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Abstract
Rationale and Objectives—We describe a step-by-step procedure for estimating power and
sample size for planned multireader receiver operating characteristic (ROC) studies that will be
analyzed using either the Dorfman-Berbaum-Metz (DBM) or Obuchowski-Rockette (OR) method.
This procedure updates previous approaches by incorporating recent methodological
developments and unifies the approaches by allowing inputs to be conjectured parameter values or
outputs from either a DBM or OR pilot-study analysis.

Materials and Methods—Power computations are described in a step-by-step procedure and
the theoretical basis for the procedure is described. Updates include using the currently
recommended denominator degrees of freedom, accounting for different pilot and planned study
normal-to-abnormal case ratios, and a new method for computing the OR test-by-reader variance
component.

Results—Using a real data set we illustrate how to compute the power for two planned studies,
one having the same normal-to-abnormal case ratio as the pilot study and the other having a
different ratio. In a simulation study we show that the proposed procedure gives mean power
estimates close to the true power.

Conclusions—Application of the updated procedure is straightforward. It is important that pilot
data be comparable to the planned study with respect to the modalities, reader expertise, and case
selection. Variability of the power estimates warrants further investigation.
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1. Introduction
Receiver operating characteristic (ROC) curve analysis is a well-established method for
evaluating and comparing the performance of diagnostic tests for radiological imaging
studies. Throughout we assume that rating data have been collected using the study design
where multiple readers (typically radiologists) assign disease-severity or disease-likelihood
ratings, using one or more tests, to the same images using either a discrete (e.g., 1, 2, 3, 4, 5)
or a quasi-continuous (e.g., 0–100%) scale. From these ratings, ROC curves and
corresponding accuracy estimates are computed for each reader and each test, in order to
assess how well a test performs or to compare the performance of tests. In such studies there
is variability between cases and between readers. Thus it is important that results generalize
to both the corresponding case and reader populations; methods that accomplish this goal are
commonly referred to as multireader multicase (MRMC) methods.

Two popular MRMC methods are those proposed by Dorfman, Berbaum, and Metz (DBM)
[1,2] and by Obuchowski and Rockette (OR) [3,4]. For the OR method, power computation
using conjectured parameter estimates is discussed by Obuchowski [4,5] and Zhou et al [6];
for the DBM method power computation based on pilot-study estimates or conjectured
parameter values is discussed by Hillis and Berbaum [7]. Since the publication of these
articles, it has been shown [8] that both the DBM and OR methods can be improved by
using a common denominator degrees of freedom, ddfH, for the F statistic for testing for
equality of tests. When both methods use ddfH, the DBM method can be viewed as an
implementation of the OR method using jackknife covariance estimates, with both methods
yielding the same conclusions. Furthermore, Reference [9] shows that if the OR method is
not based on jackknife covariance estimates, then quasi pseudovalues can be generated that
give the same results when analyzed by the DBM method. Thus we can consider the DBM
and OR procedures to be equivalent. These developments in the DBM procedure and its
relationship with the OR procedure are summarized in Reference [10].

Although equivalent results can be obtained using either method, the DBM model is not
statistically acceptable since several of its assumptions are not true [8]. Thus the DBM
model should be viewed only as a “working” model; although “pretending” that the DBM
model is correct generally leads to valid inferences, parameters for the model are difficult to
interpret in terms of the model. For these reasons, theoretical justification for results
provided in this paper will be based on the OR model.

Our purpose is to describe a step-by-step procedure for computing power (and hence sample
size) for either method. This procedure updates previous approaches by incorporating ddfH,
accounting for different pilot- and planned-study normal-to-abnormal case ratios, and
incorporating a new method for estimating the OR test-by-reader variance component. The
procedure unifies the approaches by allowing both procedures to be based on either pilot
data or conjectured parameter values, and yields the same results regardless of whether the
inputted values are DBM or OR pilot-data analysis outputs or conjectured parameter values.
We describe the procedure for the OR method and then show how this same procedure can
also be used with inputs obtained from a DBM analysis. The procedure is illustrated in an
example and its performance is evaluated in a simulation study.

2. Materials and Methods
2.1. Design and notation

We assume that rating data have been collected from a test×reader×case factorial study
design, where each case undergoes each diagnostic test and the resulting images are
evaluated once by each reader. (We use test to refer to a diagnostic test, modality, or
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treatment.) Letting Zijk denote the rating assigned to the kth case by the jth reader using the
ith test, the observed rating data consists of the Zijk, i = 1,…,t, j = 1,…,r, k = 1,…, c, where t
is the number of tests, r the number of readers, and c the number of cases. In addition, each
case is classified as diseased or nondiseased according to an available reference standard.

We let  denote the AUC estimate based on all of the data for the ith test and jth reader;

however, more generally  can be any ROC accuracy estimate, such as the partial AUC,
sensitivity for a fixed specificity, or specificity for a fixed sensitivity. We let θij denote the

corresponding population AUC, defined statistically by  for fixed i. That is, for a
given test i and case sample size c, θij is the expected AUC for a randomly selected reader
reading c randomly selected cases.

2.2. The DBM procedure
For the DBM procedure, AUC pseudovalues are computed using the Quenouille-Tukey
jackknife [11–13] separately for each reader-test combination. Let Yijk denote the AUC

pseudovalue for test i, reader j, and case k; by definition , where 
denotes the AUC estimate when data for the kth case are omitted. Treating the Yijk as the
outcomes, the original DBM procedure specified testing for a test effect using a fully-
crossed three-factor ANOVA, with test treated as a fixed factor and reader and case as

random factors; the original DBM estimate of θij was Yij. , which is the

jackknife accuracy estimate corresponding to . (A subscript replaced by a dot indicates
that values are averaged across the missing subscript.) Later, Hillis et al [9] recommended
that the DBM method be used with normalized pseudovalues, defined by

. For normalized pseudovalues the DBM accuracy estimate, given by

., is equal to  and hence the analysis is not restricted to jackknife accuracy estimates.

Let MS(T)Y, MS(T*R)Y, MS(T*C)Y, and MS(T*R*C)Y denote the test, test×reader,
test×case, and test×reader×case mean squares for the DBM three-way ANOVA of the
pseudovalues. (Here the Y subscript is used to indicate that these mean squares are computed
from pseudovalues, in contrast to the OR mean squares discussed in the next section that are
computed from reader-level AUCs.) The DBM F statistic for testing the null hypothesis of
no test effect is

(1)

where the function H (·) is defined by

Equation 1 is recommended by Hillis et al [9] and differs slightly from the original DBM
formulation in that less data-based model reduction is allowed. Hillis and Berbaum [7] used
Equation 1 in their power algorithm; although they used raw instead of normalized
pseudovalues, the use of normalized pseudovalues does not alter their algorithm.
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Hillis [8] showed that the DBM method has improved performance if the following
denominator degrees of freedom for FDBM is used:

(2)

The updated power procedure that we will present incorporates Equation 2, which was not
used by Hillis and Berbaum [7] since it had not yet been proposed. We note that since it was
proposed in 2007 by Hillis [8], ddfH has been incorporated into freely available DBM
analysis software [14–16].

2.3. The OR procedure
Obuchowski and Rockette [3] analyze AUC estimates using a test × reader factorial
ANOVA model, but unlike a conventional ANOVA model they allow the errors to be
correlated to account for correlation due to each reader evaluating the same cases for each
test. Their model, which we refer as the OR model, can be written as

(3)

i = 1,…,t, j = 1,…,r, where τi denotes the fixed effect of test i, Rj denotes the random effect
of reader j, (TR)ij denotes the random test × reader interaction, and ∊ij is the error term. The
Rj and (TR)ij are assumed to be mutually independent and normally distributed with zero

means and respective variances , reflecting differences in reader ability, and ,
reflecting test-by-reader interaction. The ∊ij are assumed to be normally distributed with
zero mean and variance , which represents variability attributable to cases and within-
reader variability that describes how a reader interprets the same image in different ways on
different occasions. The ∊ij are independent of the Rj and (TR)ij. Equi-covariance of the
errors between readers and tests is assumed, resulting in three possible covariances:

It follows from model (3) that , Cov1, Cov2, and Cov3 are also the variance and
corresponding covariances of the AUC estimates, conditional on the reader and test × reader
effects. Based on clinical considerations Obuchowski and Rockette [3] suggest the following
ordering for the covariances:

(4)

The OR statistic for testing the null hypothesis of no test effect is given by

(5)
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where  and  are the two-way ANONVA test and test-by-reader mean
squares; these mean squares are based on the AUC outcomes, in contrast to the DBM mean
squares that are based on the case-level pseudovalues. The quantities  and  denote
estimates for Cov2 and Cov3, respectively. Note that Equation 5 incorporates the constraint
given by Equation 4 by setting  to zero if it is negative.

Since Cov2 and Cov3 are also the corresponding covariances of the AUC estimates
conditional on the reader and test × reader effects, they can be estimated using ROC analysis
methods that treat cases as random but readers as fixed, such as jackknifing, bootstrapping,
parametric methods, or the method proposed by DeLong et al [17] for trapezoidal-rule (or
empirical) AUC estimates [18]. The OR estimates obtained from averaging corresponding
fixed-reader AUC variances and covariances are denoted by , , , and .

Hillis [8] shows that FOR has an approximate null Ft−1,df2 distribution, where

(6)

and suggests estimating df2 by

(7)

Note that the estimate ddfH replaces the parameters in df2 by estimates; in particular, the

expected test × reader mean square, , is replaced by the observed mean

square, , and r(Cov2 − Cov3) is replaced by , which
incorporates the model covariance constraints given by Equation 4. He also shows that ddfH
results in improved performance compared to the denominator degrees of freedom, ddf0 = (t
− 1) (r − 1), originally proposed by Obuchowski and Rockette [3]. A 100 (1 − α)%

confidence interval for θi − θi′, i ≠ i′, is given by , where
MSdenOR is the denominator of the right-hand-side of Equation 5.

If the null hypothesis of equal tests is not true, then FOR has an approximate 
distribution where the noncentrality parameter is given by

(8)

and θi = μ + τi is the expected accuracy measure for test i. This result is stated by
Obuchowski [4] and a detailed proof is provided in Reference [8].
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Power estimation for the OR method has been previously described [4,5]. However, these
references use the originally proposed denominator degrees of freedom, ddf0 = (t − 1) (r −
1), which has been shown to give overly conservative inferences [8]. The updated algorithm
for computing power differs from the previously published OR power methods in that it uses

ddfH; in addition, it estimates , and hence the noncentrality parameter Δ, differently.

2.3.1. OR and DBM relationships—As previously noted, the DBM procedure can be
viewed as an implementation of the OR procedure if the OR covariance estimates are based
on jackknife covariance estimates and the DBM procedure uses normalized pseudovalues. In
this case, there is a oneto-one correspondence between the parameters and outputs for the
two procedures and Equations 2 and 7 yield the same value [9]. The relationships between
the OR and DBM outputs are given in Table 1. Thus to use the OR power procedure with
DBM output values, we only need to transform the DBM values to their corresponding OR
values.

2.3.2. OR method in terms of correlations and the ,  parameterization—The
OR method can also be notationally described with population correlations 
replacing corresponding Covi, and estimated correlations  replacing
corresponding , i = 1, 2, 3. All of the results cited thus far can be equivalently expressed
in terms of correlations; thus the choice of which notation to use is not important. An
advantage of using correlations is that their interpretation does not depend on sample size. A
disadvantage is possible misunderstanding about the definition of the denominator used to
compute them. For example, Obuchowski and Rockette [3] write  as , where 
denotes variability attributable to cases and  denotes within-reader variability, and then
define . This definition is convenient to use when only  can be estimated from
the data (as discussed in the next paragraph); in this case, one can think of the error terms as

partitioned into two parts: εij = uij + wij where , , the wij are
mutually independent and are independent of the uij, but the uij are correlated and have the
same covariances as the εij. Practically either definition will give similar correlations since

 is typically neglible compared to .

We note that formulas for the variance of the AUC or other ROC accuracy measure based
on assumed parametric models that ignore within-reader inconsistency will give estimates of

 rather than of . For example, these methods include the AUC variance estimates
proposed by Hanley and McNeil [18] and Obuchowski [19]. Basing power estimates on
estimates of , obtained from such methods, technically necessitates also estimating 
separately from repeated readings, as previously has been suggested by Obuchowski [4,5],
or else using a conjectured value of . In contrast, resampling methods such as
bootstrapping and jackknifing, as well as the method proposed by DeLong et al [17] yield
estimates of . Thus there is no need to estimate  separately for power
computation based on repeated readings when these methods are used to estimate the error
variance. However, as previously noted, since since  is typically neglible compared to ,
using  in place of  in the power computations will make little difference.

2.4. Updated and unified OR/DBM power computation procedure
In this section we present a step-by-step procedure for computing power for either the OR or
DBM procedure. The procedure is described for a two-sided test comparing two modalities
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based either on data from a pilot or previous study, or on conjectured parameter values. We
assume that the ratio of normal to diseased cases in the planned study is approximately the
same as in the pilot or previous study. Later we discuss how the procedure can be modified
for a one-sided test and for the situation where the pilot and planned study normal-to-
abnormal case ratios differ.

The steps of the procedure are the following: (1) specify the effect size; (2) transform OR or
DBM outputs into OR parameter estimates, or use conjectured OR parameter values; (3)
transform the OR parameter values into OR noncentrality parameter and denominator
degrees of freedom values for specified case and reader sample sizes; and (4) compute the
power based on the estimated OR noncentrality parameter and denominator degrees of
freedom. Below we describe the steps in detail. Theoretical details are provided in Appendix
A (available online at www.academicradiology.org).

1. Specify the effect size. Specify the effect size, denoted by d, that the researcher
wants to be able to detect with sufficient power. The effect size is the absolute
difference of the two population ROC accuracy measures. For example, if the AUC
is the outcome of interest, then d = |AUC1 − AUC2|, where AUC1 and AUC2 are
the population AUC values for the two tests. For a given number of cases c, the
population AUC is the expected AUC for a randomly selected reader reading c
randomly selected cases.

2. Transform OR or DBM outputs into OR parameter estimates, or use conjectured
OR parameter values. If using outputs from an analysis of pilot data, let c* denote
the number of cases for the pilot study. If using conjectured parameters, let c*
denote the number of cases corresponding to the conjectured value of . Use step
2a or 2b below, depending on whether an OR or DBM analysis of pilot data was
performed, or step 2c if conjectured values are inputted.

(a) Using OR outputs. Let  (T) and  (T * R) denote the test and test ×
reader mean squares resulting from the OR pilot-data analysis, and let

, , , and  denote the fixed-reader variance and co-
variance estimates. (If correlations are available instead of covariances,
then compute the covariances using  or , i = 1, 2, 3,
depending on the definition of the correlation as discussed in Section

2.3.2.) Estimate  using

(9)

If  then set  equal to zero or to a positive conjectured value for
the remaining steps - see Section 2.5.3 for further discussion of this
point.

(b) Using DBM outputs. Compute the OR quantities  (T),  (T * R) ,
, , , and  from theDBM mean squares using Table 1,

and then proceed with step 2a.

(c) Using conjectured inputs. This step is similar to step 2a, except that

, and  are conjectured OR parameter values
rather than estimates from pilot data. When using conjectured inputs, it
is typically conceptually easier to think in terms of the correlations and
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then compute the corresponding covariances. As previously noted, c*
should denote the number of cases corresponding to , which
represents the AUC variance due to cases for a given treatment and
fixed reader. Zhou, Obuchowski, and McClish [6, pp. 298–304] discuss
choosing values for conjectured inputs. One could also first start with
conjectured DBM parameter values and then transform them to OR
parameter values since there is a one-to-one transformation between the
parameters – these relationships are provided in Table 2.

3. Compute the noncentrality parameter and denominator degrees of freedom
estimates for specified case and reader sample sizes. Let r and c denote the number
of readers and cases, respectively, for which we want to compute power. Compute

(10)

and

Here  is the estimated noncentrality parameter and  is the estimated
denominator degrees of freedom for the distribution of FOR (Eq. 5). The above
formulas were derived for t = 2 tests. It is easy to show that  has the same value
as ddfH (Eq. 7) for c = c*.

4. Compute the power based on the estimated OR noncentrality parameter and
denominator degrees of freedom. Let F1,ν;δ denote a random variable having a
noncentral F distribution with degrees of freedom 1 and ν and noncentrality
parameter δ, and let F1−α;1,ν denote the 100(1 − α)th percentile of a central F
distribution with degrees of freedom 1 and ν. The estimated power for a two-sided
test with significance level α is given by

treating  and  as fixed.

2.5. Other considerations
2.5.1. Accounting for different pilot and planned study normal-to-abnormal
case ratios—The preceding power-computation procedure is based on the assumption that
the abnormal-to-normal case ratios are similar for the pilot and planned studies. This
assumption is important since the fixed-reader covariances and variance depend on the
abnormal-to-normal case ratio. For the situation where the researcher expects or wants the
planned study to have a normal-to-abnormal case ratio that differs considerably from that of
the pilot data, we suggest the following ad hoc approach. From the group (normals or
abnormals) that will be proportionately more represented in the planned study than in the
pilot study, sample with replacement enough cases to achieve the desired balance between
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the two groups. Combine these cases with the cases from the other group to create a data set
with the desired ratio between normal and abnormal cases. Repeat this process to create
several (e.g., 10) data sets having the desired normal-to-abnormal case balance. For each of
these data sets compute the fixed-reader covariance matrix and corresponding OR
covariances. Use the averages of the OR covariances for the power computation. Note that
for the power procedure c* will not be the number of cases in the original pilot study, but
rather the number of cases in each of the “new” pilot data sets.

For the power procedure we can use the estimate of  obtained from the original pilot data
before doing any resampling. To understand why this is appropriate, define

(11)

From Equation (3) if follows that for given test i and fixed reader j, ; this is the
expected or mean AUC across the population of cases. Thus ηij is the latent or true AUC for
test i and reader j, which can be loosely interpreted as the AUC that would result if reader j
read a very large number of cases. It follows that  can be interpreted as the interaction
variance component for the ηij, and hence the value of this parameter does not depend on the
ratio or numbers of normals and abnormals in the sample. We note that alternatively

estimating  using Equation 9 from each of the 10 generated data sets would not be valid,
since Equation 9 assumes that both readers and cases are random units but our generated
data sets only treated cases as random.

2.5.2. Comparison with earlier results—As previously noted, the proposed power
procedure updates previous DBM and OR power procedures, as described in References [4–
7], by incorporating the new degrees of freedom ddfH suggested by Hillis [8]. In addition,

our estimate of  (Eq. 9) for the OR method updates the estimate previously proposed in
References [4–6]; this previous estimate was a function of the sample variances of the AUCs
across readers within each test and the between-test sample correlation of the AUCs. In
Appendix B (available online at www.academicradiology.org) we show that this previous

estimate actually estimates , with ;

thus it is likely that the previous estimator tended to overestimate .

Although a previously available SAS macro [20] for computing power based on DBM
outputs had taken into account ddfH, we note that the power algorithm presented in this

paper gives somewhat different results when the DBM variance component estimates for 

and  are both zero, due to the way that the covariance constraints are incorporated.

2.5.3. What to do if —It has been our experience that often the pilot estimate of the

test × reader interaction variance component  is less than zero, as it is in the Example in
the next section. Since the typical radiological imaging study has only a few readers, we

expect the precision of the  estimate will be low, and hence it is not surprising that

estimates of  will often not be positive, especially if the true value of  is close to zero.
In such situations one choice is to set the variance component equal to zero in step 2.
However, it seems reasonable that in most studies there should be some interaction,
suggesting that when the estimate is not positive we may want to conservatively use a
positive value for this variance component instead of zero. One way to decide on a
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reasonable positive value is to consider estimates for  from similar studies, keeping in
mind, however, that estimates computed as proposed in References [4–6] tend to

overestimate  as previously discussed.

Alternatively, we can specify  by considering its interpretation in terms of the latent
AUCs, the ηij, as defined by Equation 11. Specifically, for fixed tests i and i′, it is easy to
show that

For example, if reader 1 has latent AUC values of .95 and .90 for tests 1 and 2, respectively,
and reader 2 has corresponding latent AUC values of .93 and .91, then η11 −η21 − (η12 −
η22) = (.95 − .90) −(.93 − .91) =.05−.02 = .03. The quantity ηij−ηi′j−(ηij′ − ηi′j′) can be
interpreted as the difference of the two intra-reader latent AUC differences for randomly

selected readers j and j′. Thus  is equal to one-fourth of the variance of the difference of
the intra-reader latent AUC differences for two randomly chosen readers.

Suppose it seems reasonable that for a randomly selected pair of readers the absolute
difference of their intra-reader latent AUC differences will be bounded by a specified value l
(e.g., l = .06) with probability ≥ .95; i.e., Pr (|ηij − ηi′j − (ηij′ − ηi′j′)| ≤ l) ≥ .95. Then since
the probability is .95 that a normal random variable is within 1.96 standard deviations of its
mean, we have

i.e.,

For l = .06 we have , or equivalently . Thus if

 it would be reasonable to set  in step 2 if l = .06 seems like a reasonable

95% bound. Table 3 presents values of  corresponding to various values of l.

2.5.4. One-sided tests—To compute power for a one-sided test, the only change that
needs to be made in the power procedure is to set the significance level to twice the nominal
level for the planned study. Although this approach noticeably overestimates power for very
small effect sizes, the overestimate will be negligible for a clinically relevant effect size.

3. Results
Throughout this section we assume a .05 significance level.

3.1. Example: Spin echo versus cine MRI for detection of aortic dissection
Our example study [21] compares the relative performance of single spin-echo magnetic
resonance imaging (MRI) to cinematic presentation of MRI for the detection of thoracic
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aortic dissection. There were 45 patients with an aortic dissection and 69 patients without a
dissection imaged with both spin-echo and cinematic MRI. Five radiologists independently
interpreted all of the images using a five-point ordinal scale: 1 = definitely no aortic
dissection, 2 = probably no aortic dissection, 3 = unsure about aortic dissection, 4 =
probably aortic dissection, and 5 = definitely aortic dissection.

Suppose that the researcher would like to know what combinations of reader and case
sample sizes for a similar study will have at least .80 power to detect an absolute difference
of .05 between the modality AUCs. We first show how to determine the power for 8 readers
and 240 cases, based on an OR and DBM analysis of the data. Then we present the smallest
case sample size for each of several reader sample sizes that yields .80 power.

Situation 1: Similar normal-to-abnormal ratios. The OR analysis of the data is presented in
Table 4. Part (a) presents the AUCs corresponding to ROC curves estimated by the
PROPROC procedure [22,23]; part (b) the ANOVA table; part (c) the jackknife covariance
matrix for the AUCs, treating readers as fixed; part (d) the variance and covariance estimates
based on the covariance matrix in part (c); part (e) the correlations, computed using

; part (f) the OR F statistic; and part (g) ddfH. From part (h) the p-value for
testing the hypothesis of equal modalities is .092, and from part (i) a 95% confidence
interval for the difference of the population AUCs (spin-echo – cinematic) is given by (–
0.0073, 0.0921) Thus there is not sufficient evidence that the modalities differ (p = .092).

Treating this study as a pilot study, the power computation steps are as follows:

1. Specify the effect size. The effect size of interest is d = .05.

2. Transform outputs into OR parameter estimates. For the pilot data c* = 114. From
Table 4 we have  (T) = 0.004003, (T * R) = 0.000623,  = 0.001394,  =
0.000352,  = 0.000347, and  = 0.000221. Substituting these values into

Equation (9) yields  = −0.000294. Since  then we have two choices: either

set  equal to zero or to a conjectured positive value for the remaining steps. In
our computations below we set it to zero.

3. Compute the noncentrality parameter and denominator degrees of freedom
estimates. We want to compute the power for a study with r = 8 readers and c = 240
cases. We compute

and

4. Compute the power. The estimated power for r = 8, c = 240, α = .05 is given by
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Recall that this estimate was computed assuming no test × reader interaction, since we have

set . A more conservative approach would be, for example, to set  = .0001
corresponding to the belief that a 95% upper bound on the absolute difference of two intra-
reader AUC differences is given by l = .04. Using this approach, the power is .86.

Typically the researcher will want to consider different combinations of readers and cases
that result in the desired power and then choose the most suitable combination. Reader-case
sample size combinations that result in approximately .80 power are presented in the left-

hand side of Table 5, using both  = 0 and  = .0001. For example, a few of the reader-

case combinations that yield .80 power with  = 0 are 5 readers and 266 cases, 8 readers
and 183 cases, or 15 readers and 136 cases. We see that the increase in the number of cases

needed based on  = .0001 is most noticeable for r ≤ 5.

Appendix C (available online at www.academicradiology.org) includes the SAS [24]
statements used to compute the power for this example with r = 8 and c = 240, as well as the
statements used to create the left-hand side of Table 5. To produce the Table 5 output, the
program loops the statements through various combinations of reader and case sample sizes
and outputs the number of cases for which the power is closest but greater than. 80 for each
reader sample size. These statements can be easily modified to work in another
programming language.

Situation 2: Different normal-to-abnormal ratios. Suppose that the researcher wants to use
equal numbers of normal and abnormal images in the planned study in order to increase
power. Since there are 45 abnormal and 69 normal cases, we randomly sample with
replacement 69 abnormal cases from the original 45. We repeat this process 10 times,
combining each generated sample with the 69 normal cases to produce 10 data sets, each
containing 69 abnormal and 69 normal cases. Note that the normal cases are the same for
each data set, in contrast to the 69 abnormal cases which vary from set to set and which do
not necessarily contain all of the original 45 abnormal cases.

For each of these ten data sets we compute the jackknife covariance matrix and then
compute , ,  and . These estimates are shown in Table 6 along with the

corresponding means. We use the estimate  = 0 based on the original pilot data before

doing any resampling, and well as the more conservative conjectured estimate  = .0001.

Using  = 0 and the means from Table 6 as inputs in our power program, with c* = 69 +
69 = 138, we find for r = 8 and c = 240 that the power has now increased from .89 to .98,
showing the advantage of using a normal-to-abnormal ratio equal to 1. The right-hand side
of Table 5 shows combinations of readers and case sample sizes that yield .80 power for an
equal balance of normal and abnormal cases.

3.1.1. Power computation based on DBM analysis—The DBM analysis of the data
based on the PROPROC AUC estimates is presented in Table 7. Part (a) presents the DBM
ANOVA table, part (b) the F statistic, part (c) ddfH, and part (d) the p-value. Note that the F
statistic, ddfH, and the p-value are the same as for the OR analysis in Table 4; this will
always be the case when the OR analysis uses jackknife covariance estimates, as previously
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discussed. Using the Table 1 relationships, we compute the corresponding OR quantities 
(T), (T * R), , , ,  for step 2a from the DBM mean squares. Otherwise the
steps are identical. Appendix D (available online at www.academicradiology.org) includes
SAS statements that convert the DBM mean squares to the corresponding OR quantities for
this example, based on the Table 1 relationships. The SAS output included in Appendix D
shows that the resulting OR quantities are the same as those obtained from the OR analysis;
thus power results are identical regardless of whether we use the OR or DBM analysis
outputs – this will always be the case when the OR analysis uses jackknife covariance
estimates and the DBM analysis uses normalized pseudovalues.

3.2. Simulation study
In a simulation study we examine the performance of the proposed power procedure. We use
the simulation model of Roe and Metz [25], which provides continuous decision-variable
outcomes generated from a binormal model that treats both case and reader as random
factors. We use their “HH” model for which the decision-variable values have relatively
high within-reader correlations and reader variability (both pure reader and test × reader
interaction variance components). We specify the separation between the normal and
abnormal case populations such that for one test the median AUC across readers is .855 and
for the other test it is .92, resulting in a nominal effect size of .065. Using this model, we
simulate 4000 samples for each of nine combinations of three reader-sample sizes (readers =
3, 5, and 10) and three case-sample sizes (cases = 50, 100, and 200) with equal numbers of
normal and abnormal cases. Within each simulation, all Monte Carlo readers read the same

cases for each of the two tests. For these simulations we set  = 0 if it is negative.

For each sample we perform an OR analysis using the empirical AUC as the accuracy
estimate. The mean values of the parameter estimates and AUC differences are displayed in
Table 8. The “Power” column indicates the proportion of samples where the null hypothesis
of equal tests was rejected at alpha = .05. We make the following observations: (1) The

mean  values are very similar (range: 1.20 – 1.33) regardless of the number of readers or

cases; this is expected, since  can be interpreted as the interaction variance component for
the latent AUCs, as discussed in Section 2.5.1. (2) The correlations are also very similar
(e.g., range of r1: .36 – .38) across combinations as expected. (3) The covariances and error
variance decrease as the number of cases increases, but are similar for similar case sample
sizes regardless of the reader sample size. (4) The mean AUC difference is .066, except for
one combination; note that this differs from the .065 median AUC difference for the
decision variable; (5) The fact that r2 is roughly a third larger than r1 should not be taken as
evidence that the constraint given by Equation 4 is not realistic, but rather that the
simulation model does not properly reflect the typical clinical situation.

We now investigate how well the sample data predict power for a planned study with 10
readers and 200 cases for an effect size of .066. From the last line in Table 8 we estimate the
true power to be approximately 0.781, based on 4000 simulated data sets. For the power
procedure to be valid, it should give power estimates close to the true power when reliable
estimates are available. For each combination we compute the power using the parameter
estimates from Table 8. The results are displayed in the “Reliable estimates” column in
Table 9. We see that, with the exception of the first combination (3 readers, 50 cases), the
power estimated from the reliable estimates is within .039 of the actual power and the mean
of these estimates is .744, thus validating the power procedure. Note that this estimate of
power is performed only once for each combination using the reliable parameter estimates.
The means for the sample power estimates (computed for each sample based on the sample
parameter estimates) across the 4000 samples are presented in the ”Sample estimates”
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column; these are closer, within .021 of the actual power, and have an overall mean of .767.
The 25th and 75th percentiles and their differences for the sample power estimate
distributions are presented in the last three columns. We see, for example, that the middle
50% of the sample power estimates has, on average, a range of .252.

4. Discussion
We have provided a step-by-step procedure for estimating power for planned multireader
ROC studies that will be analyzed using either the DBM or OR methods. This procedure
updates previous approaches by using the currently recommended denominator degrees of
freedom, accounting for Different pilot- and planned-study normal-to-abnormal case ratios,
and using a new method for computing the OR test-by-reader variance component.

This procedure, as is true for most power procedures, was derived with the parameter values
treated as known. A small simulation study validated the method by showing that power
estimates were quite close to the actual power when computed from reliable parameter
estimates. In addition, the means of sample power estimates – those based on sample-
specific parameter estimates – were even closer to the actual power. However, we
emphasize that this was a small simulation study based on only one latent decision-variable
model, and that more extensive simulation studies are needed to more fully validate the
procedure.

Variability in power estimates increases as the parameter estimates become less precise for
any power procedure. Thus it is to be expected that there will be much variability in sample
power estimates based on outputs from the typical pilot study that has only a few readers,
due to lack of precision for the test × reader variance component estimate. In our simulation
study the middle 50% of the sample power estimates had, on average, a range of .252, which
we would prefer to be less. A recent simulation investigation [26] of an earlier version of the
DBM power method has also noted large variability in sample power estimates. However,
variability is probably much less than indicated by simulations when the same readers are
used in both the pilot and future study, as is often the case. Nevertheless, the variability issue
warrants further investigation. For example, one possible way to reduce the variability
would be to use a conjectured value for the test × reader variance component when feasible.

Finally, we note that the pilot study should be comparable to the planned study with respect
to modalities, reader expertise, and selection of cases in order that the parameter estimates
obtained will accurately estimate those of the planned study.
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Appendix A: Power derivation for the OR procedure
As previously noted, the OR procedure test statistic (Eq. 5) has an approximate Ft−1,df2;Δ
distribution with df2 and noncentrality parameter Δ given by Equations 6 and 8,
respectively. For t = 2 tests it follows that

(A.1)

and
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(A.2)

It is shown in Reference [8] that

(A.3)

It follows from Equations A.2–A.3 that

(A.4)

and

(A.5)

Let r* and c* denote reader and case pilot-study sample sizes from which covariance
parameter estimates are obtained and r and c the corresponding sample sizes for which we
want to compute power. Based on Equations A.1, A.4 and A.5 we use the following
estimates that incorporate the constraint Cov2 ≥Cov3:

and

In deriving these estimates we make the reasonable assumption that , Cov11, Cov2, and
Cov3 are inversely proportional to the number of cases for a specified normal-to-abnormal
case ratio. Note that if , then

with r − 1 being the lower bound on the denominator degrees of freedom.

The power is then estimated by
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for a two-sided test with significance level α, treating  and  as constants.

Appendix B: Determination of the parameter estimated by the previously
used estimate of σTR2 for the OR procedure

We assume that the pilot data have two tests (t = 2). The estimate for  proposed in
References [4, 6] is given by

(B.1)

where  and  are the sample variances of the AUCs and across readers for tests 1 and 2,

respectively, and  is the within-reader correlation coefficient for the paired data , j
= 1,…,r; i.e.,

and

(B.2)

From the OR model (Eqn. 3) it follows that  and ; it
follows that

i.e.,

(B.3)

Furthermore, we show at the end of this section that

(B.4)
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where MS(R) and MS(T * R) are the reader and test × reader mean squares resulting from
fitting the OR model to the pilot data.

Expectations for the OR mean squares are given by Hillis [8, p. 600]. From these it follows
that

(B.5)

From Equations B.4–B.5 it follows that

(B.6)

Replacing estimates by their expected value in Equation B.1 using Equations B.2, B.3, and

B.6 shows that  estimates the following parameter:

The relationship var(ε11 − ε12 − ε21 + ε22) ≥ 0 implies that .

Proof of Equation B.4:

Case 1:  (hence ). It follows that

Since t = 2 we have

and thus Equation B.4 holds for the .
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Case 2:  or . Define . Since W1· = W2· = 0, then Equation B.4 holds
for the Wij. Since it can be shown that

 and the quantities MS(R), and

MS(T * R) computed from the Wij are identical to those computed from the , then

Equation B.4 must also hold for the .

Appendix C: SAS statements for computing power for the example

a) Computation of power for r = 8 readers and c = 240 cases
data data1; **Enter the OR outputs computed from pilot data**; length study $16;

input study $ c_star mstr var_error cov1 cov2 cov3 var_tr;/*Notes:

mstr = MS(test × reader)

var_tr = OR test × reader variance component

var_error = OR fixed-reader error variance component

c_star = number of cases for pilot data

Either mstr or var_tr must be specified--enter a missing value for the one not specified. If
var_tr is not missing then the program uses the specified var_tr value, regardless of whether
mstr is specified or missing. If var_tr is missing then var_tr is computed as a function of
mstr and other inputs, and if the computed value is negative then it will be set to zero.

*/

cards;

VanDyke 114 .000622731 .001393652 .000351859 .000346505 .000221453 . ; /*

NOTE: to obtain result with the test-by-reader variance component set to .0001, just change
the missing data value above to .0001. That is, substitute the following line:

VanDyke 114 .000622731 .001393652 .000351859 .000346505 .000221453 .0001 */

proc print; title “Pilot study estimates”; run;

data data2; set data1; **Compute power for r = 8, c = 240**;

/* set the following as desired */

alpha = .05; **significance level**;

AUCdiff = .05; **effect size: difference in populations AUCs**;

r = 8; **reader sample size for power estimate**;

c = 240; **case sample size for power estimate**;

/* now estimate var_tr if it was not specified*/
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if var_tr = . then do;

var_tr = mstr − var error + cov1 + max(cov2 − cov3,0);

var_tr = var_tr*(var_tr>0); *constrains var_tr to be nonnegative*; end;

/* now estimate noncentrality parameter (nc) and denominator df (df2)*/

denon = var_tr + (c_star/c)*(var_error−cov1+max((r−1)*(cov2−cov3),0));

nc = r*.5 * AUCdiff**2/denon;

df2 = denon**2/((var_tr+(c_star/c)*(var_error−cov1−max(cov2−cov3,0)))**2/(r−1));

/* now compute power */

F_critical = Finv(1−alpha, 1,df2);

power = 1 −probF(F_critical,1, df2, nc);

proc print; title “Power results”;

var study AUCdiff r c nc df2 power;

run;

Output:

Pilot study estimates

study c_star mstr var_error cov1 cov2 cov3 var_tr

VanDyke 114 .000622731 .001393652 .000351859 .000346505 .000221453 .

Power results

study AUCdiff r c nc df2 power

VanDyke 0.05 8 240 10.9812 30.6140 0.89402

(b) Computation of reader and case sample sizes needed for power = .80.
These results are presented in the left-hand side of Table 3

***looped version***;

data data2; set data1;

/* set the following as desired */

alpha = .05; **significance level**;

AUCdiff = .05; **effect size: difference in populations AUCs**;

power_target = .80; **desired power**;

/* now estimate var_tr if it was not specified */

if var_tr = . then do;
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var_tr = mstr − var_error + cov1 + max(cov2 − cov3,0);

var_tr = var_tr*(var_tr>0); *constrains var_tr to be nonnegative*; end;

do r = 3 to 15; **reader sample size for power estimate**;

flag = 0;

do c = 20 to 2000; **candidate case sample sizes for power estimate --change as needed**;

/* now estimate noncentrality parameter(nc)and denominator df (df2)*/

denon = var_tr + (c_star/c)*(var_error − cov1 + max((r−1)*(cov2 − cov3),0));

nc = r*.5 * AUCdiff**2/denon; **nc = noncentrality parameter**;

df2 = denon**2/((var_tr + (c_star/c)*(var_error−cov1−max(cov2−cov3,0)))**2/(r−1));

/* now compute power */

F_critical = Finv(1−alpha, 1,df2); **F_critical = OR critical F value**;

power = 1 −probF(F_critical,1, df2, nc);

if (flag = 0) and (power ge power_target) then do;

output; flag = 1; GOTO HERE;

end;

end;

HERE:;

end;

proc print;

var study AUCdiff r c power; run;

Output:

Power results

Obs study AUCdiff r c power

1 VanDyke 0.05 3 559 0.80044

2 VanDyke 0.05 4 343 0.80040

3 VanDyke 0.05 5 266 0.80142

4 VanDyke 0.05 6 225 0.80045

5 VanDyke 0.05 7 200 0.80020

6 VanDyke 0.05 8 183 0.80007

7 VanDyke 0.05 9 171 0.80079

8 VanDyke 0.05 10 162 0.80175

9 VanDyke 0.05 11 154 0.80028

10 VanDyke 0.05 12 148 0.80025
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11 VanDyke 0.05 13 143 0.80010

12 VanDyke 0.05 14 139 0.80055

13 VanDyke 0.05 15 136 0.80214

Appendix D: SAS statements for converting DBM mean squares to OR
statistics for the example

data OR_statistics;

input t r c mst msr mstr msc mstc msrc mstrc; **DBM mean squares**;

/* Notes:

t, r, and c are number of tests, readers and cases for the data set mst, msr, mstr, msc, mstc,
msrc, and mstrc are the DBM mean squares for test, reader, test × reader, case, test × case,
reader × case, and test × reader × case

*/

/*Now compute corresponding OR mean squares and fixed-reader covariances*/

mst_OR = c**−1 * mst;

msr_OR = c** −1 * msr;

mstr_OR = c**−1 * mstr;

var_error = (t*r*c)**−1 * (msc + (t−1)*mstc + (r−1)*msrc + (t−1)*(r−1)*mstrc);

cov1 = (t*r*c)**−1 *(msc − mstc +(r−1)*(msrc − mstrc));

cov2 = (t*r*c)**−1 * (msc − msrc + (t−1)*(mstc − mstrc));

cov3 = (t*r*c)**−1 * (msc − mstc − msrc + mstrc);

cards;

2 5 114 0.45638557 0.32315642 0.07099138 0.45797697 0.17578816 0.13424103
0.10450847

proc print; title “DBM mean squares”;

var t r c mst msr mstr msc mstc msrc mstrc;

proc print; title “Corresponding OR mean squares and covariances”;

var msr_OR mstr_OR var_error cov1 cov2 cov3;

run;

Output:

DBM mean squares

t r c mst msr mstr msc mstc msrc mstrc

2 5 114 0.45639 0.32316 0.070991 0.45798 0.4579 0.13424 0.10451
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Corresponding OR mean squares and covariances

msr_OR mstr_OR var_error cov1 cov2 cov3

.002834705 .000622731 .001393652 .000351859 .000346505 .000221453
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Table 1

OR outputs in terms of DBM mean squares from a pilot study. The number of tests, readers, and cases in the
study are denoted by t*, r*, and c*, respectively. Adapted and reprinted, with permission, from Hillis et al
[10].

OR Output Equivalent function of DBM mean squares

MS(T )θ̂ij = 1

c ∗
MS(T )

MS(R)θ̂ij = 1

c ∗
MS(T )

MS(T ∗ R)θ̂ij = 1

c ∗
MS(T ∗ R)

σ̂∊
2 = 1

t ∗r ∗c ∗
MS(C) − (t ∗ − 1)MS(T ∗ C) + (r ∗ − 1)MS(R ∗ C) + (t ∗ − 1)(r ∗ − 1)MS(T ∗ R ∗ C)

Cov̂1 = 1

t ∗r ∗c ∗
MS(C) − MS(T ∗ C) + (r ∗ − 1)MS(R ∗ C) − MS(T ∗ R ∗ C)

Cov̂2 = 1

t ∗r ∗c ∗
MS(C) − MS(R ∗ C) + (t ∗ − 1)MS(T ∗ C) − MS(T ∗ R ∗ C)

Cov̂3 = 1

t ∗r ∗c ∗
MS(C) − MS(T ∗ C) − MS(R ∗ C) + MS(T ∗ R ∗ C)
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Table 2

Relationships between OR and DBM variance component and covariance parameters. Notes: c is the number
of cases; see Reference [9] for definitions of the DBM variance components. Adapted and reprinted, with
permission, from Hillis et al [9, Table III].

OR parameter Equivalent function of DBM variance components

σR
2 = σR

2

σTR
2 = σTR

2

σ∊
2 = (σC2 + σTC2 + σRC

2 + σTRC
2 + σ∊

2) ∕ c

Cov1 = (σC2 + σRC2 ) ∕ c

Cov2 = (σC2 + σTC2 ) ∕ c

Cov3 = σC
2 ∕ c
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Table 3

Relationship between OR test-by-reader interaction variance component  and 95% probability upper bound
l on the absolute difference of intra-reader latent AUCs; i.e., Pr {|ηij − ηi′j − (ηij′ − ηi′j′)|≤ l} ≥ .95, where ηij −
ηi′j is the difference in latent AUCs for tests i and i′ for randomly chosen reader j and ηij − ηi′j is the
corresponding difference for randomly chosen reader j′.

l σTR
2

0.01 0.00001

0.02 0.00003

0.03 0.00006

0.04 0.00010

0.05 0.00016

0.06 0.00023

0.07 0.00032

0.08 0.00042

0.09 0.00053

0.1 0.00065
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Table 6

OR variance component estimates from ten randomly generated Van Dyke [20] data sets having 69 normal
and 69 abnormal images. Each data set contains 69 resampled abnormal images combined with the original 69
normal images.

Sample σ̂ε
2 Cov̂1 Cov̂2 Cov̂3

1 0.000512 0.000204 0.000181 0.000125

2 0.000416 0.000019 0.000112 0.000073

3 0.001173 0.000118 0.000169 0.000138

4 0.001121 0.000078 0.000129 0.000074

5 0.000545 0.000153 0.000242 0.000106

6 0.000629 0.000316 0.000224 0.000189

7 0.000634 0.000155 0.000225 0.000107

8 0.001117 0.000135 0.000204 0.000116

9 0.000608 0.000176 0.000222 0.000145

10 0.000470 0.000130 0.000136 0.000089

mean: 0.000723 0.000148 0.000184 0.000116
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Table 7

Dorfman-Berbaum-Metz (DBM) analysis of Van Dyke et al [21] data. H0: test AUCs are equal; t = 2 tests; r =
5 readers.

(a) ANOVA table based on normalized jackknife AUC pseudovalues

Source df SS MS

T 1 0.45638557 0.45638557

R 4 1.29262569 0.32315642

T*R 4 0.28396550 0.07099138

C 113 51.75139760 0.45797697

T*C 113 19.86406163 0.17578816

R*C 452 60.67694615 0.13424103

T*R*C 452 47.23783039 0.10450847

(b) F = MS(T )

Ms(T ∗ R)+max MS(T ∗ C) −MS(T ∗ R ∗ C), 0
= 0.45638557

0.07099138 + 0.17578816 − 0.10450847 = 3.21

(c) ddfH =
{Ms(T ∗ R) + max MS(T ∗ C) − MS(T ∗ R ∗ C), 0 }2

MS(T ∗ R) 2 ∕ (t − 1)(r − 1)
= 16.065

(d) p-value= Pr (F4;16.065 > 3.21) = .092
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