Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Feb 2;67(Pt 3):m291–m292. doi: 10.1107/S1600536811002923

Poly[[piperazine-1,4-dium [diaqua­tetra­kis­(μ-sulfanediyldiacetato)­dicerate(III)]] trihydrate]

Mohammad Ghadermazi a,*, Marilyn M Olmstead b, Shahideh Rostami a, Jafar Attar Gharamaleki c
PMCID: PMC3052029  PMID: 21522233

Abstract

The title compound, (C4H12N2)[Ce2(C4H4O4S)4(H2O)2]·3H2O, features a polymeric anion with a centrosymmetric Ce2O2 core and a Ce⋯Ce distance of 4.3625 (4) Å. The anions form ribbons {[Ce2(C4H4O4S)4(H2O)2]2−}n extending along [100]. The doubly protonated piperazinium cations reside on centers of inversion and link the polymeric ribbons via N—H⋯O hydrogen bonding. Each CeIII cation is ten-coordinated by an O2S donor set from two tridentate sulfanediyldiacetate (tda) ligands, one water mol­ecule and three other tda O donors from adjacent {Ce(tda)2(H2O)} units in a distorted bicapped cubic environment. Additional O—H⋯O hydrogen bonding involving the coordinated and solvent water mol­ecules is also present. H atoms of the crystal water molecules could not be located and were not included in the refinement.

Related literature

For the structure determination of a bis-sulfane­diyl­di­acetato­nickelate(II), see: Delaunay et al. (1976). For a dinuclear sulfanediyldiacetato complex, see: Baggio et al. (1999). For an example with a solely bidentate coordination mode of the sulfanediyldiacetato ligand, see: Marek et al. (2003). For bond-valence-sum calculations, see: Zhang et al. (2004).graphic file with name e-67-0m291-scheme1.jpg

Experimental

Crystal data

  • (C4H12N2)[Ce2(C4H4O4S)4(H2O)2]·3H2O

  • M r = 1051.00

  • Triclinic, Inline graphic

  • a = 6.4361 (7) Å

  • b = 11.1135 (12) Å

  • c = 12.5627 (14) Å

  • α = 96.693 (4)°

  • β = 104.646 (3)°

  • γ = 101.192 (3)°

  • V = 839.76 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.01 mm−1

  • T = 90 K

  • 0.25 × 0.22 × 0.05 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.520, T max = 0.864

  • 11816 measured reflections

  • 4482 independent reflections

  • 4433 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.056

  • S = 1.11

  • 4482 reflections

  • 229 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.79 e Å−3

  • Δρmin = −1.81 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002923/wm2442sup1.cif

e-67-0m291-sup1.cif (30.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002923/wm2442Isup2.hkl

e-67-0m291-Isup2.hkl (219.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ce1—S1 3.2903 (6)
Ce1—S2 3.1445 (6)
Ce1—O1 2.5359 (15)
Ce1—O4 2.5069 (14)
Ce1—O5 2.4278 (14)
Ce1—O7 2.5117 (15)
Ce1—O8i 2.5024 (15)
Ce1—O3ii 2.6137 (16)
Ce1—O4ii 2.6542 (15)
Ce1—O9 2.6644 (15)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9C⋯O7i 0.82 (2) 2.00 (2) 2.793 (2) 163 (3)
O9—H9D⋯O1ii 0.83 (2) 1.92 (2) 2.729 (2) 167 (3)
N1—H1A⋯O6iii 0.92 1.84 2.732 (2) 162
N1—H1B⋯O9iv 0.92 2.10 2.988 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

MMO thanks the University of California, Davis, for the purchase of the X-ray diffractometer. Financial support from University of Kurdistan, Sanandaj, is gratefully acknowledged.

supplementary crystallographic information

Comment

Thiodiacetic acid is one class of dicarboxylic acid ligands that has been used for construction of coordination polymers. It is a versatile complexing agent with one sulfur and two oxygen donor atoms and can strongly complex metal ions. Although the structural study of sulfanediyldiacetate-transition metal compounds was initiated several decades ago (Delaunay, et al., 1976), interest in the structural aspects of sulfanediyldiacetate compounds has remarkably increased in recent years, and many structures with d- and f-block metals are known to date. The ligand is usually tridentate, but at least one Mn(II) complex has been reported in which it is solely bidentate where the thioether S atom is not involved in bonding to the metal (Marek et al., 2003). The ligand can be simply chelating or is involved in both bridging and chelating modes to give rise to dinuclear complexes (Baggio et al., 1999).

The crystal structure of {(C4H12N2)[Ce(C4H4O4S)2(H2O)]2.3H2O}n or {[(pipzH2)[Ce(tda)2(H2O)]2.3H2O}n, where tda = [S(CH2COO)2]2-, sulfanediyldiacetate, and pipzH2 is doubly protonated piperazine, is composed of a polymeric dinuclear anion [Ce(tda)2(H2O)]22-, [pipzH2]2+ cations, and three water molecules of hydration. The components of the structure are shown in Fig. 1. The sulfanediyldiacetate group involving S1 behaves as both a tridentate chelating ligand and a bridging ligand to form a centrosymmetric dimer. The Ce1···Ce1i (i = 1 - x, 1 - y, -z) distance is 4.3625 (4) Å. The sulfanediyldiacetate ligand involving S2 is also a tridentate chelating ligand while its oxygen, O8, coordinates to the Ce of an adjoining dimer and propagates the structure as a coordination polymer parallel to [100] (Fig. 2). The more distant Ce1iii (iii = 1 + x, y, z) is 6.4361 (7) Å away from Ce1. The local coordination of the CeIII cations consists of two thioethers (S1 and S2) and four O atoms (O1, O4, O5 and O7) from two chelating sulfanediyldiacetate groups, three oxygen atoms (O3, O4 and O8) of the carboxylate moieties from other sulfanediyldiacetate groups, and one oxygen atom from the coordinated water molecule (O9), resulting in an S2O8 distorted bicapped cubic environment. The Ce—O and Ce—S distances are normal and are gathered in Table 1. Bond valence sum calculations (Zhang et al., 2004) yield a value of 2.9, in agreement with the oxidation state +III for the cerium atom. The [pipzH2]2+ cations and water molecules are further engaged in hydrogen bonding between polymeric units (Table 2). Although the H atoms of the uncoordinated water molecules could not be located, O···O contacts between 2.58 and 2.86 Å suggest that these molecules also participate in O—H···O hydrogen bonding.

Experimental

The title compound was prepared by mixing two solutions containing 1.5 g (10 mmol) of 2,2'-thiodiacetic acid in 10 ml THF and 0.86 g (10 mmol) piperazine in 10 ml THF. A white precipitate was obtained after evaporating the solvent. An aqueous solution containing 0.34 g (1.5 mmol) of the obtained ion pair in 20 ml water was added dropwise to 0.21 g (0.5 mmol) Ce(NO3)3.6H2O in 15 ml water. After 60 min stirring and heating to 303 K, the solution became clear. Yellow crystals of the title compound were obtained after allowing the mixture to stand for 3 weeks at room temperature to evaporate the solvent.

Refinement

The C-bound and N-bound hydrogen atoms were placed at calculated positions (C—H 0.99 Å, N—H 0.92 Å) and were treated as riding on their parent atoms with U(H) set to 1.2 Ueq(C). The hydrogen atoms bonded to the coordinated water were located in a difference Fourier map and were refined with distance restraints of O—H 0.83 (2) Å and H···H 1.34 (4) Å and their isotropic displacement parameters allowed to refine. There are two sites for water moleculess of hydration. One of the hydrate molecules is disordered with respect to a center of symmetry and was kept at 0.5 occupancy and refined with an isotropic displacement parameter. Hydrogen atoms bonded to the water molecules of crystallisation could not be reliably located and were eventually omitted from the refinement. The highest peak in the final difference map is 0.83 Å from Ce1 and the largest hole is 0.87 Å from the same atom.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are removed for clarity except those bonded to the piperazine N atoms and the coordinated water molecule. Hydrogen atoms are drawn as spheres of arbitrary radius. Atoms that indicate the propagation of the coordination polymer are shown. Symmetry codes: i = 1 - x, 1 - y, -z; ii = x - 1, y z; iii = 1 + x, y, z; iv = -x, 1 - y, -z; v = -x, 2 - y, -z.

Fig. 2.

Fig. 2.

A view down [100] of the polymeric structure.

Crystal data

(C4H12N2)[Ce2(C4H4O4S)4(H2O)2]·3H2O Z = 1
Mr = 1051.00 F(000) = 520
Triclinic, P1 Dx = 2.078 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.4361 (7) Å Cell parameters from 9880 reflections
b = 11.1135 (12) Å θ = 2.7–31.5°
c = 12.5627 (14) Å µ = 3.01 mm1
α = 96.693 (4)° T = 90 K
β = 104.646 (3)° Plate, colourless
γ = 101.192 (3)° 0.25 × 0.22 × 0.05 mm
V = 839.76 (16) Å3

Data collection

Bruker SMART APEXII diffractometer 4482 independent reflections
Radiation source: fine-focus sealed tube 4433 reflections with I > 2σ(I)
graphite Rint = 0.021
Detector resolution: 8.3 pixels mm-1 θmax = 29.1°, θmin = 2.8°
ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −15→15
Tmin = 0.520, Tmax = 0.864 l = −17→17
11816 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.9355P] where P = (Fo2 + 2Fc2)/3
4482 reflections (Δ/σ)max = 0.002
229 parameters Δρmax = 1.79 e Å3
3 restraints Δρmin = −1.81 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ce1 0.572270 (15) 0.396056 (9) 0.136487 (8) 0.00772 (4)
S1 0.50618 (8) 0.61593 (5) 0.31570 (4) 0.01299 (10)
S2 0.81761 (8) 0.37549 (4) 0.38182 (4) 0.01047 (9)
O1 0.8397 (2) 0.60785 (14) 0.18806 (12) 0.0126 (3)
O2 0.9817 (3) 0.81191 (14) 0.24661 (13) 0.0155 (3)
O3 0.4131 (3) 0.75180 (14) 0.03785 (13) 0.0150 (3)
O4 0.3790 (2) 0.55553 (13) 0.05890 (12) 0.0116 (3)
O5 0.5613 (2) 0.18686 (13) 0.17676 (12) 0.0121 (3)
O6 0.5126 (3) 0.02205 (15) 0.25991 (14) 0.0204 (3)
O7 0.9607 (2) 0.36963 (14) 0.16697 (12) 0.0128 (3)
O8 1.2946 (2) 0.33740 (14) 0.24070 (12) 0.0118 (3)
O9 0.1631 (2) 0.30107 (14) 0.00472 (12) 0.0118 (3)
H9C 0.092 (5) 0.329 (3) 0.043 (2) 0.024 (8)*
H9D 0.146 (6) 0.332 (3) −0.052 (2) 0.034 (9)*
N1 0.1458 (3) 0.94944 (16) 0.08009 (15) 0.0121 (3)
H1A 0.2761 0.9585 0.1349 0.015*
H1B 0.0661 0.8687 0.0701 0.015*
C1 0.7895 (4) 0.7018 (2) 0.35817 (17) 0.0144 (4)
H1C 0.8004 0.7868 0.3965 0.017*
H1D 0.8795 0.6601 0.4116 0.017*
C2 0.8790 (3) 0.70996 (19) 0.25730 (16) 0.0117 (3)
C3 0.3913 (4) 0.7073 (2) 0.21616 (18) 0.0174 (4)
H3A 0.2354 0.7020 0.2151 0.021*
H3B 0.4716 0.7955 0.2429 0.021*
C4 0.3986 (3) 0.67031 (19) 0.09779 (16) 0.0114 (3)
C5 0.6813 (4) 0.2163 (2) 0.37811 (18) 0.0164 (4)
H5A 0.7899 0.1761 0.4223 0.020*
H5B 0.5635 0.2172 0.4156 0.020*
C6 0.5786 (3) 0.13566 (19) 0.26210 (17) 0.0126 (4)
C7 1.0804 (3) 0.3580 (2) 0.36422 (17) 0.0159 (4)
H7A 1.1962 0.4274 0.4151 0.019*
H7B 1.1077 0.2799 0.3895 0.019*
C8 1.1111 (3) 0.35473 (17) 0.24746 (16) 0.0100 (3)
C9 0.0173 (3) 1.03697 (19) 0.11667 (17) 0.0134 (4)
H9A 0.1071 1.1235 0.1328 0.016*
H9B −0.0169 1.0173 0.1861 0.016*
C10 −0.1952 (3) 1.02600 (19) 0.02648 (17) 0.0133 (4)
H10A −0.2903 0.9413 0.0146 0.016*
H10B −0.2757 1.0867 0.0502 0.016*
O10 0.0974 (4) 0.0278 (2) 0.41702 (19) 0.0388 (5)
O11 0.4926 (7) 0.0607 (4) 0.5455 (3) 0.0312 (8)* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ce1 0.00901 (6) 0.00557 (6) 0.00889 (6) 0.00190 (4) 0.00262 (4) 0.00197 (4)
S1 0.0153 (2) 0.0122 (2) 0.0120 (2) 0.00179 (17) 0.00535 (18) 0.00315 (17)
S2 0.0117 (2) 0.0087 (2) 0.0111 (2) 0.00170 (16) 0.00410 (16) 0.00140 (16)
O1 0.0135 (7) 0.0103 (6) 0.0125 (6) 0.0009 (5) 0.0036 (5) −0.0009 (5)
O2 0.0177 (7) 0.0109 (7) 0.0174 (7) 0.0011 (5) 0.0058 (6) 0.0022 (5)
O3 0.0214 (7) 0.0108 (7) 0.0148 (7) 0.0063 (6) 0.0060 (6) 0.0038 (5)
O4 0.0133 (6) 0.0093 (6) 0.0130 (6) 0.0045 (5) 0.0034 (5) 0.0028 (5)
O5 0.0146 (7) 0.0089 (6) 0.0132 (6) 0.0033 (5) 0.0038 (5) 0.0032 (5)
O6 0.0244 (8) 0.0098 (7) 0.0199 (8) −0.0015 (6) −0.0035 (6) 0.0060 (6)
O7 0.0130 (6) 0.0150 (7) 0.0124 (6) 0.0052 (5) 0.0045 (5) 0.0045 (5)
O8 0.0112 (6) 0.0116 (6) 0.0135 (6) 0.0029 (5) 0.0045 (5) 0.0030 (5)
O9 0.0143 (7) 0.0103 (6) 0.0115 (6) 0.0027 (5) 0.0048 (5) 0.0023 (5)
N1 0.0129 (8) 0.0080 (7) 0.0144 (8) 0.0024 (6) 0.0016 (6) 0.0027 (6)
C1 0.0165 (9) 0.0130 (9) 0.0118 (9) 0.0006 (7) 0.0033 (7) 0.0007 (7)
C2 0.0108 (8) 0.0120 (9) 0.0112 (8) 0.0022 (7) 0.0018 (7) 0.0015 (7)
C3 0.0234 (10) 0.0202 (10) 0.0123 (9) 0.0137 (8) 0.0049 (8) 0.0025 (7)
C4 0.0103 (8) 0.0123 (9) 0.0118 (8) 0.0047 (7) 0.0020 (7) 0.0021 (7)
C5 0.0209 (10) 0.0105 (9) 0.0132 (9) −0.0015 (7) −0.0010 (8) 0.0056 (7)
C6 0.0114 (8) 0.0096 (8) 0.0160 (9) 0.0026 (7) 0.0015 (7) 0.0036 (7)
C7 0.0112 (9) 0.0255 (11) 0.0114 (9) 0.0052 (8) 0.0033 (7) 0.0031 (8)
C8 0.0123 (8) 0.0048 (8) 0.0128 (8) 0.0011 (6) 0.0041 (7) 0.0010 (6)
C9 0.0172 (9) 0.0098 (8) 0.0132 (9) 0.0041 (7) 0.0037 (7) 0.0014 (7)
C10 0.0144 (9) 0.0114 (9) 0.0154 (9) 0.0039 (7) 0.0055 (7) 0.0027 (7)
O10 0.0566 (14) 0.0248 (10) 0.0376 (11) 0.0073 (9) 0.0213 (10) 0.0010 (8)

Geometric parameters (Å, °)

Ce1—S1 3.2903 (6) O9—H9D 0.825 (18)
Ce1—S2 3.1445 (6) N1—C10iii 1.495 (3)
Ce1—O1 2.5359 (15) N1—C9 1.497 (3)
Ce1—O4 2.5069 (14) N1—H1A 0.9200
Ce1—O5 2.4278 (14) N1—H1B 0.9200
Ce1—O7 2.5117 (15) C1—C2 1.524 (3)
Ce1—O8i 2.5024 (15) C1—H1C 0.9900
Ce1—O3ii 2.6137 (16) C1—H1D 0.9900
Ce1—O4ii 2.6542 (15) C3—C4 1.511 (3)
Ce1—O9 2.6644 (15) C3—H3A 0.9900
S1—C1 1.798 (2) C3—H3B 0.9900
S1—C3 1.806 (2) C5—C6 1.531 (3)
S2—C7 1.804 (2) C5—H5A 0.9900
S2—C5 1.805 (2) C5—H5B 0.9900
O1—C2 1.287 (2) C7—C8 1.526 (3)
O2—C2 1.236 (3) C7—H7A 0.9900
O3—C4 1.248 (2) C7—H7B 0.9900
O4—C4 1.282 (2) C9—C10 1.513 (3)
O5—C6 1.262 (2) C9—H9A 0.9900
O6—C6 1.246 (3) C9—H9B 0.9900
O7—C8 1.262 (2) C10—H10A 0.9900
O8—C8 1.255 (2) C10—H10B 0.9900
O9—H9C 0.817 (17)
O5—Ce1—O8i 69.44 (5) C8—O7—Ce1 136.54 (13)
O5—Ce1—O4 150.35 (5) C8—O8—Ce1iv 140.41 (13)
O8i—Ce1—O4 91.13 (5) Ce1—O9—H9C 101 (2)
O5—Ce1—O7 74.48 (5) Ce1—O9—H9D 109 (3)
O8i—Ce1—O7 131.20 (5) H9C—O9—H9D 108 (3)
O4—Ce1—O7 133.20 (5) C10iii—N1—C9 111.17 (15)
O5—Ce1—O1 138.75 (5) C10iii—N1—H1A 109.4
O8i—Ce1—O1 121.49 (5) C9—N1—H1A 109.4
O4—Ce1—O1 70.37 (5) C10iii—N1—H1B 109.4
O7—Ce1—O1 70.20 (5) C9—N1—H1B 109.4
O5—Ce1—O3ii 69.93 (5) H1A—N1—H1B 108.0
O8i—Ce1—O3ii 121.93 (5) C2—C1—S1 110.59 (14)
O4—Ce1—O3ii 105.26 (5) C2—C1—H1C 109.5
O7—Ce1—O3ii 71.75 (5) S1—C1—H1C 109.5
O1—Ce1—O3ii 116.48 (5) C2—C1—H1D 109.5
O5—Ce1—O4ii 119.23 (5) S1—C1—H1D 109.5
O8i—Ce1—O4ii 144.10 (5) H1C—C1—H1D 108.1
O4—Ce1—O4ii 64.63 (6) O2—C2—O1 124.50 (19)
O7—Ce1—O4ii 82.62 (5) O2—C2—C1 119.06 (18)
O1—Ce1—O4ii 76.75 (5) O1—C2—C1 116.43 (18)
O3ii—Ce1—O4ii 49.44 (5) C4—C3—S1 115.90 (15)
O5—Ce1—O9 85.38 (5) C4—C3—H3A 108.3
O8i—Ce1—O9 66.23 (5) S1—C3—H3A 108.3
O4—Ce1—O9 65.95 (5) C4—C3—H3B 108.3
O7—Ce1—O9 141.72 (5) S1—C3—H3B 108.3
O1—Ce1—O9 135.87 (5) H3A—C3—H3B 107.4
O3ii—Ce1—O9 70.84 (5) O3—C4—O4 121.12 (19)
O4ii—Ce1—O9 79.35 (5) O3—C4—C3 119.05 (19)
O5—Ce1—S2 63.64 (4) O4—C4—C3 119.73 (18)
O8i—Ce1—S2 70.54 (4) C6—C5—S2 116.14 (15)
O4—Ce1—S2 132.01 (3) C6—C5—H5A 108.3
O7—Ce1—S2 64.42 (3) S2—C5—H5A 108.3
O1—Ce1—S2 82.04 (4) C6—C5—H5B 108.3
O3ii—Ce1—S2 122.24 (4) S2—C5—H5B 108.3
O4ii—Ce1—S2 145.36 (3) H5A—C5—H5B 107.4
O9—Ce1—S2 133.47 (3) O6—C6—O5 124.6 (2)
C4ii—Ce1—S2 139.09 (4) O6—C6—C5 116.06 (18)
O5—Ce1—S1 120.96 (4) O5—C6—C5 119.27 (18)
O8i—Ce1—S1 62.01 (4) C8—C7—S2 117.92 (15)
O4—Ce1—S1 62.43 (4) C8—C7—H7A 107.8
O7—Ce1—S1 115.38 (4) S2—C7—H7A 107.8
O1—Ce1—S1 60.23 (4) C8—C7—H7B 107.8
O3ii—Ce1—S1 167.65 (3) S2—C7—H7B 107.8
O4ii—Ce1—S1 119.75 (3) H7A—C7—H7B 107.2
O9—Ce1—S1 102.88 (3) O8—C8—O7 124.80 (19)
C4ii—Ce1—S1 144.33 (4) O8—C8—C7 114.35 (17)
S2—Ce1—S1 69.898 (14) O7—C8—C7 120.85 (18)
C1—S1—C3 99.14 (11) N1—C9—C10 110.34 (16)
C1—S1—Ce1 95.72 (7) N1—C9—H9A 109.6
C3—S1—Ce1 97.65 (7) C10—C9—H9A 109.6
C7—S2—C5 101.63 (11) N1—C9—H9B 109.6
C7—S2—Ce1 100.18 (7) C10—C9—H9B 109.6
C5—S2—Ce1 97.24 (7) H9A—C9—H9B 108.1
C2—O1—Ce1 138.15 (13) N1iii—C10—C9 110.03 (17)
C4—O3—Ce1ii 95.97 (12) N1iii—C10—H10A 109.7
C4—O4—Ce1 131.30 (13) C9—C10—H10A 109.7
C4—O4—Ce1ii 93.20 (12) N1iii—C10—H10B 109.7
Ce1—O4—Ce1ii 115.37 (5) C9—C10—H10B 109.7
C6—O5—Ce1 136.68 (13) H10A—C10—H10B 108.2
O5—Ce1—S1—C1 108.05 (8) O1—Ce1—O4—Ce1ii 84.25 (6)
O8i—Ce1—S1—C1 146.53 (8) O3ii—Ce1—O4—Ce1ii −28.92 (7)
O4—Ce1—S1—C1 −105.85 (8) O4ii—Ce1—O4—Ce1ii 0.0
O7—Ce1—S1—C1 21.53 (8) O9—Ce1—O4—Ce1ii −89.30 (6)
O1—Ce1—S1—C1 −23.78 (8) S2—Ce1—O4—Ce1ii 142.97 (3)
O3ii—Ce1—S1—C1 −101.58 (18) S1—Ce1—O4—Ce1ii 150.14 (7)
O4ii—Ce1—S1—C1 −74.64 (8) O8i—Ce1—O5—C6 −53.69 (19)
O9—Ce1—S1—C1 −159.61 (8) O4—Ce1—O5—C6 −105.6 (2)
S2—Ce1—S1—C1 68.49 (7) O7—Ce1—O5—C6 92.87 (19)
O5—Ce1—S1—C3 −151.90 (9) O1—Ce1—O5—C6 61.1 (2)
O8i—Ce1—S1—C3 −113.42 (9) O3ii—Ce1—O5—C6 168.7 (2)
O4—Ce1—S1—C3 −5.79 (9) O4ii—Ce1—O5—C6 164.92 (18)
O7—Ce1—S1—C3 121.59 (9) O9—Ce1—O5—C6 −120.01 (19)
O1—Ce1—S1—C3 76.28 (9) S2—Ce1—O5—C6 24.12 (18)
O3ii—Ce1—S1—C3 −1.53 (19) S1—Ce1—O5—C6 −17.8 (2)
O4ii—Ce1—S1—C3 25.42 (9) O5—Ce1—O7—C8 −65.42 (18)
O9—Ce1—S1—C3 −59.56 (9) O8i—Ce1—O7—C8 −22.1 (2)
S2—Ce1—S1—C3 168.54 (8) O4—Ce1—O7—C8 127.01 (18)
O5—Ce1—S2—C7 84.51 (9) O1—Ce1—O7—C8 92.90 (19)
O8i—Ce1—S2—C7 160.59 (9) O3ii—Ce1—O7—C8 −138.95 (19)
O4—Ce1—S2—C7 −126.28 (9) O4ii—Ce1—O7—C8 171.42 (19)
O7—Ce1—S2—C7 −0.10 (9) O9—Ce1—O7—C8 −126.28 (18)
O1—Ce1—S2—C7 −71.91 (9) S2—Ce1—O7—C8 2.38 (17)
O3ii—Ce1—S2—C7 44.46 (9) S1—Ce1—O7—C8 51.92 (19)
O4ii—Ce1—S2—C7 −19.46 (10) C3—S1—C1—C2 −56.27 (16)
O9—Ce1—S2—C7 138.09 (9) Ce1—S1—C1—C2 42.45 (15)
S1—Ce1—S2—C7 −133.04 (8) Ce1—O1—C2—O2 −159.61 (15)
O5—Ce1—S2—C5 −18.75 (9) Ce1—O1—C2—C1 20.0 (3)
O8i—Ce1—S2—C5 57.33 (9) S1—C1—C2—O2 132.49 (17)
O4—Ce1—S2—C5 130.46 (9) S1—C1—C2—O1 −47.1 (2)
O7—Ce1—S2—C5 −103.36 (9) C1—S1—C3—C4 87.74 (18)
O1—Ce1—S2—C5 −175.16 (9) Ce1—S1—C3—C4 −9.35 (18)
O3ii—Ce1—S2—C5 −58.80 (9) Ce1ii—O3—C4—O4 −5.3 (2)
O4ii—Ce1—S2—C5 −122.72 (10) Ce1ii—O3—C4—C3 178.13 (16)
O9—Ce1—S2—C5 34.83 (9) Ce1—O4—C4—O3 133.58 (17)
S1—Ce1—S2—C5 123.70 (8) Ce1ii—O4—C4—O3 5.2 (2)
O5—Ce1—O1—C2 −97.7 (2) Ce1—O4—C4—C3 −49.9 (3)
O8i—Ce1—O1—C2 −3.5 (2) Ce1ii—O4—C4—C3 −178.26 (17)
O4—Ce1—O1—C2 75.31 (19) Ce1—O4—C4—Ce1ii 128.35 (15)
O7—Ce1—O1—C2 −130.4 (2) S1—C3—C4—O3 −150.05 (17)
O3ii—Ce1—O1—C2 173.03 (18) S1—C3—C4—O4 33.4 (3)
O4ii—Ce1—O1—C2 142.8 (2) C7—S2—C5—C6 −79.97 (18)
O9—Ce1—O1—C2 83.8 (2) Ce1—S2—C5—C6 22.04 (17)
S2—Ce1—O1—C2 −64.81 (19) Ce1—O5—C6—O6 160.71 (16)
S1—Ce1—O1—C2 6.54 (18) Ce1—O5—C6—C5 −17.5 (3)
O5—Ce1—O4—C4 135.03 (17) S2—C5—C6—O6 170.16 (17)
O8i—Ce1—O4—C4 87.52 (17) S2—C5—C6—O5 −11.5 (3)
O7—Ce1—O4—C4 −69.76 (19) C5—S2—C7—C8 98.32 (18)
O1—Ce1—O4—C4 −35.69 (17) Ce1—S2—C7—C8 −1.33 (17)
O3ii—Ce1—O4—C4 −148.85 (17) Ce1iv—O8—C8—O7 32.5 (3)
O4ii—Ce1—O4—C4 −119.94 (19) Ce1iv—O8—C8—C7 −146.95 (16)
O9—Ce1—O4—C4 150.77 (18) Ce1—O7—C8—O8 176.41 (13)
S2—Ce1—O4—C4 23.04 (19) Ce1—O7—C8—C7 −4.1 (3)
S1—Ce1—O4—C4 30.20 (16) S2—C7—C8—O8 −177.31 (15)
O5—Ce1—O4—Ce1ii −105.03 (10) S2—C7—C8—O7 3.2 (3)
O8i—Ce1—O4—Ce1ii −152.54 (6) C10iii—N1—C9—C10 57.6 (2)
O7—Ce1—O4—Ce1ii 50.18 (9) N1—C9—C10—N1iii −57.0 (2)

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z; (iii) −x, −y+2, −z; (iv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O9—H9C···O7i 0.82 (2) 2.00 (2) 2.793 (2) 163 (3)
O9—H9D···O1ii 0.83 (2) 1.92 (2) 2.729 (2) 167 (3)
N1—H1A···O6v 0.92 1.84 2.732 (2) 162
N1—H1B···O9vi 0.92 2.10 2.988 (2) 161

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z; (v) x, y+1, z; (vi) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2442).

References

  1. Baggio, R., Garland, M. T., Manzur, J., Peña, O., Perec, M., Spodine, E. & Vega, A. (1999). Inorg. Chim. Acta, 286, 74–79.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Delaunay, J., Kappenstein, C. & Hugel, R. (1976). Acta Cryst. B32, 2341–2345.
  4. Marek, J., Trávníček, Z. & Kopel, P. (2003). Acta Cryst. C59, m429–m431. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhang, C., Howell, R. C., Scotland, K. B., Perez, F. G., Todaro, L. & Francesconi, L. C. (2004). Inorg. Chem 43, 7691–7701. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811002923/wm2442sup1.cif

e-67-0m291-sup1.cif (30.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811002923/wm2442Isup2.hkl

e-67-0m291-Isup2.hkl (219.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES