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Abstract
Objective—Several lines of evidence show that selenium has potential protective effects in
osteoarthritis (OA), however the exact mechanism is still unclear. As IL-1β is one of the key
proinflammatory cytokines contributing to the progression in OA, we investigated the effect of
selenium in neutralizing the inflammatory effects of IL-1β on nitric oxide (NO) and prostaglandin
E (PGE2) production, and the signaling pathways involved.

Methods—Isolated primary human chondrocytes were pretreated with selenomethionine (0.5 μM
SeMet) for 24 hours then co-treated without or with IL-1β (10 pg/ml or 50 pg/ml) for another 24
hours followed by RNA isolation. Gene expression of inducible nitric oxide synthase (iNOS) and
cyclooxygenase-2 (COX2) was determined by quantitative Real Time-Polymerase Chain
Reaction. Culture media concentrations of NO and PGE2 were determined by nitrite assay and
immunoassay respectively. For analysis of cell signaling pathways, chondrocytes were pretreated
with SeMet then stimulated with IL-1β for 0 – 45 minutes. The activity of IL-1β signaling
pathways was determined by Western blot screening of phosphorylation states of signal
transduction proteins.

Results—SeMet inhibited chondrocyte gene expression of IL-1β induced iNOS (31–54%,
p=0.031) and COX2 (50–65%, p=0.031) with corresponding reductions in both NO (19–47%,
p=0.031) and PGE2 (24–32%, p=0.031) production. Pretreatment with SeMet attenuated IL-1β
induced activation of p38 MAPK (39%, p=0.039) but not the ERK, JNK or NFkB pathways.
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Conclusions—This study elucidates one potential protective mechanism of selenium, namely
through the alteration of cell signaling and downstream transcription of pro-inflammatory effects
of IL-1β.
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Introduction
Selenium (Se) is an essential trace element involved in several key metabolic activities:
protection against oxidative damage; regulation of immune and thyroid function; and
fertility [1–2]. Recently, a growing interest in the potentially protective role of Se in
Osteoarthritis (OA) has been generated based on epidemiology [3–5], genetic [6] and
transgenic animal studies [7]. Profound Se deficiency is associated with the severe
osteoarthropathy known as Kashin-Beck Disease that affects individuals in China (as many
as 7 million) and neighboring regions [3]. Evidence for a role for Se in OA comes from a
large population based study in the US in which a low but non-deficiency level of Se has
been shown to be associated with OA presence and severity [4–5]. Moreover, a recent
genetic study showed that a variant of Deiodinase 2 (DIO2), which encodes a selenoprotein
involved in thyroid hormone activation, is associated with risk for developing OA [6]. While
the exact mechanism is still unclear, DIO2 is hypothesized to play a role in bone remodeling
in OA progression [6]. In mice, conditional knockout of the selenocysteine tRNA gene,
which is required for incorporation of Se into selenoproteins, results in skeletal
abnormalities and severe chondronecrosis of articular cartilage resembling Kashin-Beck
Disease, as well as chondronecrosis of auricular and tracheal cartilages [7].

In vitro studies have also suggested a protective effect of Se. For instance, Se alters iNOS
and COX2 gene expressions in response to lipopolysaccharide (LPS) stimulation in cultured
macrophages [8–9]. Lack of Se in vitro has been associated with elevated Prostaglandin E2
(PGE2) production in calcium ionophore stimulated endothelial cells [10] and LPS induced
macrophages [11]. A recent study showed that exposure of chondrocytes in vitro to
selenomethionine (SeMet) could block IL-1 mediated inhibition of cartilage matrix
macromolecule (collagen II and aggrecan) synthesis [12]. However, in the same study,
SeMet did not have significant effects on iNOS or COX2 gene expression in the presence of
high doses of IL-1β in bovine chondrocytes.

Taken together, these studies suggest an important role of Se in maintaining normal cartilage
metabolism and potentially preventing OA. A better understanding of the mechanisms
underlying these selenium-mediated protective effects could lead to the development of
novel therapeutic approaches for the prevention and management of OA progression. We
hypothesized that SeMet could block proinflammatory gene expression induced by
physiological doses of IL-1β. In this study we chose to investigate potential mechanisms of
Se mediated protective effects using physiological rather than supra-physiological doses of
IL-1β as used in the majority of prior experiments[12–16]. Under these conditions we
investigated the magnitude of selenium effects and the potential signaling pathways
involved in primary human chondrocytes.

Materials and Methods
Chondrocyte Isolation and Culture

The samples used for this project were collected under approval of the Duke IRB. The IRB
deemed these samples surgical waste tissues meeting the definition of research not involving
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human subjects as described in (45CFR46.102(f)) and was not subject to HIPAA
(45CFR164.514(b)) as no information relating to patient identity was obtained with the
sample. Articular cartilage samples were obtained as surgical waste tissues from 19 patients
undergoing total knee replacement surgery [mean age, 61.8 +/− 7.7 years]. The isolated
chondrocytes were used for experiments within the first three passages. Cartilage was
harvested from non-lesional areas, further minced, and subjected to pronase and collagenase
digestion to isolate primary chondrocytes, similar to previously published methods [17]. The
SW-1353 chondrosarcoma cell line was obtained from the American Type Culture
Collection (ATCC Manassas, VA).

IL-1β (R & D systems, Minneapolis, MN), concentrations of 10 pg/ml and 50 pg/ml were
chosen on the basis of evidence for physiological relevance (equivalent to concentrations in
human OA synovial fluid) [18–19]. Selenomethionine (SeMet) (Sigma, St Louis, MO), an
organic form of selenium, was chosen as it is the primary dietary source of Se for human
[20]. A concentration of 0.5 μM SeMet was chosen for chondrocyte cultures based on
evidence of physiological relevance (equivalent to concentrations in normal and OA human
synovial fluid [21]).

MTT ASSAY
Cell viability was assessed with the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) assay based on the ability of mitochondria of viable cells to
convert soluble MTT into an insoluble purple formazan reaction product. MTT (Sigma)
solution (5 mg/ml in DMEM without phenol red) was added to cells in tissue culture for 2
hours. The MTT solution was aspirated, dimethyl sulfoxide (DMSO) was added (200 μl per
each well of 12 well plate) to solubilize formazin and detection occurred by addition of 100
μl of the reaction mixture to a 96 well plate format and reading at O.D. 540 nm. MTT assay
results for the SW-1353 cell line were derived from 2 independent experiments, performed
in duplicate. MTT assay results for primary chondrocytes were derived from 2 independent
experiments, performed in triplicate using 2 separate primary chondrocyte cell lines.

RNA Isolation and Real Time RT-PCR
Cell lysates, prepared by RNeasy Lysis Buffer (Qiagen Valencia, CA) from each
experimental condition, were first homogenized by passing them through a QIAshredder
spin column (Qiagen, Valencia, CA). The total DNA and RNA fractions were further
isolated using the AllPrep DNA/RNA/Protein Mini Kit (Qiagen, Valencia, CA) according to
the manufacturer’s protocol. The isolated total RNA was reverse transcribed into cDNA
using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City,
CA) for Real Time RT-PCR analysis. The ABI Prism 7000 sequence detection system and
relative quantification software (Applied Biosystems, Foster City, CA) were used for real-
time analyses. The amplification for real-time RT-PCR used the following Applied
Biosystems primer and probe sets: 18S rRNA endogenous control, Hs01075527_m1(iNOS),
and Hs01573474_g1(COX2). The real-time reactions were each performed in triplicate in a
final volume of 25 μl.

mRNA Quantification and Statistical Analysis
Raw mRNA expression values were computed by 2−ΔCt formula [22] with values
normalized to 18S rRNA, where ΔCt represents the difference in Ct (threshold cycle)
number of the 18S rRNA gene and the iNOS or COX2 genes. Results were derived from a
total of 6 independent experiments for each dose of IL-1β for COX2 and iNOS respectively,
performed in triplicate, using a total of 13 separate primary chondrocyte cell lines. The
relative fold changes in mRNA expression levels of iNOS and COX2 were calculated by the
2 −ΔΔCt formula [22], between three different treatments (SeMet, IL-1β, SeMet and IL-1β
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treatment) and control without treatment (no SeMet, no IL-1β). For the purposes of
graphical presentation, the relative mRNA level in cells without treatment was set at 100%.

Raw mRNA expression data were evaluated by two tailed Wilcoxon matched pairs test
comparing subgroups (n=6 in each group from 13 separate cell lines): 1) the control group
and SeMet pretreated group, 2) the IL-1β treatment group and IL-1β with SeMet
pretreatment group, and 3) the control group and IL-1β treatment group. The nonparametric
Wilcoxon matched pairs test was chosen as it is appropriate for comparing two paired
groups allowing for the non-symmetrical distribution of the raw mRNA expression data
[23].

Nitrite and PGE2 Assays
Nitrite (NO2-, one of the stable end products of NO) concentrations were determined by
chemiluminescence using an Ionics/Sievers nitric oxide analyzer (NOA 280, Sievers
Instruments, Boulder, CO), per the manufacturer’s instructions. Potassium iodide in acetic
acid was used as a reductant for nitrite analysis because of its specificity for nitrite. Nitrite
concentrations were determined by nitrite standards prepared from sodium nitrite (Sigma, St
Louis, MO) and normalized to total DNA isolated from the corresponding chondrocytes.
The total DNA concentration was quantified by Nanodrop 1000 (Thermo Scientific,
Wilmington, DE).

The PGE2 concentration of the collected culture medium was determined using a
competitive enzyme immunoassay based Prostaglandin E2 Parameter Assay Kit (R&D
Systems, Minneapolis, MN). The data were normalized to total DNA isolated from the
corresponding chondrocytes. For samples with undetectable PGE2 levels (from the control
groups without any treatment and the SeMet pretreated alone groups), a value was assigned
(13.5 pg/ml) which is equal to half the lowest detection limit of the kit.

Nitrite and PGE2 concentration Quantification and Statistical Analysis
Results of nitrite and PGE2 analyses were derived from a total of 6 independent experiments
for each dose of IL-1β for nitrite and PGE2 respectively, using a total of 14 separate primary
chondrocyte cell lines. The fold changes in nitrite and PGE2 concentrations were calculated
for purposes of graphical presentation of nitrite and PGE2 concentration normalized to total
DNA. The relative concentration in cells without treatment (no SeMet, no IL-1β) was set at
100%. Nitrite and PGE2 concentration data were evaluated by two tailed Wilcoxon matched
pairs test comparing subgroups (n=6 in each group from 14 separate cell lines): 1) the
control group and SeMet pretreated group, 2) the IL-1β treatment group and IL-1β with
SeMet pretreatment group, and 3) the control group and IL-1β treatment group. All analyses
were performed using GraphPad version 5.0 (GraphPad Software, LA Jolla, CA). The
nonparametric Wilcoxon matched pairs test was chosen as it is appropriate for comparing
two paired groups allowing for the non-symmetrical distribution of the nitrite and PGE2 data
[23]

Western Blot Screening of Signal Transduction Proteins
Chondrocytes from each experimental condition were collected and homogenized in lysis
buffer (10 mM HEPES, pH 7.5, 0.5% Triton X-100, 5 mM EDTA, 5 mM EGTA and 1 M
NaCl), supplemented with protease inhibitor cocktail (Sigma, St. Louis, MO) and
phosphatase inhibitors (5 mM PMSF, 10 mM NaF, 25 mM B-glycerophosphate, 0.5 M
DTT, 1 mM Na3V04 ). Whole cell lysates, were further separated by SDS-PAGE, and
transferred to nitrocellulose for immunoblotting. Membranes were blocked with 5% BSA in
TBS/0.1% Tween 20 (TBS-T).
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Polyclonal primary antibodies against Phospho-p38 MAPK (Thr180/Tyr182), Total p38
MAPK, Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204), Phospho-SAPK/JNK (Thr183/
Tyr185), Phospho-IKKα/β (Ser176/180) and Phospho-NFkB p65(Ser536) were obtained
from Cell Signaling Technology (Danvers, MA) and used at 1:1000 dilution. A monoclonal
antibody against α-tubulin (Sigma) was used as a normalization control at 1:10,000 dilution.
Anti-rabbit and anti-mouse IgG-HRP (Jackson ImmunoResearch, West Grove, PA)
secondary antibodies were used at a 1:5,000 dilution. The resulting films were scanned using
CanoScan LiDE 70 (Canon, Lake Success, NY) and the band intensities were quantified
using Adobe Photoshop CS and Image J (National Institutes of Health, Bethesda, MD). The
mean and SEM intensities of the phosphosignaling proteins were normalized to the internal
protein control (α-tubulin).

Phosphosignaling Protein Quantification and Statistical Analysis
Raw intensity data of phosphosignaling proteins were normalized to the internal protein
control (α-tubulin). Results were generated for three time points 5, 30 and 45 minutes in the
presence and absence of SeMet, and were derived from 3 independent experiments from 3
separate primary chondrocyte cell lines. The total area under each curve (from 5 to 45
minutes) was determined. The phosphosignaling protein intensities were evaluated by two-
tailed Wilcoxon matched pairs test comparing the response to IL-1β induction at 5, 30 and
45 minutes between control (n=9, without Se pretreatment) and the Se pretreated (n=9, 0.5
μM for the prior 24 hours). The Wilcoxon matched pairs test was chosen as it is appropriate
for comparing two paired groups allowing for the non-symmetrical distribution of the
phosphosignaling data.

Results
Inhibitory Effect of Selenomethionine on IL-1β Induced iNOS Gene Expression and Nitrite
Production

For cell toxicity assays we initially compared two forms of selenium, the organic
selenomethionine (SeMet) form, and the inorganic selenite. Based on the MTT toxicity
assay, SeMet showed no evidence of cellular toxicity at concentrations up to 1 μM in
SW-1353 cells (Figures 1A) or isolated primary chondrocytes. (Figure 1B) while selenite
showed cell toxicity beyond 1 μM. We subsequently selected SeMet at a concentration of
0.5 μM for all subsequent experiments. Twenty four hour treatment with IL-1β at 10 pg/ml
and 50 pg/ml significantly induced iNOS mRNA (~70 fold and ~630 fold respectively)
compared to the control without IL-1β (Figures 2A and 2B). SeMet alone had no effect on
the basal iNOS mRNA level. Twenty four hour pretreatment with SeMet significantly
repressed IL-1β induced iNOS steady state mRNA level by ~54% at 10 pg/ml IL-1β
(P=0.031), and by ~31% at 50 pg/ml IL-1β ( P=0.031). We further examined the effect of
SeMet on nitric oxide (NO), the enzymatic product of iNOS. Because of the short half-life
of reactive NO, we measured nitrite (NO2−), which is a stable downstream product of NO.
SeMet pretreatment inhibited IL-1β induced nitrite production, by 47% at 10 pg/ml IL-1β
(P=0.031), and by 19% at 50 pg/ml IL-1β (P=0.031) (Figures 2C and 2D).

Inhibitory Effect of Selenomethionine on IL-1β Induced COX2 Gene Expression and PEG2
Production

Next we investigated if pretreatment of SeMet could also affect COX2 gene expression in
the presence of IL-1β. Twenty four hour treatment with IL-1β at 10 pg/ml and 50 pg/ml
significantly induced COX2 mRNA (~ 53 fold and 120 fold respectively) compared to the
control without IL-1β (Figures 3A and 3B). SeMet had no effect on the basal COX2 mRNA
level. Twenty four hour pretreatment with SeMet significantly repressed IL-1β induced
COX2 steady state mRNA level by ~65% at 10 pg/ml IL-1β (p=0.031) and by ~50% at 50
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pg/ml IL-1β (P=0.031). We further examined the effect of SeMet on PGE2 production, the
downstream enzymatic product of COX2. SeMet pretreatment inhibited IL-1β induced
PGE2 production, by 32% at 10 pg/ml IL-1β (P=0.031), and by 24% at 50 pg/ml IL-1β
(P=0.031) (Figures 3C and 3D).

Effect of Selenomethionine on IL-1β Induced Signaling Pathways
To determine whether the inhibitory effect of SeMet could be associated with alterations of
IL-1β induced signaling pathways, we examined the phosphorylation status of signaling
proteins in IL-1β stimulated primary chondrocytes in the presence and absence of SeMet.
Stimulation of chondrocytes with IL-1β resulted in activation of MAPK kinases, p38
MAPK, ERK1/2 and JNK as well as NFkB pathway signaling molecules, IKKα/β and NFkB
p65, with phosphorylation peaking approximately 30 minutes after stimulation. SeMet
pretreatment alone did not affect the basal phosphorylation level of any of the signaling
molecules at time zero (Figure 4A, lane 5 versus lane 1). In contrast, SeMet attenuated IL-1β
induced phosphorylation of p38 MAPK (Figure 4A, top row) but not the ERKs, JNK, IKKα/
β or NFkB p65 (Figure 4A). The total basal level of p38 MAPK was unaffected by either
IL-1β or SeMet.

The mean phosphorylation level for each signaling molecule was determined by Image J
analyses (normalized to the α-tubulin control) from three separate experiments (Figure 3B).
SeMet pretreatment only modestly (39%) but significantly (p=0.039) reduced the IL-1β
induced activation of p38 MAPK based on the total area under the curve (from 5 to 45
minutes), compared to the IL-1β treated condition (Figure 4B). Pretreatment of SeMet did
not affect the IL-1β activation of the other molecules (Figures 4B) nor total p38 MAPK.

Discussion
Elevated concentrations of the proinflammatory cytokine, IL-1, are found in the synovial
fluid of OA joints [24]. IL-1 stimulates several key proinflammatory mediators such as
PGE2 and NO that have been implicated in the pathogenesis of OA [25–26]. IL-1 stimulates
NO and PGE2 through regulation of iNOS and COX2 gene expression respectively [27–29].
Our data demonstrated that pretreatment of chondrocytes with the antioxidant SeMet
significantly inhibited both production of NO and PGE2 in response to IL-1β. These results
have potential clinical significance based on the known involvement of PGE2 and NO in
joint metabolism summarized below.

PGE2 has protean manifestations - some catabolic and some anabolic. This is thought to be
mediated by different EP receptors such as EP2 and EP4 [30–31]. PGE2 upregulates matrix
metalloproteinases (MMPs) that cause joint cartilage degradation [32]. PGE2 has been
shown to positively modulate type II collagen gene expression in cultured chondrocytes
[33]. Furthermore, PGE2 promotes differentiation and proliferation of growth plate
chondrocytes [34–35]. Sensitization of peripheral nociceptors by PGE2 is believed to
contribute to pain associated with inflammation [36].

NO, another key mediator downstream of IL-1, has been demonstrated to have an impact on
cartilage homeostasis by regulating the balance of anabolic and catabolic metabolism. NO
inhibits collagen and proteoglycan synthesis of cartilage in vitro [37], and also induces
matrix metalloproteinase synthesis in articular chondrocytes [38]. In addition, NO has been
shown to reduce IL-1 receptor antagonist (IL-1ra) synthesis by chondrocytes [39].
Incubation of human articular chondrocytes with the NO donor, sodium nitroprusside (SNP),
activates apoptotic gene expression [40]. NO can trigger apoptosis by a mitochondria
dependent mechanism that could be mediated through regulation of expression of apoptotic
related genes such as caspase- 3 and 7 [40–41]. Furthermore, 3-nitrotyrosine, a stable
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product formed by reaction of NO and reactive oxygen species, has correlated with IL-1β
induced oxidative stress in aging and osteoarthritic cartilage tissue [42].

The Se mediated reduction in the NO and PGE2 production was associated with
corresponding reductions in iNOS and COX2 transcript levels. The direction and magnitude
of the effect of SeMet on the IL-1β induced NO production was similar to the effect on
iNOS mRNA expression. Therefore, the full effect of SeMet to modulate NO production is
likely mediated at a transcriptional level. The inhibitory effect of SeMet on IL-1β induced
NO production found in our study was similar to the inhibitory effect shown previously by
others for the inorganic form of Se, namely selenite (5–10μM), on LPS-induced iNOS gene
expression and NO production in murine macrophages [43–44].

In the case of PGE2 production, the magnitude of the inhibition of PGE2 protein production
was ~ 50% less than the magnitude of inhibition of COX2 gene expression. It is known that
inhibition of NO may lead to a corresponding compensatory release in PGE2 [45].
Therefore, we believe the PGE2 results represent a combination of downstream effects:
SeMet inhibition of COX2 gene expression; and SeMet inhibition of NO leading to increase
in PGE2. These NO and PGE2 data provide a plausible mechanism whereby Se may play a
protective role in OA.

Signaling pathways induced by IL-1β, that regulate NO and PGE2 production, are sensitive
to the redox state of cells, and can be altered by natural antioxidants such as curcumin and
capparis spinosa [15,46]. Cytokines, including IL-1, have been shown to induce NO and
PGE2 production through MAPK and NFkB pathways in human and rat chondrocytes
[16,47–48]. We demonstrated that Se partially inhibited the IL-1β induced phosphorylation
of p38 MAPK, but not other MAPKs that are commonly involved in IL-1β cell signaling.
This is consistent with a past study that also showed selective targeting of p38 MAPK by
selenite, an inorganic form of Se [43]. However, we cannot exclude the fact that Se may
alter IL-1β induced iNOS or COX2 gene expression through other signaling pathways since
our study was limited by having investigated only a single form of Se, SeMet. Selenate
(another inorganic form of Se) has been shown to activate the PI3K/AKT pathway [49],
which negatively regulates LPS induced COX2 [50]. In contrast to our results, generated
with human chondrocytes and physiologically relevant concentrations of SeMet and IL-1β
(10 and 50 pg/ml), a previous study utilizing bovine chondrocytes and supra-physiological
doses of IL-1β (10 ng/ml), failed to observe an effect of SeMet on IL-1β induced p38 kinase
activity [12]. Thus, the results are likely dependent on the dose and form of Se used. By the
same token, the dose and form of Se we chose may also explain why SeMet did not have a
significant effect on phosphorylation of NFkB p65 while high doses of selenite have been
shown to inhibit NFkB activity in cells other than chondrocytes, such as macrophages
[11,43–44]. Finally, in contrast to other studies that measured the DNA binding activities of
NFkB, we examined the phosphorylation level of NFkB p65 which might account for
different results between studies.

The mechanism whereby Se modifies the phosphorylation state of p38 MAPK is unknown.
Se may regulate the redox state and redox state may alter the activity of upstream kinases or
phosphatases that in turn control the phosphorylation status of p38 MAPK and hence the
downstream signaling. Sulfhydryl groups of protein tyrosine phosphatase can be reversibly
oxidized and the enzymatic activity regulated [51]. By analogy, regulation of redox state by
the antioxidant Se, might explain the Se related modulation of IL-1β signaling. Further work
remains to be done to elucidate the mechanisms of Se mediated regulation of IL-1β
signaling.
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In conclusion, we showed that the antioxidant SeMet inhibited IL-1β induced NO and PGE2
production through modulation of iNOS and COX2 gene expression in primary
chondrocytes. Our study also showed that Se partially blocked IL-1 activation of the p38
MAPK pathway. These results suggest that one mechanism whereby Se may exert a
protective effect is through regulation of the expression of inflammation related genes,
possibly mediated in part through inhibition of IL-1β cell signaling.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MTT cell toxicity assay for optimization of in vitro chondrocyte culture conditions
Effects of selenium on cell viability were assessed with the MTT (3-(4,5-Dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide) assay. (A) SW-1353 cells were cultured with different
concentrations (0 μM to 5 μM) of selenite or selenomethionine (SeMet) for 48 hours. (B)
Primary human chondrocytes were cultured for 24 hours in the absence (control) or presence
of 0.5 μM SeMet, followed by 24 hours co-treatment without or with 50 pg/ml IL-1β.
Values shown are mean and SEM of cell viability as a percentage of control (set at 100%).
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Figure 2. SeMet inhibited IL-1 β induced iNOS gene expression and NO production in primary
human chondrocytes
Primary human chondrocytes were cultured for 24 hours in the absence (control) or presence
of 0.5 μM SeMet, followed by 24 hour co-treatment without IL-1β (control) or with either
10 pg/ml (A and C) or 50 pg/ml (B and D) IL-1β. Gene expression for iNOS (A and B) was
determined by RT-PCR normalized to 18S rRNA (average of triplicates for six independent
experiments). Corresponding culture media were analyzed for nitrite concentration (C and
D). Data were normalized to total DNA of the corresponding chondrocytes. Values shown
are mean and SEM of iNOS or nitrite as a percentage of control (set at 100%). *P=0.031
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Figure 3. SeMet inhibited IL-1 β induced COX2 gene expression and PGE2 production in
primary human chondrocytes
Primary human chondrocytes were cultured for 24 hours in the absence (control) or presence
of 0.5 μM SeMet, followed by 24 hour co-treatment without IL-1β (control) or with either
10 pg/ml (A and C) or 50 pg/ml (B and D) IL-1β. Gene expression for COX2 (A and B) was
determined by RT-PCR normalized to 18S rRNA (average of triplicates for six independent
experiments). Corresponding culture media were analyzed for PGE2 concentration (C and
D). Data were normalized to total DNA of the corresponding chondrocytes. Values shown
are mean and SEM of COX2 or PGE2 as a percentage of control (set at 100%). *P=0.031
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Figure 4. SeMet selectively blocked IL-1β induced p38 MAPK
(A) Western blot analysis. Primary human chondrocytes were cultured for 24 hours in the
absence (control) or presence of 0.5 μM SeMet, and then co-treated with 50 pg/ml IL-1β
treatment for 0, 5, 30 and 45 minutes. Equal amounts of total cell lysate were separated by
SDS-PAGE and analyzed by Western blot for the following proteins: Phospho-p38 MAPK
(Thr180/Tyr182), Total p38 MAPK, Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204),
Phospho-SAPK/JNK (Thr183/Tyr185), Phospho-IKKα/β (Ser176/180) and Phospho-NFkB
p65 (Ser536); α tubulin (bottom row) was used as a control for normalization. The results
shown are representative of three independent experiments.
(B) Quantification of the effects of SeMet on IL-1β induced phosphorylation of signaling
proteins. Phosphoprotein signaling intensity was quantified by Image J analysis of Western
blots for up to 3 time points from three independent experiments (as described in Figure 3)
with normalization to the internal control, α-tubulin. The normalized mean and SEM levels
of phosphosignaling protein intensity are shown for Phospho-p38 MAPK (Thr180/Tyr182),
Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204), Phospho-SAPK/JNK (Thr183/Tyr185),
Phospho-IKKα/β (Ser176/180) and Phospho-NFkB p65(Ser536). SeMet inhibited IL-1β
activation of p38 MAPK significantly but not the generation of the other phosphoproteins.
*P=0.039.
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