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Progressive multifocal leukoencephalopathy (PML) is an often fatal demyelinating disease caused

by lytic infection of oligodendrocytes with JC virus (JCV). The development of PML in non-

immunosuppressed individuals is a growing concern with reports of mortality in patients treated

with mAb therapies. JCV can persist in the kidneys, lymphoid tissue and bone marrow. JCV gene

expression is restricted by non-coding viral regulatory region sequence variation and cellular

transcription factors. Because JCV latency has been associated with cells undergoing

haematopoietic development, transcription factors previously reported as lymphoid specific may

regulate JCV gene expression. This study demonstrates that one such transcription factor, Spi-B,

binds to sequences present in the JCV promoter/enhancer and may affect early virus gene

expression in cells obtained from human brain tissue. We identified four potential Spi-B-binding

sites present in the promoter/enhancer elements of JCV sequences from PML variants and the

non-pathogenic archetype. Spi-B sites present in the promoter/enhancers of PML variants alone

bound protein expressed in JCV susceptible brain and lymphoid-derived cell lines by

electromobility shift assays. Expression of exogenous Spi-B in semi- and non-permissive cells

increased early viral gene expression. Strikingly, mutation of the Spi-B core in a binding site

unique to the Mad-4 variant was sufficient to abrogate viral activity in progenitor-derived

astrocytes. These results suggest that Spi-B could regulate JCV gene expression in susceptible

cells, and may play an important role in JCV activity in the immune and nervous systems.

INTRODUCTION

The human polyomavirus JC is the aetiological agent of the
fatal demyelinating disease, progressive multifocal leukoen-
cephalopathy (PML), that occurs in patients in states of
immune suppression or modulation. PML is an AIDS-
defining illness that occurs in approximately 3 % of HIV-
infected patients (Major, 2010). Recently, PML has been
reported in patients undergoing immuno-modulatory
therapies (Major, 2010; Marshall & Major, 2010). PML is
caused by lytic multiplication of the JC virus (JCV) in
oligodendrocytes, which results in the loss of myelination
of neurons and loss of neuronal function. Despite its lytic
capability, JCV can persist in a variety of cell types
including CD34+ haematopoietic precursors and B cells
present in bone marrow (Houff et al., 1988; Marzocchetti
et al., 2008; Tan et al., 2009), brain, tonsil and in
circulation (Sabath & Major, 2002). Detection of JCV
DNA in the absence of viral capsid protein in these cell
types from patients prior to the development of PML
suggests that such cells may act as a reservoir for latent
virus (Houff et al., 1988; Tan et al., 2009). Trafficking of
JCV-infected B cells, or haematopoietic precursors,

between the bone marrow and brain is a possible method
of viral dissemination.

The JCV genome is a closed, circular, supercoiled DNA
chromosome that permits temporal expression of early and
late genes that are physically separated by the non-coding
viral regulatory region (RR) (Frisque et al., 1984). RR is the
most highly variable sequence among JCV isolates but
always contains the origin of replication, one or more
TATA boxes and a variety of enhancer elements (Ault &
Stoner, 1993; Frisque, 1983; Frisque et al., 1984; Iida et al.,
1993). The RR from the original isolate of JCV, Mad-1,
contains a promoter/enhancer that exists as 98 bp tandem
repeats containing two TATA boxes and multiple cellular
transcription factor-binding sites (Frisque, 1983). TATA
boxes in the tandem repeat sequence are essential for
transcription of early and late viral genes (Daniel &
Frisque, 1993; Kenney et al., 1986a, b; Khalili et al., 1986;
Krebs et al., 1995; Vacante et al., 1989). RR variants
containing tandem repeats have been isolated from tissues
of patients with PML (Martin et al., 1985). The RR of a
naturally occurring variant of JCV shed in urine, referred
to as ‘archetype’, contains a single 98 bp unit with internal
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23 and 66 bp insertions (Yogo et al., 1990). Archetype is
not associated with PML and is replication incompetent in
tissue culture (Daniel et al., 1996). Consistent isolation of
tandem repeat containing sequences in tissues obtained
from PML patients strongly suggests the importance of
these sequences in viral pathogenesis (Frisque et al., 1984;
Jensen & Major, 1999; Martin et al., 1985; Marzocchetti
et al., 2008; Vaz et al., 2000).

Interestingly, JCV multiplication in susceptible cells is
restricted by activation of viral gene expression by host
transcription factors such as Oct-6/tst-1/SCIP (Wegner
et al., 1993), pur a (Chen & Khalili, 1995), YB-1 (Chen
et al., 1995c; Kerr et al., 1994) and NF-1 (Amemiya et al.,
1989, 1992; Messam et al., 2003; Monaco et al., 2001;
Ravichandran & Major, 2008; Shivakumar & Das, 1994;
Sumner et al., 1996; Tamura et al., 1988). However, NF-1X is
the only factor that has been shown to be important for JCV
activity in glial (Kumar et al., 1993, 1996) and immune cells
(Monaco et al., 2001). Because JCV latency is associated with
cells undergoing haematopoietic development, it is probable
that transcription factors previously reported as lymphoid
specific regulate JCV gene expression. One such factor, Spi-
B, activates gene expression from a lymphotrophic variant of
SV40 (Petterson & Schaffner, 1987) and lymphotrophic
papovavirus (LPV) (Erselius et al., 1990), both of which
share genetic architecture and promoter regulation with
JCV. In addition, Spi-B is upregulated in peripheral blood
mononuclear cells in response to treatment with
Natalizumab (Lindberg et al., 2008), an immuno-modula-
tory therapy that has been associated with the development
of PML (Major, 2010). Spi-B is an Ets transcription factor
that is required for normal B-cell receptor signalling and
formation of germinal centres in the spleen (Garrett-Sinha
et al., 1999). Spi-B binds target sequences containing a 59-
GGAA/T-39 core (Araki et al., 1988; Dorn et al., 1988;
Erselius et al., 1990; Laux et al., 1994; Petterson & Schaffner,
1987; Wasylyk et al., 1993) and can cooperate with the
retinoblastoma protein (pRB) to alter expression of proteins
involved in B-cell maturation (Hagemeier et al., 1993; Mao
et al., 1996; Rao et al., 1999b; Weintraub et al., 1995). Spi-B
is involved in differentiation and maturation of B cells and is
expressed at high levels in developing and mature B cells
(Chen et al., 1995a, b; Ray et al., 1992; Su et al., 1996).

RESULTS

Spi-B-binding sites are present in JCV promoter/
enhancer sequences

The Spi-B-binding site consensus sequence was identified
as 59-WWWRRRGAASNDR-39 where the internal RGAA
core is conserved (Laux et al., 1994). Promoter/enhancer
sequences from PML-associated Mad-1 (Frisque et al.,
1984), Mad-4 (Martin et al., 1985) and the non-pathogenic
archetype variants (Yogo et al., 1990) were analysed for
Spi-B-binding sites using the criteria of a 59-NGAA-39

core. Four potential Spi-B-binding sites (Fig. 1) were

identified in the JCV promoter/enhancer sequences and are
listed in Table 1. Mad-1 (Fig. 1a) and Mad-4 (Fig. 1b)
promoter/enhancers contain a binding site, labelled L5,
adjacent to the TATA box in the first repeat. Mad-1
contains a second L5 site in the second repeat. A naturally
occurring 19 bp deletion in the Mad-4 promoter/enhancer
results in the loss of the second TATA box and a unique
Spi-B-binding site labelled L4. The archetype promoter/
enhancer (Fig. 1c) contains 23 and 66 bp insertions within
a single 98 bp unit, resulting in the loss of the L5/L4-
binding sites. The 23 bp insertion results in a single base
pair change, 59-AAAAGGGAAGGGA-39, at the 39 end of
the L5 site to 59-AAAAGGGAAGGTA-39, labelled L3. The
66 bp insertion resulted in a unique site labelled L14.

Spi-B is expressed in JCV susceptible cells

JCV infects a variety of different cell types including
CD34+ haematopoietic precursors, B cells, and astrocytes
in culture. However, Spi-B gene expression has been
described exclusively in the B cell lineage (Dahl et al., 2002;
Erselius et al., 1990; Garrett-Sinha et al., 2005; Kim et al.,
2003; Ray et al., 1992; Schmidlin et al., 2008; Schweitzer &
DeKoter, 2004; Su et al., 1996, 1997). Northern blot
analysis of Spi-B mRNA in brain tissue from mice showed
no message present (Ray et al., 1992; Su et al., 1996). Using
a sensitive method of quantitative real-time RT-PCR (qRT-
PCR), Spi-B mRNA expression was measured in the
various cell types susceptible to JCV (Table 2). Spi-B
mRNA was detected above the non-template control for

Fig. 1. Diagram of potential Spi-B-binding sites in JCV promoter/
enhancer sequences. The non-coding viral RRs from the PML-
associated Mad-1 (a), Mad-4 (b) and the non-pathogenic
archetype (c) JCV variants are represented. The PML-associated
variants contain 98 bp tandem repeats (light grey). A 19 bp
deletion in the second repeat of Mad-4 (red) results in the loss of
the second TATA box (blue). The archetype sequence contains
two inserts (dark grey) in a single 98 bp unit. Sites that bind Spi-B
protein in EMSA assays are shaded in yellow and sites that did not
bind protein are white.
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background detection in all cell types tested. Spi-B mRNA
expression was measured at low levels in two cell types,
HeLa cells and primary CD3+ T lymphocytes, in which
Spi-B protein has not been detected. Immortalized B cells
(Raji and BJAB) and primary CD19+ B cells expressed
100-fold and greater levels of Spi-B mRNA in comparison.
A CD34+ cell line (KG-1a) and primary CD34+

haematopoietic precursors expressed less Spi-B mRNA
than B cells, which is consistent with published reports (Su
et al., 1996). The human fetal brain-derived SVG cell line,
which supports robust JCV multiplication, expressed Spi-B
mRNA comparable to CD34+ haematopoietic precursors.
Human fetal brain-derived cells (progenitors, astrocytes
and neurons) expressed Spi-B mRNA at levels similar to
HeLa and primary T lymphocytes. Spi-B protein expres-
sion was measured by protein blotting using an antibody
that detects a single 43 kDa band for Spi-B (Arguello et al.,
2003). Spi-B protein was detected in BJAB cells and slightly
lower in KG-1a cells (Fig. 2a) consistent with mRNA levels.
Spi-B protein was detected in SVG cells and in progenitor-
derived astrocytes (PDA), but not progenitor cells or
progenitor-derived neurons (PDN) (Fig. 2b). Spi-B protein
expression in the absence of high levels of mRNA in PDAs
may be due to instability and/or turnover of the mRNA.
Stability of the highly related Spi-1 mRNA has been

demonstrated to be extensively regulated at the post-
transcriptional level (Hensold et al., 1996), which may also
be the case for Spi-B.

Spi-B binds unique sites on JCV enhancers

Because potential Spi-B-binding sites are present in JCV
promoter/enhancer sequences and cells susceptible to JCV
infection express Spi-B, the association of Spi-B with
potential binding sites was measured by electromobility
shift assay (EMSA) using whole-cell extracts from KG-1a
cells, BJAB cells and PDAs (Fig. 3). Cell extracts were
incubated with double-stranded oligonucleotide probes
encoding the Spi-B-binding sites described in Table 1, or
the SV40 Spi-B site described previously (Petterson &
Schaffner, 1987) as a positive control. Fig. 3(a) illustrates
that protein present in BJAB cell extract binds the SV40
probe and causes a shift that was competed by a 5-, 100-
and 400-fold excess of unlabelled probe. Alteration of the
Spi-B site core from 59-GGAA-39 to 59-CCAA-39 abrogated
protein binding to the mutant probe, indicating that
complex formation was specific for the Spi-B core.
Addition of Spi-B antiserum, suitable for distinguishing
Spi-B from other related proteins in an EMSA assay (Laux
et al., 1994), caused a supershift in the original complex,

Table 1. Potential Spi-B-binding site sequences present in the promoter/enhancers of JC virus
variants

Spi-B-binding site Viral variant Sequence (5§–3§)

SV40 SV40 CTGAAAGAGGAACTTG

SV40 mutant – CTGAAAGACCAACTTG

L4 Mad-4 CAAGGGGAAGGGA

L4 mutant – CAAGGCCAAGGGA

L5 Mad-1/Mad-4 AAAAGGGAAGGGA

L5 mutant – AAAAGCCAAGGGA

L3 Archetype AAAAGGGAAGGTA

L14 Archetype TATAGTGAAACCC

Table 2. Spi-B mRNA expression in immune- and brain-derived cells types

Category Cell type Spi-B mRNA, relative level Standard deviation

Control HeLa 0.01 0.0002

CD3+ lymphocytes 0.01* 0.0061

B cells Raji 2.17 0.1262

BJAB 1.66 0.0014

CD19+ lymphocytes 1.16* 0.1616

Haematopoietic precursor KG-1a 0.31 0.0082

CD34+ lymphocytes 0.75* 0.3661

Brain-derived cells SVG 0.30 0.0273

Human fetal brain progenitor cells 0.02 0.0001

PDA 0.01 0.0013

PDN 0.10 0.0036

*Spi-B mRNA value is a mean of cell purified from multiple blood donors.
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which indicates that protein bound to the SV40 probe in
the shifted complex is Spi-B.

The same EMSAs were carried out for the potential JCV
Spi-B-binding sites. Probes for Spi-B sites present in
archetype promoter/enhancers, L3 and L14, did not bind
protein in any cell type tested (Fig. 3b). Probes for Spi-B
sites present in PML-associated promoter/enhancers, L5
and L4, bound protein expressed in KG-1a, BJAB and
PDAs shown in Fig. 3(c) and (d), respectively. Incubation
of both the L5 and L4 probes with cellular extracts resulted
in the formation of multiple protein–DNA complexes
labelled shifts C1–C3 that were consistent between cell
types. Formation of multiple protein–DNA complexes on
Spi-B-binding sites has been described using EMSA
analysis for many promoters in published reports
(Dekoninck et al., 2003; Erselius et al., 1990; Garrett-
Sinha et al., 2005; Laux et al., 1994; Petterson & Schaffner,
1987; Zhao & Sample, 2000). In the case of JCV L5 and L4,
each complex was competed by excess of unlabelled
oligonucleotide probe and alteration of the Spi-B site core
to 59-CCAA-39 resulted in abrogation of formation of all
complexes. Addition of Spi-B antiserum caused supershifts
of the original complexes, similar to that observed for
SV40. The C2 shift for the L5 site and C3 shift for the L4
site required higher excess unlabelled probe for competi-
tion and were not completely supershifted upon addition
of Spi-B antiserum, suggesting an abundance of these
complexes over others. These results suggest that Spi-B is a
component of multiple complexes at these locations on the
viral promoter/enhancer. Spi-B is known to bind multiple
cofactors that cooperate to affect gene expression such as
cellular proteins TBP and pRB (Rao et al., 1999b), OBF-1
(Bartholdy et al., 2006) and CBP (Yamamoto et al., 2002),
and the viral proteins EBNA-2 and EBNA-3C for Epstein–
Barr virus (Zhao & Sample, 2000). It is possible that the
multiple shifts represent separate complexes that may
include cofactors necessary for activity of Spi-B.
Importantly, competition with varying levels of unlabelled
probe and Spi-B antiserum supershifts demonstrate that
each of the complexes formed for both L5 and L4 are Spi-B
specific.

Expression of exogenous Spi-B in semi- and non-
permissive cells increases T-antigen expression

Because Spi-B is expressed in cells that are susceptible to JCV
infection, we sought to determine if Spi-B overexpression in
non-permissive cells could support viral activity. Previous
studies showed that exogenous expression of NF-1X in non-
permissive cells by transfection prior to JCV exposure
increased T-antigen expression (Messam et al., 2003). NF-
1X and Spi-B were expressed by transient transfection in
semi-permissive progenitor cells and non-permissive PDNs
for 24 h followed by exposure to Mad-4 JCV. Five days after
JCV exposure, cells were analysed for expression of T
antigen, as well as the cell-specific marker for progenitor
cells (nestin) or neurons (b III tubulin). Double-positive
cells for T antigen and the appropriate cell-specific marker
were quantified from three separate experiments. Pre-
expression of NF-1X and Spi-B resulted in a statistically
significant increase in T-antigen expression in progenitors
(Fig. 4a) and PDNs (Fig. 4b). NF-1X protein expression was
confirmed 3 days post-transfection by immunofluorescence
(progenitors: 5–10 %; PDN: 1 %). An increase in Spi-B
mRNA expression was confirmed 3 days post-transfection
by qRT-PCR. Spi-B gene expression was increased from
0.0005 to 1.7 in progenitor cells and from 0.05 to 1.7 in
PDNs. These results demonstrate that expression of Spi-B,
like NF-1X, supports early viral gene expression.

Mutation of the L4 Spi-B-binding site in the Mad-4
promoter/enhancer is sufficient to abrogate JCV
activity in PDAs

To determine if Spi-B sites in the JCV promoter/enhancer
that bind Spi-B are important for viral activity, site-directed
mutagenesis was used to generate plasmids encoding
mutations in the Spi-B site core of the L5 and L4 sites in
Mad-4 (Table 1). Plasmids encoding archetype, Mad-1,
Mad-4, L5 mutant Mad-4, L4 mutant Mad-4 or L5/L4
double-mutant Mad-4 were introduced into PDAs via
nucleofection. T-antigen expression was quantified on a
per cell basis by immunofluorescence, 6 days after nucleofec-
tion. Fig. 5 demonstrates that T-antigen expression occurred
at similar levels from the Mad-1 and Mad-4 plasmids, while
expression from the archetype plasmid was rarely detected.
Mutation of the L5 site resulted in a slight, but not
statistically significant, increase in T-antigen expression
comparable to Mad-1. Mutation of both the L5 and the L4
sites resulted in abrogation of T-antigen expression.
Importantly, mutation of the L4 site alone also resulted in
abrogation of T-antigen expression. These results dem-
onstrate that abrogation of viral activity due to the L4 site
mutation is dominant in the presence of a wild-type L5 site.

DISCUSSION

The promoter/enhancer of JCV is considered to be the
portion of the RR that confers specific tissue tropism and
supports development of PML. PML-associated variants

Fig. 2. Spi-B is expressed in JCV susceptible cells. Spi-B protein
was detected in JCV susceptible KG-1a, BJAB, SVG and PDA (a)
and cells derived from human fetal brain progenitors, PDA and
PDN (b) by protein blotting. b-Tubulin protein levels were detected
to demonstrate equal loading.
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Mad-1 and Mad-4 contain promoter/enhancers that exist
as tandem repeats, which contain TATA boxes and
duplications of essential transcription factor-binding sites
including Spi-B. In this study, Spi-B-binding sites that
actively bound Spi-B protein expressed in JCV susceptible
cell types are present in promoter/enhancer sequences from

Mad-1 and Mad-4, but not the non-pathogenic archetype
(Table 2, Figs 2 and 3). Mad-1 contains two identical Spi-
B-binding sites (L5) within each of the 98 bp repeats, while
Mad-4 contains the same site as Mad-1 (L5) in the first
repeat followed by a unique site (L4) in the second repeat
that results from a naturally occurring 19 bp deletion.

Fig. 3. Spi-B binds unique sites present on JCV promoter/enhancers. An EMSA was performed using BJAB cell extract and
biotin-labelled oligonucleotides for the SV40 Spi-B site as a positive control for Spi-B-DNA complex formation (a). Authentic-
binding site probe was incubated with cell extract alone or in combination with 5-, 100- or 400-fold excess unlabelled
oligonucleotide competitor, or Spi-B antiserum. Mutant probe was incubated with cell extract to demonstrate specificity for the
Spi-B-binding site core. Identical EMSAs were performed using BJAB, KG-1a, and/or PDA cell extract and biotin-labelled
oligonucleotides for the archetype JCV L3 and L14 (b) and JCV L5 (c) and L4 (d) Spi-B sites as probes.
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Importantly, mutation of the unique Mad-4 L4 Spi-B site
and not L5 resulted in abrogation of T-antigen expression
in PDAs. The locations of the L5- and L4-binding sites are
of particular interest in relation to JCV activity.

Abrogation of T-antigen gene expression in response to
mutation of the L4 site within the viral promoter/enhancer
suggests that an Spi-B site in the second tandem repeat is
important for early viral gene expression (Fig. 5).
Strikingly, the presence of a functional Spi-B site in the
first repeat (L5) is incapable of compensating for the loss of
the Spi-B site in the second repeat (L4). Mutation of the L5
site alone did not significantly alter the ability of the virus

to express T antigen; however, this could be due to
compensation by the L4 site. The L4 site may be dominant
over an initial L5 site in the context of the tandem repeat.
Due to its deletion in a variety of RR sequences from PML
patients including Mad-4, Her-1, Mad-7, Mad-8, Mad-9
and Mad-11 (Major et al., 1987; Martin et al., 1985;
Matsuda et al., 1987) the second TATA box was not
thought to be necessary for virus multiplication (Lynch &
Frisque, 1990; Martin et al., 1985). In fact, molecular
studies on the function of the Mad-1 RR often utilize JCV
sequences that only contain a single 98 bp unit and,
therefore, a single TATA box and Spi-B site (Kerr et al.,
1994; Sunden et al., 2007). However, the maintenance of
tandem repeat nucleotide sequences throughout PML-
associated variants illustrates their importance in the
pathogenesis of JCV (Gosert et al., 2010). Utilizing RRs
with a single 98 bp unit may miss the importance of
measuring the relationship between tandem repeats. Future
studies should include full-length RR to include the effects
of a functional second repeat in the context of JCV
multiplication and pathogenesis.

Spi-B-binding sites within the first repeat of the promoter/
enhancers of PML-associated JCV variants are situated
directly downstream of the viral origin and TATA box
elements, which are essential for T-antigen binding and
activation of viral gene expression (Daniel & Frisque, 1993;
Kenney et al., 1986a, b; Khalili et al., 1986; Krebs et al.,
1995; Vacante et al., 1989). Activation of gene expression
from the basal promoter is an essential event for JCV
multiplication and reactivation from latency. SV40 T
antigen interacts with proteins that recruit the basal
transcriptional apparatus (TFIID) to the viral promoter/
enhancer including TATA-binding protein (TBP) and
transcription-enhancing factor 1 (Damania & Alwine,
1996; Gruda et al., 1993; Zhai et al., 1997) and some
evidence suggests similar interactions for JCV T antigen
(Rekvig, 1997). Importantly, initial events of JCV infection
occur in the absence of T-antigen protein, suggesting that
other factors regulate this process. The amino-terminal
portion of Spi-B binds TBP and is capable of recruiting the
TFIID complex to promoters (Rao et al., 1999b).
Therefore, a potential mechanism for activation of JCV
early gene expression in the absence of T protein could
involve Spi-B binding to TBP on the JCV promoter/
enhancer and recruitment of the TFIID complex. It has
been demonstrated that TBP containing transcription
factor complexes form on TATA-less promoters and are
required for transcription (Pugh & Tjian, 1991). Therefore,
Spi-B bound to the L4 site in the TATA-less second repeat
of Mad-4 could be capable of recruiting TBP and TFIID to
initiate transcriptional activation in the absence of a TATA
box. In this case the L4 site is positioned to compensate for
the lack of the TATA box in the Mad-4 variant.

In addition to TATA boxes, these areas are bound heavily
by other host factors that regulate viral activity. Oct-6/tst-
1/SCIP-binding sites are located adjacent to both the L5
and L4 Spi-B sites on their 59 ends and NF-1-binding sites

Fig. 4. Expression of exogenous Spi-B in semi- and non-
permissive cells increases T-antigen expression. The fraction of T
antigen and nestin double-positive progenitor cells (a) or b III
tubulin double-positive PDN (b) is represented along with the SD.
An asterisk denotes the following statistically significant change in
value. Progenitors: NF-1X P50.0006, Spi-B P50.0063; PDN:
NF-1X P50.0004, Spi-B P50.0012.

Fig. 5. Mutation of the L4 Spi-B-binding site in the Mad-4
promoter/enhancer is sufficient to abrogate JCV activity in PDA.
The fraction of T antigen-positive cells as a fold change over the
wild-type Mad-4 plasmid for archetype, Mad-1, Mad-4, L5 mutant
Mad-4, L4 mutant Mad-4 or L5/L4 mutant Mad-4 plasmids is
represented along with SD. An asterisk denotes the following
statistically significant change in value. Archetype, P50.039 ; L5/
L4 mutant, P50.039 ; L4 mutant, P50.039.
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are located adjacent to both Spi-B sites on their 39 ends.
Importantly, neither the Oct-6/tst-1/SCIP nor the NF-1-
binding sites directly overlap the Spi-B-binding sites.
Therefore, these factors would not affect Spi-B binding in
the EMSA analysis presented in Fig. 3 and would not be
affected by the mutations introduced in the Mad-4 L5, L4
or L5/L4 double mutants presented in Fig. 5. Pur a and YB-
1 bind opposite strands of the single-stranded JCV
promoter/enhancer sequence, which overlap the L5 Spi-
B-binding site, and regulate early and late viral gene
expression, respectively, in cooperation with the large T
antigen (Chen et al., 1995c; Chen & Khalili, 1995; Kerr
et al., 1994). Nucleotide changes equivalent to the
mutations in the Mad-4 L5, L4 or L5/L4 double mutants
were introduced into the YB-1/pur a-binding site reported
by Chang et al. (1996) and did not have any significant
effect on the ability of protein from BJAB cells or PDAs to
bind the authentic probe in competition experiments (data
not shown). Importantly, studies on YB-1/pur a-binding
sites focus on sequences present in the first tandem repeat
and emphasize the importance of T-antigen binding to
sites present in the origin of replication (Chen et al., 1995c;
Chen & Khalili, 1995; Kerr et al., 1994). In the context of a
Mad-4 JCV promoter/enhancer, the naturally occurring
19 bp deletion results in alteration of the YB-1/pur a-
binding site in the second tandem repeat. In addition, YB-
1/pur a-binding site in the second tandem repeat of both
Mad-1 and Mad-4 would not contain the important T-
antigen binding sites in proximity because they occur
directly after the first repeat. Taken together these points
suggest that the YB-1/pur a-binding site would not play a
role in the abrogation of early gene expression demon-
strated in Fig. 5 for the L4 mutant plasmid.

Spi-B is largely considered a lymphotrophic transcriptional
activator (Rao et al., 1999a; Yamamoto et al., 2002) and is
known to transactivate the l2–4 enhancer (Su et al., 1996),
the LMP/TP2 promoter of Epstein–Barr virus (Laux et al.,
1994), the SV40 enhancer (Petterson & Schaffner, 1987)
and the LPV promoter (Erselius et al., 1990). JCV is
capable of infecting a variety of cells of the lymphoid
system. Detection of tandem repeat containing JCV DNA
sequence in the absence of viral capsid protein in the bone
marrow in patients prior to the development of PML
suggests that these cells may act as a reservoir for latent
virus (Houff et al., 1988; Tan et al., 2009). Spi-B expression
in developing B cells correlates with reactivation of JCV in
immune cells. Studies in mice demonstrate that Spi-B is
expressed at a low level in pro-B cells, increases in pre-B
cells and is highest in mature B cells (Su et al., 1996). Spi-B
expression during B-cell development was confirmed in
human using prototypic cell lines (Ray et al., 1992). If Spi-
B is indeed a transcriptional activator of JCV gene
expression, a minimal level of Spi-B expression in
haematopoietic progenitors and pro-B cells may support
latency of JCV, while upregulation of Spi-B expression in
pre-B and mature B cells may lead to reactivation of JCV
gene expression and production of viral progeny.

Because the number of patients undergoing immuno-
modulatory therapies that develop PML continues to rise
(Major, 2009), understanding the role of Spi-B during JCV
latency and reactivation is increasingly important. These
therapies cause mobilization and expansion of cells that have
the potential to harbour latent JCV infection. Natalizumab
has also been shown to upregulate genes involved in B-cell
differentiation, including Spi-B (Lindberg et al., 2008). If
Spi-B is an activator of JCV gene expression it could be a
contributing factor in the development of PML in patients
undergoing these immuno-modulatory therapies. In addi-
tion, PML-associated Mad-4 contains a duplication of the
sites due to the tandem repeat nature of its promoter/
enhancer, one of which (L4) was essential for T-antigen
expression demonstrated by mutational analysis in Fig. 5.
Accumulation of Spi-B sequence motifs in promoters can
confer tissue specificity (Gerster et al., 1987; Ondek et al.,
1987; Schirm et al., 1987) as illustrated in the case of a
lymphotrophic SV40 variant (Petterson & Schaffner, 1987).
Accumulation of additional, or unique, Spi-B-binding sites
in the promoter/enhancers of JCV RRs may contribute to
higher levels of replication in lymphoid tissues that in turn
lead to development of PML. Further investigation into the
role of Spi-B during JCV infection and the presence of
duplicated, and or unique, Spi-B-binding sites in the RR
sequences derived from PML patients will offer insight into
the molecular mechanism of JCV reactivation and the
development of PML.

METHODS

Cells, plasmids and viruses. Human growth factors for cell culture
were obtained from Peprotech. KG-1a cells were maintained in RPMI
1640 medium (Cellgro) supplemented with 20 % FBS (Atlanta
Biologics) and 2 mM L-glutamine (Quality Biologics). BJAB and
Raji cells were maintained in RPMI 1640 medium supplemented with
10 % FBS and 2 mM L-glutamine. SVG cells were maintained in
minimal essential medium (MEM; Cellgro) supplemented with 10 %
FBS and 2 mM L-glutamine. Human central nervous system
progenitors were isolated and differentiated into astrocytes and
neurons as described previously (Messam et al., 2003).

A plasmid encoding the full-length human Spi-B cDNA, pDEB-Spi-B,
was obtained from Francoise Moreau-Gauchelin at the Institut Curie
in Paris, France (Ray et al., 1992). A plasmid encoding the full-length
human NF-1X cDNA with an amino-terminal haemagglutinin (HA)
tag, pCHA-NF1X, was described previously (Monaco et al., 2001). A
plasmid encoding the full-length JCV Mad-4 genome, pMad4(586),
was described previously (Martin et al., 1985). A plasmid encoding
the full-length JCV Mad-4 genome, pM1TC, was described previously
(Frisque et al., 1984). A plasmid encoding the full-length JCV
archetype genome, CY, was described previously (Yogo et al., 1990).

Isolation of primary lymphocytes. Mononuclear cells were isolated
from the peripheral blood of normal donors provided by the NIH
clinical centre blood bank by centrifugation on Ficoll-Hypaque
gradients. CD34+ haematopoietic precursors, CD19+ B cell and
CD3+ T-cell populations were purified using the RoboSep brand of
immunomagnetic cell separation (StemCell Technologies).

Antibodies. A mouse mAb for SV40 T antigen, which cross-reacts
with JCV T antigen (EMD Calbiochem) was used at 5 mg ml21. The
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mouse mAb GA5 for human glial fibrillary acid protein (GFAP) (Cell
Signaling Technology) was used at a 1 : 300 dilution. The rabbit
polyclonal antibody for GFAP (Covance) was used at a 1 : 1000
dilution. The rabbit polyclonal antibody TUJ1 for neuronal class III
b-tubulin (Covance) was used at a 1 : 2000 dilution. HA-tagged
human NF-1X was visualized with the rat mAb 3F10 for HA (Roche
Diagnostics) at 200 ng ml21. The rabbit polyclonal antibody 331B for
human nestin was used at a 1 : 200 dilution (Messam et al., 2000). The
goat polyclonal antibody for human Spi-B (Santa Cruz Biotechnology
Inc) was used at a 1 : 200 dilution. The mouse mAbs for b actin AC-15
and for b-tubulin TUB 2.1 (Sigma) were used at 1 : 1000 dilutions.
Fluorescent-labelled antibodies qualified for multiple labelling
experiments were obtained from Invitrogen and used at 1–2 mg ml21.

Preparation of Spi-B-binding site mutants in a Mad-4 back-

ground. Site-directed mutagenesis was performed on the pMad4(586)
plasmid to alter the L5 and L4 Spi-B site cores from 59-GGAA-39 to 59-
CCAA-39 using the QuikChange II XL site-directed mutagenesis kit
(Stratagene) according to the manufacturer’s instructions. Sense
oligonucleotides (L4: 59-GTAAACAAAGCACAAGGCCAAGGGATG-
GCTGCCAGC-39; L5: 59-TCCTGTATATATAAAAAAAAGCCAAGG-
GATGGCTGCCAGCCA-39) and antisense oligonucleotides (L4: 59-
GCTGGCAGCCATCCCTTGGCCTTGTGCTTTGTTTAC-39; L5: 59-
TGGCTGGCAGCCATCCCTTGGCTTTTTTTTATATATACAGGA-39)
containing the 59-GG-39 to 59-CC-39 mutations were synthesized by
Integrated DNA Technologies (IDT). To create the L5/L4 double-
mutant plasmid, site-directed mutagenesis was performed on the L4
mutant plasmid using the L5 sense and antisense oligonucleotides. DNA
sequencing was performed to confirm the presence of each desired
mutation as well as the fidelity of Mad-4 by the NINDS DNA
sequencing facility.

Isolation of total RNA. Total RNA was isolated from cell lines and
primary cells using the RNeasy plus mini kit (Qiagen) according to
the manufacturer’s instructions. RNA was eluted from the column in
nuclease-free water and quantified using a Nanodrop 8000 (Thermo
Scientific).

Preparation of whole-cell extracts. Whole-cell extracts were
prepared by using a modification of the method of Andrews &
Faller (1991) as described previously (Monaco et al., 2001).

Protein blotting. Fifteen micrograms of protein was separated by
electrophoresis in a 4–12 % Bis-Tris gel followed by transfer to PVDF
membrane. Membranes were blocked for 1 h in 5 % non-fat dry milk
in Tris-buffered saline containing 50 mg BSA ml21, 10 mg glycine
ml21, 0.05 % Tween-20 (TBS-BGT). Membranes were incubated with
primary antibodies diluted in TBS-BGT for 3 h. Unbound antibody
was removed by washing in TBS-BGT followed by 1 h incubation in
secondary fluorescent-conjugated antibodies (Invitrogen). Unbound
antibody was removed by washing in TBS-BGT. The antibody–
antigen complex was visualized using a FluorChem Q imager (Alpha
Innotech).

Immunofluorescence. Immunofluorescence was conducted on
Lipofectamine 2000 transfected, nucleofected and JCV-infected cell
cultures. Cells were fixed with 4 % paraformaldehyde and permea-
bilized with 0.2 % Triton X-100 before indirect antibody labelling.
Samples were mounted with a glycerol-based mounting medium
containing the DNA dye, 49,6-diamidino-2-phenylindole (DAPI) and
analysed by fluorescence microscopy using a Zeiss Axiovert 200M
microscope fitted with filters appropriate for DAPI, Alexa Fluor 488
and Alexa Fluor 568 excitation.

qRT-PCR. Spi-B mRNA present in cells was measured by reverse
transcription followed by qRT-PCR using the TaqMan gene expression
assay (Applied Biosystems) for human Spi-B (Hs00162150_m1),

human b actin (Hs99999903_m1) and human PUM1
(Hs00206469_m1). Reverse transcription (RT) of 1 mg of total RNA
was performed using qScript cDNA supermix (Quanta Biosciences)
according to the manufacturer’s instructions. Six 1 : 10 serial dilutions
of the resultant BJAB RT reaction were prepared to generate a relative
standard curve to determine Spi-B mRNA levels. Singleplex qRT PCRs
were assembled using each RT reaction with 26 TaqMan universal
PCR master mix and 206 TaqMan human Spi-B gene assay or 206
TaqMan human b actin or PUM1 endogenous control assay according
to the manufacturer’s instructions (Applied Biosystems). Relative
quantification of Spi-B gene expression was determined using the
relative standard curve method described on the Applied Biosystems
website (Biosystems, 2008). Spi-B mRNA levels were normalized to
input template based on the endogenous control. The BJAB standard is
assigned a value of one and the other cell types are reported as values
relative to BJAB.

EMSA. Oligonucleotides with the sequence of the SV40 Spi-B site
(59-CTGAAAGAGGAACTTG-39), or the JCV Spi-B site L3 (59-AAA-
AGGGAAGGTA-39), L4 (59-CAAGGGGAAGGGA-39), L5 (59-AAAG-
GGAAGGGA-39) and L14 (59-TATAGTGAAACCC-39) were synthe-
sized with and without 59 biotinylation by IDT. Mutated versions of
the SV40 Spi-B site (59-CTGAAAGACCAACTTG-39), and JCV Spi-B
L4 (59-CAAGGCCAAGGGA-39) and L5 (59-AAAGCCAAGGGA-39)
were synthesized with 59 biotinylation. Oligonucleotides with sequences
complementary to those listed above were also synthesized with or
without 59 biotinylation as indicated above. The oligonucleotides for the
authentic- or mutated-binding sites were annealed to form double-
stranded probe at a concentration of 100 ng ml21. The biotin labelled
probes were diluted 1 : 200 in water. Biotin labelled authentic probe or
mutant probe was incubated with 5–25 mg nuclear extract from KG-1a
cells, BJAB cells or PDA in the presence or absence of a 5-, 100- and 400-
fold excess of unlabelled authentic probe. Supershifts were carried out
by incubation of the cellular extracts with 2 ml Spi-B antiserum for
30 min on ice before the addition of probe as described previously
(Laux et al., 1994). The reactions were incubated at room temperature
for 20 min and electrophoresed in a 6 % polyacrylamide–TBE DNA
retardation gel (Invitrogen). The complexes were transferred to a
positively charged nylon membrane and detected using the LightShift
chemiluminescent EMSA kit (Thermo Scientific/Pierce).

Transfection and infection. Exogenous Spi-B and NF-1X were pre-
expressed in human fetal brain-derived progenitor cells or PDN
followed by exposure to Mad-4 JCV in a modification of the method
described by Messam et al. (2003). Cells were allowed to attach to the
wells of PDL-coated six-well dishes at a density of 2–46105 cells per
well for 2 days. Each well of cells was transfected with 1 mg pDEB-Spi-
B DNA or pCHA-NF1X using Lipofectamine 2000 according to the
manufacturer’s instructions (Invitrogen). Cells were exposed to
medium alone for the mock condition. Approximately 48 h after
transfection each well of cells was exposed to 333 haemagglutinaton
units (HAU) of Mad-4 JCV or medium alone from the mock
condition. Cells were fed with half new medium every 2–3 days.
Immunofluorescence was performed on days 5 and 8 post-JCV
exposure and T-antigen expression was quantified versus the cell-
specific marker expression of nestin for progenitors or b III tubulin
for PDN.

Nucleofection. Archetype, Mad-1, Mad-4, L5 mutant Mad-4, L4
mutant Mad-4 and L5/L4 double-mutant Mad-4 plasmids were
introduced into PDAs by nucleofection using the Amaxa basic kit for
primary neurons (Amaxa) according to the manufacturer’s instruc-
tions. Briefly, 16106 cells were nucleofected with 2 mg DNA using
program C13. Cells were allowed to attach for 4 h, followed by
replacement of culture medium. Cells were fed with half new medium
every 2–3 days. Nucleofection using the pmaxGFP (Amaxa) reporter
plasmid was included to determine nucleofection success and
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efficiency. Immunofluorescence was performed on day 6 post-

nucleofection to measure T-antigen expression in GFAP-positive

PDAs.

Generation of figures. Digital Western blot images were detected

using fluorescent filters in a FluorChem Q imager (Alpha Innotech).

Digital EMSA images were obtained by scanning the exposed film

using an hp Scanjet 8250 (Hewlett Packard Development Company).

Figures were generated using Canvas II (ACD Systems International
Inc.) and Adobe photoshop CS2 (Adobe).
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