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the INK4b-ARF-INK4a locus 
encodes for two cyclin-dependent 

kinase inhibitors, p15inK4b and p16inK4a, 
and a regulator of the p53 pathway, arf. 
in addition anril, a non-coding rna, 
is also transcribed from the locus. arf, 
p15inK4b and p16inK4a are well-established 
tumor suppressors which function is 
frequently disabled in human cancers.  
recent studies showed that single nucle-
otide polymorphisms mapping in the 
vicinity of anril are linked to a wide 
spectrum of conditions, including cardio- 
vascular disease, ischemic stroke, type 2 
diabetes, frailty and alzheimer disease. 
the INK4b-ARF-INK4a locus is regu-
lated by polycomb repressive complexes 
(prcs) and its expression can be invoked 
by activating signals. other epigenetic 
modifiers such as the histone demeth-
ylases JmJd3 and Jhdm1B, the swi/
snf chromatin remodeling complex and 
dna methyltransferases regulate the 
locus interplaying with prcs. in view of 
the intimate involvement of the INK4b-
ARF-INK4a locus on disease, to under-
stand its regulation is the first step for 
manipulate it to therapeutic benefit.

Introduction

The INK4b-ARF-INK4a locus spans 
around 35 kb on human chromosome 
9p21 that contains the INK4b (also termed 
CDKN2b), ARF and INK4a genes (these 
two jointly referred as CDKN2a, reviewed 
in ref. 1 and fig. 1). They encode for 
two cyclin dependent kinase inhibitors, 
p15INK4b and p16INK4a and an unrelated 
protein, p14ARF. Whereas p15INK4b is trans-
lated from its own independent genetic 
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structure, ARF and p16INK4a share their 
second and third exons. However, ARF 
splices exon 2 in an alternative reading 
frame to that of p16INK4a, hence the name 
ARF.2 ARF and INK4a are transcribed 
from independent promoters. Both 
p15INK4b and p16INK4a bind specifically to 
CDK4 and CDK6 3 blocking cell prolif-
eration by preventing phosphorylation of 
RB resulting in a G

1
 arrest. ARF seques-

ters MDM2 in the nucleolus.4 This in 
turn activates p53 resulting in either cell 
cycle arrest or apoptosis.3 Recently, a new 
large antisense non-coding RNA termed 
ANRIL (also known as CDKN2b anti-
sense or CDKN2BAS) has been mapped 
to the INK4b-ARF-INK4a locus5 (fig. 1)  
where it is presumed to play a regula-
tory role. How ANRIL and other non-
coding RNAs regulate the expression of 
the locus is currently the matter of active 
investigation.

The INK4b-ARF-INK4a Locus  
and Disease

The interest on the INK4b-ARF-INK4a 
locus originated from genetic linkage  
studies showing the association of muta-
tions or deletions on chromosome 9p21 
with familial predisposition to mela-
noma.6,7 It was subsequently demonstrated 
that in addition to germ-line mutations, 
homozygous deletion on 9p21 is one of the 
most frequent cytogenetic events associated 
with a wide variety of tumors (reviewed in 
ref. 8). Loss of the INK4b-ARF-INK4a 
locus is the most frequent copy number 
alteration across tumors and cancer cell 
lines.9,10 Multiple studies have revealed 
p16INK4a as the main tumor suppressor 
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mark, is recognized by the PRC1 mainte-
nance complex, which in addition mono-
ubiquitinates histone H2A.28 The key role 
of PRCs in regulating the INK4b-ARF-
INK4a locus is remarked by the fact that 
overexpression of different PcG mem-
bers such as Bmi1, Cbx7 or Cbx8 results 
in repression of the locus and bypass or 
delays senescence.29-31 Conversely, cells 
lacking PRC1 components such as Bmi1 
or Ring1b29,32 show aberrant expression 
of the INK4b-ARF-INK4a locus. Mice 
knockout for different PcG genes have 
multiple developmental problems. In par-
ticular Bmi1-/- mice have skeletal trans-
formations and severe neurological and 
hematopoietic defects.33 With the excep-
tion of the skeletal alterations that are due 
to deregulation of the Hox gene cluster, 
the rest of the defects observed are restored 
to a great extent by knocking out Ink4a/
Arf.34

Non-coding RNAs:  
ANRIL and Others

A remaining question is how PRCs are 
targeted to the INK4b-ARF-INK4a 
locus. The core members of the PRCs 
do not have a DNA binding motif and 
the assumption is that they must associ-
ate through accessory factors to target 
DNA. In Drosophila, PREs (polycomb 
recruiting elements) have been identified, 
and some transcription factors such as 
Pho named as responsible of the recruit-
ment of PRCs to those elements. Pho is 
required for PcG-mediated silencing in 
Drosophila.35 Interestingly, the homolog 
of Pho, the transcription factor YY1,36 is 

for an involvement of the INK4b-ARF-
INK4a locus in age-related pathologies. 
Again, the difference in the locus regula-
tion between mouse and human should 
be taken into account and although 
p16INK4a expression increases with aging 
in humans, there are no reports of a simi-
lar increase for p14ARF levels.16 Additional 
evidence for an extended role of the 
INK4b-ARF-INK4a locus in disease came 
from a series of linkage studies in which 
single nucleotide polymorphisms (SNPs) 
in a region spanning 120 kb around the 
INK4b-ARF-INK4a locus were associated 
with increased susceptibility to frailty,17 
coronary artery disease,18,19 myocardial 
infarction,20 type 2 diabetes21-23 and late 
onset Alzheimer disease.24 Interestingly 
different SNPs have been associated with 
increased disease risk on those studies 
(fig. 1), suggesting that not a single poly-
morphism is responsible for the increased 
susceptibilities observed.

Regulation of the INK4b-ARF-
INK4a Locus by Polycomb  

Repressive Complexes

Given the extraordinary relevance of the 
INK4b-ARF-INK4a locus on disease, it is 
key to maintain it repressed under normal 
circumstances but without losing the abil-
ity to induce its expression when needed. 
A critical layer to achieve this control is 
epigenetic regulation through Polycomb 
(Pc) repressive complexes (PRC1 and 2).  
The PRC2 complex establishes the repres-
sive H3K27met3 chromatin mark, cata-
lyzed by the histone methyltransferase 
activity of EZH2.25-27 This epigenetic 

in the locus while showing that p15INK4b 
and p14ARF can also act as tumor suppres-
sors. Intragenic mutations that inactivate 
INK4b or ARF are observed, though rare 
in comparison to those affecting INK4a. 
For example, specific inactivation affecting 
ARF but not INK4a can occur in mela-
noma,11 while methylation of the INK4b 
promoter is observed in hematopoietic 
malignancies.12 Mouse models have con-
firmed that deficiency for either of the pro-
teins encoded by the INK4b-ARF-INK4a 
locus, alone or in combination results in 
tumor-prone animals.8,13 It is worthy to 
mention that despite mouse models have 
been clearly useful to dissect the involve-
ment of the INK4b-ARF-INK4a locus in 
health and disease, significant differences 
exist in its regulation between mouse and 
human. Most notably while mouse p19Arf 
is upregulated during replicative or Ras-
induced senescence, human p14ARF is not 
(reviewed in ref. 1).

An explanation for the frequent altera-
tion of the locus in cancer is its activation 
in response to aberrant oncogenic signal-
ling. As such, members of the INK4b-
ARF-INK4a locus are key effectors of 
oncogene-induced senescence (OIS) and 
are induced in premalignant lesions, 
limiting tumor progression. Therefore, 
to progress to a more malignant state, a 
lesion suffers insurmountable pressure 
to silence the locus through deletion, 
mutations or epigenetic regulation. The 
INK4b-ARF-INK4a locus is also upregu-
lated at replicative senescence and aging.8 
In murine tissues, increased expression of 
p16Ink4a and p19Arf, but not of p15Ink4b, is 
observed with aging,14,15 making the case 

Figure 1. organization of the INK4b-ARF-INK4a locus and disease-associated SNps. Genetic structure of the human INK4b-ARF-INK4a locus. the coding 
exons are shown in colors and non-coding exons are shown in light gray for ANRiL and dark gray for the other genes of the locus. the approximate 
position of single nucleotide polymorphisms (SNps) associated with disease states is indicated by blue arrows. SNps associated with type 2 diabetes 
mellitus (D), vascular heart disease (H) and frailty (f) are indicated. Map is not drawn to scale and positions are approximate.
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MAPKAP, which is activated downstream 
of Ras can phosphorylate Bmi1 prompt-
ing its release from chromatin.53 However, 
whether this phosphorylation-mediated 
displacement occurs during senescence 
has not been investigated.

Chromatin Remodeling  
by the SWI/SNF Complex

Additional chromatin modifiers and epi-
genetic marks also control the status of 
the locus, sometimes in direct interplay 
with PRCs. The upregulation of genes 
normally repressed by PRCs need of chro-
matin remodeling complexes, such as the 
SWI/SNF (or BAF) complex.54 The gene 
encoding SNF5 (also termed SMARCB1 
or BAF47), one of the components of the 
SWI/SNF complex is frequently deleted 
in malignant rhabdoid tumors (MRT). 
By analyzing MRT tumors it was noted 
that SNF5 is needed to regulate p16INK4a 
expression through recruitment of the 
SWI/SNF complex and Polycomb evic-
tion and the deletion of SNF5 results in 
reduced expression of p16INK4a.55,56 There is 
a crosstalk between SWI/SNF-mediated 
chromatin remodeling and the PRC com-
plexes (fig. 2). An interesting question 
is whether the SWI/SNF complex plays 
an active role in activating the INK4b-
ARF-INK4a locus in response to onco-
genic stress or in specific tissues. Recent 
evidence seems to suggest so, as Snf5 acts 
as a prominent mediator of p19Arf expres-
sion in murine sarcomas generated upon 
activation of K-Ras. It has been suggested 
that this can account for the differences in 
susceptibility to transformation by Ras of 
different tissues.57

Regulation of the  
INK4b-ARF-INK4a Locus  

by DNA Methylation

In addition to homozygous deletion and 
inactivating mutations, one of the most 
common mechanisms of inactivation 
of INK4a in cancer is through aberrant 
promoter methylation.58 Similarly, DNA 
promoter methylation inactivating INK4b 
is observed in a number of hematological  
malignancies.12 It is becoming evident 
that DNA methylation occurs not in iso-
lation but in close relation with other 

to this same region (fig. 1).5,45 A relation 
between disease-associated SNP close to 
ANRIL and the expression of the members 
of the INK4b-ARF-INK4a locus has been 
noted in human samples.46,47 Recently, a 
deletion of the orthologous 70 kb-long 
non-coding intervals on mouse chromo-
some 4 was also found to affect the car-
diac expression of the neighboring p15Ink4b 
and p16Ink4a genes.48 Whether ANRIL or 
cis-regulatory regions are mediating this 
effect needs to be investigated.

Activation of the INK4b-ARF-
INK4a Locus by Oncogenic 

Signals

To fulfill its function as a stress sensor, the 
INK4b-ARF-INK4a locus must be kept 
repressed in basal conditions, but also be 
quickly activated when needed. A number 
of transcription factors have been linked 
with the activation of the locus as a whole 
or their individual members and this have 
been reviewed in reference 1, In particu-
lar, we have a better knowledge of the 
transcription factors involved in activating 
p16INK4a in response to oncogenic stress 
such as Ras expression, where the relation 
between Ets2 factors and Id1 is key.49

Parallel to activate or mobilize tran-
scription factors to induce the INK4b-
ARF-INK4a locus, stimuli that trigger its 
induction have to modify the epigenetic 
status of the locus and wipe their repressive 
marks. To achieve this during replicative 
and oncogene-induced senescence there 
is a change in the expression and recruit-
ment of the key enzymes regulating the 
methylation of H3K27. Levels of EZH2, 
the enzyme that methylates H3K27 
decrease during replicative senescence and 
OIS.50-52 In parallel, the H3K27 demeth-
ylase JMJD3 is upregulated in response to 
Ras, recruited to the INK4b-ARF-INK4a 
locus and regulates the activation of the 
locus by oncogenic stress. JMJD3 is found 
upregulated in some preneoplastic lesions 
as nevi and have credentials to be a tumor 
suppressor, as it is frequently deleted in 
different tumor types.51,52 How JMJD3 
is regulated by Ras is a matter of active 
investigation. Another mechanism medi-
ating the activation of the INK4b-ARF-
INK4a locus is the direct modification 
and displacement of polycomb proteins. 

also involved in PcG-mediated silencing 
in mammals.37 However, despite studies 
showing genome-wide PcG distribution in 
mammalian chromatin, equivalent PRE 
and targeting factor(s) has not yet been 
clearly identified for mammalian sys-
tems.38 It has been proposed that a com-
bination of association with transcription 
factors and long interfering non coding 
RNAs could be responsible of the recruit-
ment of PRC to their target genes in mam-
malian cells.38 Recently, a DNA element 
recognized by YY1 has been shown to tar-
get PRC complexes to the HoxD locus.39 
However, a similar arrangement in the 
INK4b-ARF-INK4a locus has not been 
identified so far. On the other hand, evi-
dence is starting to show that long non-
coding RNAs such as ANRIL contribute 
to the targeting of PRCs to the INK4b-
ARF-INK4a locus. LincRNAs can control 
gene expression through tethering chro-
matin-modifying complexes to specific 
genomic loci. Multiple lincRNAs interact 
with PRC2 and other chromatin modifier 
complexes.40 In addition, a novel class of 
short RNAs transcribed from the 5' end of 
Polycomb target genes interact with PRC2 
and could play a role in PRC association 
to target genes.41 Chromobox proteins, 
such as those that are part of the PRC1, 
cannot only bind methylated histones but 
also to RNA. For example, treatment with 
RNAse decreases the association of CBX7 
with H3K27me3 and the inactive X chro-
mosome.42 Treatment with RNAse or 
mutation of residues needed for CBX7 to 
interact with RNA also results in reduced 
recruitment of CBX7 to the INK4b-
ARF-INK4a locus with the correspond-
ing effects on senescence.43 LincRNAs 
are currently seen as a platform helping 
in the recruitment of different chroma-
tin remodeling complexes, such as PRC2 
and LSD1/CoREST/REST.40 Although 
ANRIL seems to control the levels of 
p15INK4b acting as an antisense transcript,44 
ANRIL and probably other non coding 
RNAs (long and short) can also regulate 
the INK4b-ARF-INK4a locus by con-
tributing to the recruitment of epigenetic 
factors. Single nucleotide polymorphisms 
(SNPs) in a 58 kb-long interval on chro-
mosome 9p21 have previously been asso-
ciated with an increased susceptibility to 
coronary heart disease.18,20 ANRIL maps 
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of H3K36, a mark normally present in 
recently transcribed genes to prevent 
reinitiation at intragenic sites can regulate 
the expression of p15Ink4b is not clear.69 A 
possible explanation can be found in the 
observation that Jhdm1b/Kdm2b can 
form part of complexes containing PcG 
members,70 suggesting a link between this 
chromatin remodeling enzyme and PRC 
(fig. 2).

Concluding Remarks

Recent GWAS have highlighted that 
besides being key actors on tumor sup-
pression the members of the INK4b-
ARF-INK4a locus may play important 
roles on other diseases. At the moment 
multiple laboratories are trying to better  
understand what the relevant SNPs 
located around the INK4b-ARF-INK4a 
locus mean for its expression and how 
they affect its regulation. In particular the  
question of whether these SNPs are affect-
ing the levels or function of the non-coding 

Additional Chromatin Modifiers 
Controlling the INK4b-ARF-INK4a 

Locus

Recently another histone demethylase, 
Jhdm1b/Kdm2b, has also been linked 
with regulation of INK4b-ARF-INK4a 
locus. Initial interest on this enzyme arose 
from insertional mutagenesis studies that 
showed its association with tumorigen-
esis, although there was controversy as if a 
tumor suppressor or as an oncogene.64,65 It 
was first suggested that Jhdm1b/Kdm2b 
demethylates H3 lysine 4 (H3K4me3)66 
but currently the strongest biochemical 
evidence in vitro and in vivo suggests that 
Jhdm1b controls demethylation of H3 
lysine 36 (H3K36me3).67 Ectopic expres-
sion of Jhdm1b/Kdm2b bypasses repli-
cative senescence.64 Independent studies 
suggest that regulation of the Ink4b-Arf-
Ink4a locus mediates its effects on senes-
cence.68 More specifically it has been 
proposed that Jhdm1b/Kdm2b controls 
p15Ink4b expression.67 How modification 

epigenetic modifications such as PRC-
mediated silencing. This link is high-
lighted by the fact that members of the 
PRC1 and PRC2 complexes, such as 
EZH2 and CBX7, can interact physi-
cally with the DNA methylation machin-
ery, binding to Dnmt3b.59,60 In addition, 
Polycomb target genes are more often rep-
resented among those aberrantly meth-
ylated in cancer,61-63 adding functional 
consequences to these physical interac-
tions. Further highlighting the relation 
between the different epigenetic remodel-
ers of the INK4b-ARF-INK4a locus, res-
toration of an active SWI/SNF complex 
by reintroduction of SNF5 in deficient 
cells results not only in the eviction of 
PRC complexes from the INK4b-ARF-
INK4a locus but in a loss of DNMT3b 
localization and DNA methylation in the 
locus.56

Figure 2. Epigenetic regulation of the INK4b-ARF-INK4a locus. Cartoon summarizing different epigenetic mechanisms regulating the locus. Epigenetic 
silencing of the locus in normal cells is mediated by polycomb repressive complexes (pRCs). in tumorigenesis, methylation of the INK4a or INK4b 
promoters is often observed. Chromatin remodeling by the Swi/SNf5 complex result in displacement of pRCs complexes and locus activation. the 
histone demethylases Jhdm1b regulate the expression of p15iNK4b while JMJD3 counteract the effects of H3K27me3 marks and pRC-mediated silencing. 
MApKAp phosphorylation of Bmi1 results in pRC1 displacement from chromatin. Recent evidence suggests that ANRiL and maybe other ncRNAs could 
regulate the locus. we still do not understand how transcription factors interplay with this epigenetic machinery to regulate the locus. Epigenetic 
modifiers are shown in color. pRCs, polycomb repressive complexes; DNMts, DNA methyl transferases; tfs, transcription factors. Black lines show 
relation; red arrows, activation; green arrows, inhibition. Map is not drawn to scale and positions are approximate.
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ence of cis-regulatory elements needs to 
be answered. The interplay between dif-
ferent chromatin modifiers with PRCs on 
its centre is complex (fig. 2). We will need 
also to better understand how cellular sig-
nals such as oncogenic stress are integrated 
by transcription factors and the epigenetic 
machinery to regulate the INK4b-ARF-
INK4a locus. The INK4b-ARF-INK4a 
locus has been analyzed on cancer from 
a diagnostic and prognostic perspective, 
as very often mutations or deletions make 
its alterations irreversible. However in a 
subset of tumors, epigenetic modifica-
tions, reversible by nature, contribute to 
silence the locus. If a functional INK4b-
ARF-INK4a locus is also present in other 
diseases and it is still open to regulation, 
we could envision mechanisms and drugs 
that could contribute to restore its normal 
function. Clever mice models have shown 
that there is potential to control the locus 
obtaining beneficial effects (i.e., cancer 
protection) while averting unwanted side 
effects (i.e., accelerated aging).71 To fully 
understand how the INK4b-ARF-INK4a 
locus is regulated in normal and patho-
logical circumstances is the essential first 
step for its therapeutic manipulation.
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