathways are not redundant, 
as inhibition of either results in defects in centrosome–nucleus 
interactions. Although centrosome displacement was less pro­
nounced for either case than for dynein/dynactin inhibition, 
combined RNAi depletion of CENP-F and BICD2 did not lead 
to a more pronounced phenotype as compared with each of the 
single depletions. Although this might possibly be attributed to 
the slightly less efficient depletion of BICD2 under these condi­
tions (Fig. 8, B and C), it may also reflect the presence of counter­
acting forces mediated by kinesin-1 (which also interacts with 
BICD2; Splinter et al., 2010). Indeed, Splinter et al. (2010) pre­
viously reported that combined depletion of BICD2 and dynein 
leads to a less severe defect on centrosome positioning as com­
pared with dynein depletion alone.

The specific recruitment of CENP-F and NudE/EL to the 
NE in prophase and the consequences of their depletion are 
clearly consistent with a role for these proteins at the NE. How­
ever, NudE/EL depletion leads to a more pronounced phenotype 
as compared with CENP-F–depleted cells, notably in U2OS 
cells in which it phenocopies dynein/dynactin inactivation 
(Figs. 5–8). These data suggest the participation of NudE/EL in 
another dynein/dynactin–dependent but CENP-F–independent 
process. Possible hypotheses include: (1) the destabilization of 
BICD2–dynein/dynactin interaction, (2) the contribution of 
NudE/EL to centrosomal functions, such as MT nucleation or 
anchoring (Guo et al., 2006; see also Fig. 4 B), (3) the implication 
in this process of an additional kinesin (in addition to kinesin-1 
and Eg5; see for instance Tsai et al., 2010), or (4) alteration of 
the actin cytoskeleton. Indeed, Whitehead et al. (1996) previously 
reported movements of Eg5-immunoreactive centrosomes that 
frequently impinged on the plasma membrane upon cytochalasin- 
induced disassembly of actin fibers in prophase HeLa cells.

Finally, it is noteworthy that in C. elegans hyp7 cells a 
unique protein (the KASH protein UNC-83) anchors BICD1 
and NUD2 (respectively homologous to mammalian BICD2 

Vergnolle and Taylor, 2007) to bind to NudE/EL (Fig. 4 B). 
These nonoverlapping binding domains suggest that there is a 
direct molecular link from the NPC to NudE/EL, and in turn 
dynein/dynactin using bifunctional interactors. What could reg­
ulate the assembly of this link specifically at the onset of mito­
sis? Interestingly, both the N-terminal domain of hNup133 and the 
interacting C-terminal domain of CENP-F are specifically phos­
phorylated in mitosis (Zhu et al., 1995; Nousiainen et al., 2006; 
Glavy et al., 2007). It is therefore likely that, as recently re­
ported for Nudel1 or p150Glued (Hebbar et al., 2008; Li et al., 
2010), mitotic phosphorylation of Nup133, CENP-F, or both, 
temporally regulates the recruitment of CENP-F, and in turn 
NudE/EL and dynein/dynactin to the NPC at the G2/M transition.

Metazoans have evolved multiple, distinct 
cell cycle–specific pathways to tether the 
centrosome to the nucleus
Among the multiple functions of dynein and dynactin (Vallee  
et al., 2004), centrosome tethering to the NE appears to be an 
evolutionarily conserved function that relies, at least in Cae-
norhabditis elegans and mammalian cells, on dynein localiza­
tion at the NE (Gönczy et al., 1999; Robinson et al., 1999; 
Malone et al., 2003; Zhang et al., 2009; Splinter et al., 2010; 
and this paper). The molecular details of this regulation are, 
however, different. In C. elegans early embryos, ZYG12, a di­
vergent KASH domain protein anchored in the outer nuclear 
membrane by the inner nuclear membrane protein SUN-1, is 
responsible for dynein localization and centrosome tethering to 
the NE (Malone et al., 2003). However, ZYG12 is not present in 
C. elegans hyp7 cells in which a distinct KASH domain protein, 
UNC-83, contributes to nuclear migration by recruiting dynein 
to the NE through two distinct adaptor complexes (Fridolfsson 
et al., 2010). Similarly, mammals have apparently evolved dis­
tinct pathways to link dynein and/or centrosomes to the nucleus. 
In human dermal fibroblasts, constitutive centrosome–NE  
association was proposed to rely on emerin and microtubules 
(Salpingidou et al., 2007); however, this pathway does not sig­
nificantly contribute to centrosome tethering in HeLa cells (un­
published data). More recently, SUN1/2 and the KASH domain 
proteins Syne/Nesprin-1/2 were shown to mediate the coupling 
between the nucleus and the centrosome in primary cultured 
neurons or glial cells (Zhang et al., 2009). Our data and the re­
cent study from Splinter et al. (2010) reveal the existence of 
novel pathways for dynein/dynactin recruitment and centrosome 
positioning in G2/prophase cells that rely on nucleoporins rather 
than on SUN/KASH pairs. RanBP2/Nup358, a nucleoporin that 
localizes to the cytoplasmic side of the NPC, was demonstrated 
to contribute to this process by recruiting BICD2 to NPCs from 
early G2 on (Splinter et al., 2010). We show here that Nup133 
anchors CENP-F that in turn recruits NudE/EL, recently shown 
to contribute to dynein localization at the NE in prophase cells 

significant as determined using the Student’s t test. (C) Analysis of centrosome localization (arrows) in prometaphase and metaphase U2OS cells treated 
with scramble or NudE/EL siRNA duplexes. Cells were fixed and then stained with anti-pericentrin (red), anti–phospho-H3 (green), and RanGAP1 (gray) 
antibodies. RanGAP1 that localizes at NPCs in interphase and on the mitotic spindle in mitosis was used to simultaneously assess NPC disassembly and 
spindle formation. Representative cells at various stages of prometaphase and metaphase are presented. The percentage of mitotic cells displaying the 
indicated phenotypes is indicated. Bar, 10 µm.
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cloned into the pLex12 vector and the pB29-hNup133NTD plasmid were 
transformed in L40Gal4 strain, while hNup107 (aa 784–924) and 
CENP-F (aa 2644–3065; Zuccolo et al., 2007) fused in frame with GAL4 
AD in pP6 vectors (obtained from Hybrigenics) were transformed into the 
Y187 strain as described previously (Belgareh et al., 2001). Bait and prey 
strains were mated in rich medium, and diploids were grown on minimum 
medium lacking leucine, tryptophan, and histidine and containing 1 mM 
3-amino-1,2,4-triazole (LWH + 1 mM 3AT).

Cell culture and plasmid transfections
HeLa and U2OS cells were grown at 37°C in DME (Life Technologies) sup-
plemented with 10% fetal calf serum, 1% l-glutamine, 100 µg/ml strepto-
mycin, and 100 U/ml penicillin. Plasmid transfections were performed 
using Lipofectamine 2000 (Invitrogen). To establish HeLa stable cell lines, 
individual clones were isolated by G418 (0.5 mg/ml) or Hygromycin 
(0.4 mg/ml) selection.

The following plasmids were used in this study: The pEGFP-hNup133CTD 
plasmid (encoding aa 545–1156 of hNup133) was obtained by deletion 
of a SacI fragment from the pEGFP-hNup133 vector (Belgareh et al., 
2001). To generate pEGFP3x-mNup133, an AflIII (blunt-ended)–NotI frag-
ment was purified from the IMAGE Consortium (LLNL) cDNA clone (IMAGE: 
1180761), obtained from the Resource Center of the German Human 
Genome Project, and subcloned in the pEGFP3x-C3 vector digested with SalI 
(blunt-ended) and NotI. The GFP-hNup133CTD and GFP3x-mNup133 fusions 
were subsequently inserted into the pIRES-neo vector (Takara Bio Inc.).

The pBOS-H2B-GFP-IRES-neo was constructed by inserting the 
NotI–XhoI (blunt-ended) fragment of pIRES-neo (Takara Bio Inc.) into the 
pBOS-H2B-GFP vector (BD) digested by NotI and AatII (blunt-ended). To gen-
erate the pBOS-H2B-mCherry-IRES-neo plasmid, the coding sequence of 
mCherry (Shaner et al., 2004) was amplified by PCR adding BamHI sites 
both at the 3 and 5 ends and inserted in pBOS-H2B-GFP-IRES-neo vector 
digested with BamHI. The pEGFP-CENP-A plasmid, in which full-length human 
CENP-A HA-tagged at its 3 end is inserted into SmaI–XbaI sites of pEGFP-C1, 
was generously provided by K.F. Sullivan (University of California, Santa 
Cruz, Santa Cruz, CA). The EB3-GFP construct (pEGFP-N3-EB3; Stepanova 
et al., 2003) was a kind gift from N. Galjart (Erasmus University, Rotterdam, 
The Netherlands). The H2B-mCherry and GFP-CENP-A constructs were 
subsequently subcloned into the pIRES-hygro vector (Takara Bio Inc.).

MAP4 tagged with mCherry at its N terminus (Keppler and Ellenberg, 
2009) was constructed by A. Keppler (EMBL, Heidelberg, Germany), the 
pEGFP-centrin1 plasmid (Piel et al., 2000) was provided by M. Piel and  
M. Bornens (Institut Curie, Paris, France), the DsRed p150-cc1 construct 
(DsRed-p150217–548; Quintyne and Schroer, 2002) was a kind gift of T. Schroer 
(Johns Hopkins University, Baltimrore, MD), and CFP-p50/dynactin was a 
kind gift from A. Popov and E. Karsenti (EMBL, Heidelberg, Germany).

Stable cell lines generated for this study are: GFP-hNup133CTD, 
GFP3x-mNup133FL, EB3-GFP + H2B-mCherry, GFP-centrin1, and GFP-
hNup133CTD + mCherry-CENP-A. The EB3-GFP cell line was generously 
provided by Lucia Sironi (EMBL, Heidelberg, Germany).

siRNA transfections
The following siRNA duplexes (purchased from Eurogentec) were used in 
this study: scramble siRNA sequence (5-CTGTGCAAGCCGTTGTGTA-3), 
hNup133 (5-AAGTCGATGACCAGCTGACCATT-3; Walther et al., 
2003), CENP-F (5-CAGAATCTTAGTAGTCAAGTA-3), NudE (5-GGACC
CAGCTCAAGTTTAATT-3 and 5-GGAAAGATCTGGCGATGACTT-3; 
Vergnolle and Taylor, 2007), NudEL (5-GCTAGGATATCAGCACTAATT-3 
and 5-GGACCAAGCATCACGAAAATT-3; Vergnolle and Taylor, 2007), 
and BICD2 (5-GGUGGACUAUGAGGCUAUC-3; BICD2#2; Splinter  
et al., 2010). siRNA duplexes were transfected in HeLa cells using HiPerfect 
reagent (QIAGEN) with 10 nM siRNA. siRNA-treated HeLa cells were ana-
lyzed 2 d after siRNA transfection, except Nup133-depleted cells, for 
which efficient depletion was achieved after 3–4 d of siRNA treatment 
(Walther et al., 2003). When combined with plasmid transfections, siRNA 
transfections were performed 12–24 h before plasmid transfections. U2OS 
cells were transfected as described previously (Splinter et al., 2010) using 
20 nM siRNA and two successive rounds of siRNA depletion (during plat-
ing and 1 d after transfection) and analyzed 3 d after plating. For silencing 
both NudE and NudEL, a mixture of each of the four siRNA duplexes tar-
geting these proteins was used.

Western blot analysis
For Western blot analysis, whole-cell lysates resuspended in SDS-PAGE 
sample buffer were separated on 4–12% SDS-PAGE gels and transferred to 
nitrocellulose filters. The resulting blots were saturated with TBS, 0.1% Tween, 
and 5% dried milk and probed with affinity-purified polyclonal rabbit 

and NudE/EL) as well as kinesin-1 at the NE to coordinate nuclear 
migration (Fridolfsson et al., 2010). In human cells, the recruitment 
of these different actors via a complex multiprotein assembly (the 
NPC) may allow a more robust or more regulatable interaction 
between the nucleus and the cytoskeleton in prophase.

Tethering centrosomes to the nuclear 
surface cooperates with additional spindle 
positioning and assembly mechanisms in 
early stages of bipolar spindle assembly
The specific abrogation of NPC–centrosome tethering in HeLa 
cells transiently perturbed spindle positioning and assembly. 
However, most mispositioned or malformed spindles eventually 
recovered, apparently driven by additional mechanisms that also 
contribute to bipolar spindle formation. At NEBD, and concur­
rent with cell rounding, detached centrosomes moved back toward 
the chromosomes (Fig. 5 B). It was shown in Drosophila that 
cell rounding, driven by a mitosis-specific increase in cortical 
stiffness, also affects spindle positioning (Carreno et al., 2008; 
Kunda et al., 2008), and we therefore suggest that cell rounding 
contributes to rescue detached centrosomes by shortening the 
distance from cortex to chromosomes. In addition, NEBD releases 
mitotic kinases, spindle assembly factors, and RanGTP into the 
cytoplasm. This promotes microtubule growth and stabilizes 
K-fibers (Goodman and Zheng, 2006; Silverman-Gavrila and 
Wilde, 2006). The resulting microtubule-dependent forces are 
thus also likely to contribute to centrosome repositioning close 
to chromosomes. Aberrant spindles, including monopolars, usu­
ally evolved into normal bipolar structures, in a process likely 
involving microtubule self-assembly mechanisms similar to that 
used in cells recovering from monastrol treatment (Whitehead 
et al., 1996; Khodjakov et al., 2003).

Although NPC–centrosome tethering is therefore clearly 
not the only mechanism for early stages of spindle positioning 
and assembly in comparatively small HeLa cells that undergo 
strong cell rounding at mitosis entry, this mechanism may be­
come crucial in larger cells such as oocytes or nonrounding cells 
in tissues, as well as under pathological situations when other path­
ways are impaired. In such cells, loss of NPC–centrosome tether­
ing would be expected to lead to chromosome missegregation, a 
major source of aneuploidy. Aneuploidy has been linked to can­
cer progression in mammals (Chandhok and Pellman, 2009) 
and indeed mutations in the Nup133 -propeller domain were 
identified in a global search for human breast cancers genes 
(Sjöblom et al., 2006). In the future, it will be important to test 
the hypothesis that mitotic defects caused by mutations within 
the Nup133 -propeller domain contribute to tumorigenesis.

Materials and methods
Yeast two-hybrid
To construct the pB29-hNup133NTD plasmid, the N-terminal domain of 
hNup133 (aa 1–500) was cloned in an N-bait-LexA-C fusion vector opti-
mized by Hybrigenics. The pB29-hNup133NTD construct was used to 
screen a random primed human breast tumor epithelial cell cDNA library 
(RP1) cloned into the pP6 plasmid using a high-throughput proprietary 
yeast two-hybrid based technology (Hybrigenics).

To investigate pairwise interactions by yeast two-hybrid, hNup133 
(aa 12–1156; Belgareh et al., 2001) and hNup133CTD (aa 466–1156) 
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planes or on maximum intensity projections of 20 Z-stacks at a 0.2-µm in-
terval. Box-plots were generated using KaleidaGraph (Synergy Software): 
each box encloses 50% of the obtained distances centered on the median 
value. The bars extending from the top and bottom of each box mark the 
minimum and maximum values within the dataset falling within an accept-
able range. Values falling outside of this range are displayed as an indi-
vidual point. Unpaired Student’s t tests were used to evaluate differences in 
centrosome–NE distances between the various conditions.

Centrosome tracking on videos was performed with an ImageJ 
macro (http://weeman.inf.ethz.ch/ParticleTracker). For Fig. 5 C, the cen-
trosome to NE distance was then calculated with a Matlab macro, taking 
as input the NE outline created with an ImageJ macro based on the H2B-
mCherry signal. Quantifications and tracks were analyzed with Excel  
(Microsoft). Figures were assembled with Photoshop CS (Adobe).

Online supplemental material
Fig. S1 shows the kinetochore localization of Hec1, CENP-F, p150Glued, 
and Mad1 in mitotic GFP3x-mNup133 and GFP-hNup133CTD cells depleted 
for Nup133. Fig. S2 shows NudE/EL levels and localization in prophase 
HeLa cells treated with scramble, CENP-F, or NudE/EL siRNA duplexes. 
Fig. S3 shows the localization of p150Glued and RanGAP1 in prophase 
HeLa cells treated with scramble, CENP-F, or NudE/EL siRNA duplexes. 
Fig. S4 shows centrosome movements in CENP-F–depleted HeLa cells 
treated with nocodazole or monastrol. Fig. S5 shows the localization and 
expression of BICD2 and the centrosome to NE distances in HeLa cells 
treated with scramble, BICD2, or CENP-F siRNA duplexes. Videos 1–6 
and 7–9 show the videos of cells presented in Fig. 5 A and Fig. 9 A, 
respectively. Online supplemental material is available at http://www.jcb 
.org/cgi/content/full/jcb.201007118/DC1.
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