
The effect of charge-reversal amphiphile spacer composition on
DNA and siRNA delivery

Xiao-Xiang Zhang1, Carla A. H. Prata1, Thomas J. McIntosh2, Philippe Barthélémy3, and
Mark W. Grinstaff1,*
1Departments of Biomedical Engineering and Chemistry, Boston University, Boston MA 02215
2Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710

Inserm, U-869, Université de Bordeaux, Bordeaux, F-33076, France

Abstract
A series of charge-reversal amphiphiles with different spacers separating the head group from the
hydrophobic chains are described for delivery of DNA and siRNA. Among them, the amphiphiles
possessing a glycine spacer (e.g., B-GlyGly) showed effective DNA transfection in CHO and NIH
3T3 cells as well as siRNA gene knockdown in HepG2 and UASMC cells. Ethidium bromide
quenching assays revealed that DNA was released the fastest from the lipoplex of B-GlyGly in the
presence of esterase. Also, X-ray diffraction results indicated that the DNA was located between
the adjacent lipid bilayers in the lipoplex of B-GlyGly. These distinct features appear to be
required for high transfection activity.

Introduction
Gene therapy has received significant attention in the past decade due to its advantages over
traditional therapies. The two most common methods for gene delivery use either synthetic
(1-5) or viral(6-10) vectors. Compared to viral vectors, non-viral vectors have lower
toxicity, high load capacity and are easy to synthesize. Consequently, there has been a
significant effort to develop and evaluate non-viral vectors, which include cationic
amphiphiles and polymers(11-15) and more recently anionic amphiphiles.(16) Yet, synthetic
vectors also have a number of limitations including low transfection efficiencies both in
vitro and in vivo, significant cytotoxicity, and inactivation in the presence of serum. To
overcome these limitations, investigators are modifying the amphiphile structure and, for
small cationic amphiphiles, this entails alternative cationic head groups, linkers, and
hydrophobic moieties. Examples of different cationic head groups explored include choline,
(17,18) spermine,(19) di- and tri-peptides,(20,21) carbohydrates,(22,23) and nucleosides.
(24-32) With regards to the hydrophobic moiety, long chain ester and ether linked
hydrocarbons have been extensively studied. The fluorinated analogues of cationic lipids,
like DOTMA, have also been explored and these amphiphiles exhibited higher transfection
activities in vitro (33) and in vivo compared to their hydrocarbon analogs.(34) In addition,
researchers have used combinatorial approaches to screen large libraries of amphiphiles in
order to identify key structural components of the amphiphile responsible for high
transfection activity.(35,36)
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Although significant research has been conducted regarding the structure-property
relationships of a wide range of cationic lipids, only a few studies can be found that
systematically investigate the effect of spacers within the head group, and include cationic
lipids derived from betaine glycine,(37) cationic glycolipids,(38) and cholesterol-based
cationic lipids.(39) These studies, along with others, have begun to provide design
parameters for optimizing the chemical structure for efficient nucleic acid delivery with
minimal cytotoxicity.

In previous research in our lab, we found that a charge-reversal amphiphile (Figure 1A)
which possesses benzyl esters at the end of alkyl chains showed high transfection activity.
(40) The total charge of this amphiphile was capable of switching from +1 to -1 when the
benzyl esters are hydrolyzed. This charge-reversal effect was implemented to facilitate the
release of DNA from the amphiphiles. In a separate study, we also found that spacing of the
cationic charges within the headgroup in a series of peptide-based amphiphiles can afford
improved transfection performance with amphiphiles KWK-C14, KGK-C14 and KGG-
C14 showing higher transfection compared to KK-C14 (Figure 1B).(21) To take advantage
of the charge-reversal effect, as well as to further understand how spacer length and
composition affect transfection efficacy, here we present a study on a series of charge-
reversal amphiphiles with different spacers separating the head group from the hydrophobic
chains.

All the amphiphiles studied (Figure 2) possess a quaternary ammonium as a cationic head
group (B) and the same alkyl chains ending with benzyl esters, but have spacers of different
lengths: two, five or seven atoms. The nature of the spacers is also varied: 1) the glycine and
alaine spacers are relatively rigid, hydrophilic and capable of hydrogen bonding (B-Gly, B-
GlyGly, B-AlaAla; 2) the ethylene oxide spacers are flexible and hydrophilic (B-EO, B-
(EO)2); and 3) the alkyl chain spacers are flexible and hydrophobic (B-(CH2)4, B-(CH2)7).

Results and Discussion
The synthetic routes to the different amphiphiles can be found in Scheme 1 and a detailed
procedure can be found in the SI. In general, the different spacers containing the head group
were first synthesized and then coupled to 1 or 2 to afford the desired products. As a
representative example, the synthesis of the B-GlyGly amphiphile is described next. N,N-
dimethylglycine hydrochloride and glycine benzyl ester hydrochloride were reacted in the
presence of DCC and DMAP at RT for 16h. Benzyl 2-(2-(dimethylamino)acetamido)acetate
was purified as yellow oil (76%). The benzyl group was removed in the presence of a
catalytic amount of Pd(II) on carbon at RT under 50psi H2 for 16h to afford the
intermediate, in 84% yield. The deprotected 2-(2-(dimethylamino)acetamido)acetic acid was
then coupled with 2 followed by reaction with CH3I to afford the B-GlyGly amphiphile as
an viscous oil in 80% yield. The characterization data for B-GlyGly, as well as all of the
amphiphiles, can be found in the SI.

To determine whether the amphiphiles would bind DNA, a standard ethidium bromide
(EtBr)-DNA fluorescence quenching assay was performed, as shown in Figure 3 (top). DNA
binding was observed for all the amphiphiles with similar affinity. Among the amphiphiles,
B-(CH2)4 and B-(CH2)7 showed the strongest binding affinity with a +/- charge ratio of 6:1,
and B bound the weakest with a charge ratio of 9:1. Next, the above DNA/EtBr/amphiphile
solution was incubated with esterase at pH 7.4 (100mM Tris, 100mM NaCl buffer, 300
units/mL). The intensity of fluorescence, which reflects the dissociation of the amphiphile
from the DNA as a consequence of the hydrolysis of the terminal benzyl esters, increased at
slightly different rates for the amphiphiles, as shown in Figure 3 (bottom). DNA was
released the fastest from the B-GlyGly complex with around 30% fluorescence recovered in
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the first 30 minutes, while less than 10% fluorescence recovery was observed for all the
other complexes. During the 4 hour period, fluorescence intensity increased slowly and
reached ∼20-35% for all other complexes, except for B where the fluorescence did not
change significantly.

Given their polar headgroup and long hydrophobic alkyl chains, these amphiphiles are likely
to form bilayer vesicles in aqueous solution. Differential scanning calorimetry (DSC) traces
of hydrated amphiphiles showed phase-transition temperatures between ≈ -22 and -15 °C,
except for B which was 60.6°C (Table 1). We subsequently prepared liposome solutions of
all the amphiphiles by sonicating a hydrated film of the amphiphile in an aqueous solution
(see SI for details). Dynamic light scattering measurements revealed that the sizes of
liposomes in the presence of DNA varied from 154 to 353 nm in pH 7.4 solution (100 mM
NaCl, 100 mM Tris buffer). The stability of the liposomes over time was examined by
measuring their sizes at 0, 1, 2 and 4 h (Figure 4 top). The size of liposomes formed from B-
Gly, B-(EO)2 and B-(CH2)7 remained almost constant during the 4 h period, while those of
other amphiphiles increased moderately. Given that these increasing rates are very small, all
the liposomes appeared to be stable.

Since endocytosis is one of the major cell uptake pathways for internalization of nonviral
vectors,(41-44) liposomes were incubated in a solution (100 mM NaCl, 100 mM phosphate
buffer) of pH 5, which resembles the pH of the endosome, and analyzed at 0, 1, 2, 4 h
(Figure 4 bottom). Generally, the size of liposomes at pH 5 is slightly smaller than those at
pH 7.4. During the 4 hour period, all the liposomes were stable except for the liposome
formed with B-EO, which quickly increased in size. The size increased from 264 to 468 nm
in 1 h, and further to 655 and 1428 nm in 2 and 4 h. These findings demonstrated that the
liposomes formed from the amphiphiles were stable under pH 7.4 and mildly acidic
conditions, except those formed from B-EO.

Next, to characterize the supramolecular structures, X-ray diffraction experiments were
performed at 22°C on all of the samples in the absence and presence of DNA. A hydrated
vesicle pellet was obtained for all samples and oriented multilayers were prepared for X-ray
analysis by placing the pellets on a curved glass substrate and incubating at 66% relative
humidity. All of the samples showed multiple reflections indexing as orders of lamellar
repeat periods, characteristic of lipid bilayers (Table 1).

The repeat periods of all samples in the absence of DNA were between 5.4 and 7.6 nm,
except for B-(CH2)7 which had a period of 1.4 nm. This period was abnormally small and
could be a higher order reflection from a larger repeat period. The addition of DNA
increased the repeat period for all of the assemblies. A smaller increase between 0.1 and 0.6
nm was observed for B, B-Gly, B-(CH2)4, B-(EO)2, and B-AlaAla. While, for B-EO and
B-GlyGly, we observed an increase in the period of 1.0 & 1.8 nm, respectively. This larger
change would be consistent with a structural model where a smectic phase was formed with
the DNA chains located between the adjacent lipid bilayers within the multilamellar
liposome. This structural model has been reported for complexes of DNA with DOTAP(45)
and cationictriesters of phosphatidylcholine.(46) For the other samples, the repeat periods
did not change significantly, indicating that DNA was not located within the lipid
multilayers.

Transfection experiments using reporter gene, β-galactosidase (β-gal, pVax-LacZ1,
Invitrogen) were performed with CHO and NIH 3T3 cells (Figure 5). Gene transfection
results were determined after 48 h as a function of cation/anion ratios (4:1, 8:1, 12:1, 16:1).

In CHO cells, amphiphiles B-Gly and B-GlyGly showed the highest transfection activity,
amphiphile B-AlaAla exhibited moderate activity, and the other amphiphiles showed
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minimal transfection efficiency. B-GlyGly was significantly more active than the positive
control, Lipofectamine™ 2000. However, both the amphiphiles B-Gly and B-GlyGly were
less active than Lipofectamine™ 2000 in NIH 3T3 cells, but still had higher transfection
efficiency compared to the other amphiphiles we tested. These results showed that those
amphiphiles containing spacers that are hydrophilic, relatively rigid, and capable of
hydrogen-bonding possessed the highest transfection activity. We also prepared the B-
AlaAla amphiphile since this amphiphile is similar to the B-GlyGly amphiphile but the
spacer is slightly more hydrophobic and rigid. The B-AlaAla amphiphile showed moderate
transfection activity but less than that observed with the B-GlyGly amphiphile. To confirm
that the benzyl-ester linkages on the hydrophobic chains (and the resulting charge-reversal
effect) was a contributor to the gene delivery efficiency of these amphiphiles, we
synthesized two additional control amphiphiles with the Gly or GlyGly spacers, possessing
saturated C16 chains instead of the benzyl ester terminated hydrophobic chains. As shown in
Figure 6, both amphiphiles displayed minimum transfection activity in CHO cells. This
result demonstrated the importance of charge-reversal effect on the transfection. MTS assays
performed with all the amphiphiles showed no significant cytotoxicity in the two cell lines
(see SI).

Next, siRNA transfections were performed with the base amphiphiles B and the two best
performing amphiphiles, B-Gly and B-GlyGly, using the KDalert™ GAPDH assay
(Ambion) with HepG2 and UASMC cells (Figure 7) at four different cation/anion ratios
(1:1, 5:1, 10:1, 15:1). NeoFX was used as the positive control. After 48 h transfection, in
HepG2 cells, B and B-Gly achieved 50% gene knockdown, while B-GlyGly only achieved
20% knockdown. In UASMC cells, B and B-Gly achieved 50% gene knockdown, while B-
GlyGly reached 60% knockdown. These results were comparable to those obtained with
NeoFX.

Conclusion
In summary, a series of amphiphiles with different spacers within the head group were
evaluated for DNA and siRNA delivery. Among them, the amphiphiles possessing the
relatively rigid and hydrophilic glycine or alaine spacers, capable of hydrogen bonding,
showed effective DNA transfection in vitro. As for siRNA transfection, B, B-Gly and B-
GlyGly showed gene knockdown. The binding affinity for the amphiphiles with the peptide
spacers was similar to all the other amphiphiles, but DNA was released the fastest from B-
GlyGly in the presence of esterase. Also, X-ray diffraction results indicate that DNA is
located between the adjacent lipid bilayers in the complex formed with B-GlyGly. It is clear
that many factors can influence transfection efficiency and that small perturbations in
structure can have a significant effect. In this study, we found that the best performing
amphiphile had a peptide linker separating the head group from the chains, complexes with
DNA to afford a bilayer structure, and forms lipoplexes of 200 nm in diameter. This study
highlights the importance and sensitivity of the spacer group in DNA/amphiphile assembly,
liposome stability, and gene transfection activity. Continued studies with different
amphiphile compositions will facilitate the development of a set of design requirements for
efficient DNA and RNA delivery.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Amphiphiles previously studied.
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Figure 2.
Amphiphiles with different spacers.
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Figure 3.
EtBr displacement assay showing the fluorescence intensity. Top: as a function of
amphiphile/DNA charge ratio; bottom: as a function of time in presence of porcine liver
esterase (300 units/mL).
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Figure 4.
Sizes of lipoplexes (nm) at pH 7.4 (top) and pH 5 (bottom). N=3, mean±SD
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Figure 5.
DNA transfection after 48 h in CHO (top) and NIH3T3 (bottom) cells as a function of
amphiphiles and DNA molar ratio. Lipofectamine™ 2000 was used as positive control.
N=3, mean±SD. * p<0.05
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Figure 6.
Structures of B-Gly-C16 and B-GlyGly-C16 and DNA transfection after 48 h in CHO cells
as a function of amphiphiles and DNA molar ratio. Lipofectamine™ 2000 was used as
positive control. N=3, mean±SD
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Figure 7.
siRNA transfection after 48 h in HepG2 cells (top) and UASMC cells (bottom) as a function
of amphiphiles and siRNA molar ratio, NeoFX™ was used as positive control. N=3, mean
±SD
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Scheme 1.
Synthesis of the cationic amphiphiles.
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Table 1

Phase-transition temperatures of the amphiphiles and repeat periods without and with DNA.

Amphiphiles Tm (°C)
Repeating period (nm)

without DNA with DNA

B 60.6 5.9 6.2

B-Gly -15.4 5.4 5.6

B-EO -22.2 5.7 6.7

B-(CH2)4 -17.3 7.6 7.8

B-GlyGly -16.8 6.1 7.9

B-(EO)2 -19.6 6.4 6.5

B-(CH2)7 -14.8 1.4 5.8

B-AlaAla -19.3 6.4 7.0
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