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ABSTRACT

Objective: Dysfunction of the default mode network (DMN) has been identified in prior cross-
sectional fMRI studies of Alzheimer disease (AD) and mild cognitive impairment (MCI); however,
no studies have examined its utility in predicting future cognitive decline.

Methods: fMRI scans during a face–name memory task were acquired from a cohort of 68 sub-
jects (25 normal control, 31 MCI, and 12 AD). Subjects with MCI were followed for 2.4 years
(�0.8) to determine progression to AD. Maps of DMN connectivity were compared with a tem-
plate DMN map constructed from elderly normal controls to obtain goodness-of-fit (GOF) indices
of DMN expression. Indices were compared between groups and correlated with cognitive
decline.

Results: GOF indices were highest in normal controls, intermediate in MCI, and lowest in AD (p �

0.0001). In a predictive model (that included baseline GOF indices, age, education, Mini-Mental
State Examination score, and an index of DMN gray matter volume), the effect of GOF index on
progression from MCI to dementia was significant. In MCI, baseline GOF indices were correlated
with change from baseline in functional status (Clinical Dementia Rating–sum of boxes) (r �

�0.40, p � 0.04). However, there was no additional predictive value for DMN connectivity when
baseline delayed recall was included in the models.

Conclusions: fMRI connectivity indices distinguish patients with MCI who undergo cognitive de-
cline and conversion to AD from those who remain stable over a 2- to 3-year follow-up period. Our
data support the notion of different functional brain connectivity endophenotypes for “early” vs
“late” MCI, which are associated with different baseline memory scores and different rates of
progression and conversion. Neurology® 2011;76:511–517

GLOSSARY
AD � Alzheimer disease; CDR � Clinical Dementia Rating; CDR-SB � Clinical Dementia Rating–sum of boxes; CVLT �
California Verbal Learning Test; DMN � default mode network; DSM-IV � Diagnostic and Statistical Manual of Mental
Disorders, 4th edition; GIFT � Group ICA of fMRI Toolbox; GOF � goodness-of-fit; ICA � independent components analyses;
MCI � mild cognitive impairment; MMSE � Mini-Mental State Examination; NINCDS-ADRDA � National Institute of Neuro-
logical and Communicative Disorders and Stroke–Alzheimer’s Disease and Related Disorders Association; VBM � voxel-
based morphometry.

Recently, a reciprocal brain network, termed the default mode network (DMN), which becomes
less active during engagement in cognitive tasks and more active during periods of rest, has been
implicated in the pathophysiology of Alzheimer disease (AD).1,2 Prior cross-sectional functional
neuroimaging studies have shown loss of DMN integrity in AD as well as in mild cognitive impair-
ment (MCI).3–7 Recent studies of asymptomatic elderly subjects have shown that those with positive
amyloid PET scans also demonstrate significant losses in DMN integrity.5,8,9 The exact relationship
between DMN function and future decline is not fully understood, however.

Assessment of brain network connectivity is a relatively new area of focus in fMRI studies,
and “connectonomics,” the study of the human connectome, has been earmarked as an area of
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priority for future neurocognitive research.10

Functional connectivity is defined as the pres-
ence of statistical dependencies, or correlations,
among spatially remote neurophysiologic
events11 and several methods have been pro-
posed for measuring it in fMRI research.12 A no-
table prior study showed that a quantitative
neuroimaging index of DMN connectivity,
termed the goodness-of-fit (GOF) index, could
distinguish healthy aging from AD cross-
sectionally.4 Instead of using a priori regions of
interest, the GOF approach uses a data-driven
approach termed independent components
analyses (ICA), a technique that decomposes
fMRI signals into constituent functional net-
works, and is particularly effective during com-
plex cognitive tasks where multiple operations
occur simultaneously. In this initial prospective,
longitudinal study, we examined the utility of
GOF indices of functional connectivity in the
DMN for predicting cognitive decline in MCI.

METHODS Standard protocol approvals, registra-
tions, and patient consent. The study was approved by the
Duke University Medical Center institutional review board and
written informed consent was obtained from all subjects or legal
guardian as appropriate.

Subjects. A total of 68 subjects (31 with MCI, 12 with AD,
and 25 controls) were included in this study. MCI (amnestic
type) subjects had a recent history of symptomatic worsening in
memory, impaired delayed recall memory performance, a Clini-
cal Dementia Rating (CDR) global score of 0.5, with 0.5 or
greater on the memory score, did not meet National Institute of
Neurological and Communicative Disorders and Stroke–Alzhei-
mer’s Disease and Related Disorders Association (NINCDS-
ADRDA) or DSM-IV criteria for dementia, and had normal or
near normal independent function. Five subjects with MCI did
not have an informant and their diagnostic status was based on
neuropsychological tests. Subjects with AD met NINCDS-
ADRDA criteria for probable AD. Normal controls had normal
cognitive scores and a CDR of 0. All subjects underwent detailed
neuropsychiatric examination to exclude confounding signifi-
cant neuropsychiatric disorders, such as current major depres-
sion, as reported previously.13

The subjects in this study were selected from a larger cohort
(n � 98) and consisted of those who completed an fMRI proto-
col (3 runs with less than 1 mm of translational motion) and
subjects with MCI had at least a 1-year longitudinal follow-up.
Subjects with MCI were clinically evaluated every 6 months after
baseline until they converted to AD, or until the end of the study
period with informant interviews, neuropsychological testing,
and CDR ratings. During follow-up, subjects with MCI were
reclassified as MCI-converter or MCI-nonconverter based on
whether they were subsequently diagnosed with dementia. The
clinical diagnosis of dementia was triggered by a change in the
CDR scale score from 0.5 to 1.0, and confirmed by physician
evaluations and neuropsychological tests. Controls or subjects

with AD were not followed over time and their purpose was to
determine where subjects with MCI fell in the continuum.

Functional image acquisition. Subjects underwent baseline
fMRI scanning at 4.0 T (GE Medical Systems, Milwaukee, WI)
during encoding and retrieval of novel and familiar face–name
pairs.13 Anatomic (12.2/5.4/500 [repetition time msec/echo time
msec/inversion time msec], flip angle 20°, 256 � 256 matrix,
240-mm field of view) and functional (inverse spiral imaging
sequence; 2,500/31 [repetition time msec/echo time msec], flip
angle 60°, 64 � 64 matrix, 240-mm field of view) scans were
acquired over the same 44 contiguous slice locations in the coro-
nal plane. Three functional scan runs were acquired, lasting 6
minutes 50 seconds, and yielding 164 T2*-weighted volumes
each.

Preprocessing. Image preprocessing was performed using sta-
tistical parametric mapping software (SPM2; Wellcome Depart-
ment of Imaging Neuroscience). Images first underwent slice
time correction by means of sinc interpolation. Following this,
images were motion-corrected and the results screened for exces-
sive movement. Finally, all images were normalized to a standard
Montreal Neurological Institute template and smoothed with an
8-mm full width at half maximum Gaussian kernel.

Independent component analysis. ICA is a technique that
can decompose an imaging dataset into a number of statistically
independent spatial maps, each with its own time course.14 The
sum of these maps, multiplied by their corresponding time
courses, approximates the original signal. Group ICA analysis
was carried out in the following manner, and is described in
detail elsewhere.15 Preprocessed images were analyzed with soft-
ware for group ICA (Group ICA of fMRI Toolbox [GIFT], v2.0b,
available at http://icatb.sourceforge.net/gift/gift_startup.php) run
on MATLAB (version 7.0.4.365 [R14]; Mathworks, Natick,
MA). The number of components (maps and corresponding
time courses) estimated for each subject was set to 20. In GIFT,
principal component analysis was performed first on each sub-
ject for dimensionality reduction to decrease computational de-
mands. Data from subjects were then concatenated temporally
and a further dimensionality reduction performed on the group.
An ICA was performed to estimate the inverse mixing matrix W,
where S � WX, S being the source matrix of group components
and X being the temporally concatenated subject data. Individ-
ual subject components were then back-reconstructed from
blocks of the group inverse mixing matrix and the individual
subject data.

Sorting of components to identify the DMN. To identify
which of the 20 group components represented the DMN com-
ponent, group components were sorted in GIFT through a cor-
relation across voxels with “ref_default_mode,” a DMN
template supplied in GIFT for DMN identification. The com-
ponent with the highest spatial correlation was selected. The
individual DMN component maps were entered into a z score
transform to isolate the pattern of variation in each, Cz(X) �

(C(X) � �c)/�c where C(X) represents the component weight-
ing, �c represents the mean and �c the SD of component
weightings in the map, and Cz(X) represents the z-normalized
component weighting.

Calculation of GOF index. A GOF index which reflected
the degree to which DMN maps of subjects with AD and sub-
jects with MCI matched those of normal controls was then cal-
culated for each subject. To accomplish this, a normal DMN
template was first created in SPM8 using a one-sample t test of
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the normal control subjects’ default mode component, thresh-
olded using a family-wise error correction (p � 0.05) and cluster
extent threshold of 10. Positive values in this template defined a
mask which was used to calculate GOF (figure 1). The GOF was
calculated in MATLAB as GOF � mean(component[mask]) �

mean(component[�mask]), or the mean z score of all voxels
within the DMN mask minus the mean z score of all voxels outside
the mask (among in-brain voxels), as described previously.4

Assessment of gray matter probability in the DMN. To
control for the possible confounding effects of differential gray
matter volume loss in the DMN, voxel-based morphometry
(VBM) was performed on the anatomic images from each sub-
ject. Anatomic data were analyzed with FSL-VBM, a voxel-based
morphometry style analysis16,17 carried out with FSL tools.18

First, structural images were brain-extracted using the Brain Ex-
traction Tool.19 Next, tissue-type segmentation was carried out
using FAST4.20 The resulting gray matter partial volume images
were then aligned to MNI152 standard space using the affine
registration tool FLIRT,21,22 followed by nonlinear registration
using FNIRT.23,24 The resulting images were averaged to create a

study-specific template, to which the native gray matter images
were then nonlinearly reregistered. The registered partial volume
images were then modulated (to correct for local expansion or
contraction) by dividing by the Jacobian of the warp field. A
mask was created by conjoining the mean GM mask from all
subjects with the normal DMN template described in the “Cal-
culation of GOF index” section. This mask was then applied to
the partial volume images to obtain a mean DMN gray matter
probability for each subject.

Statistical analysis of GOF index. Summary statistics and
an analysis of variance with Tukey post hoc testing were used to
examine differences in clinical and fMRI variables among the 4
groups (AD, MCI converters, MCI nonconverters, and con-
trols). Logistic regression and multiple regression models were
evaluated to examine predictors of cognitive change within sub-
jects with MCI only. Cognitive change (the dependent outcome)
was measured as conversion to dementia (categorical) in the lo-
gistic regression model, and change from baseline in CDR–sum
of boxes (CDR-SB) total score (continuous) in the multiple re-
gression model. Both models included the following indepen-
dent variables: age, education, baseline Mini-Mental State
Examination (MMSE), baseline gray matter volume index, and
GOF index. Both models were then modified by substituting the
MMSE with the California Verbal Learning Test (CVLT) de-
layed recall. We performed Pearson correlation coefficients be-
tween GOF, CVLT, and fMRI task performance (percent total
correct trials inside the scanner). Statistics were computed on
MATLAB (Natick, MA).

In addition, to visually depict the DMN in MCI converter
and nonconverter groups, we conducted a voxel-wise one-sample
t test in SPM8 for each group. Single-subject DMN components
from each group were entered into a second level analysis in
SPM8 using a threshold of p � 0.05, family-wise error corrected,
with a cluster extent threshold of 10.

RESULTS Table 1 summarizes the sample and, as
expected, subjects with MCI performed better than
subjects with AD and worse than controls on CDR
and memory tests. MCI converters tended to be
older, less educated, and more impaired in memory
than MCI nonconverters, but were not as impaired
as subjects with AD. The mean clinical follow-up for

Table 1 Subject characteristicsa

NC MCInc MCIc AD p Value

No. 25 20 11 12

Age, y 70.8 (4.3) 72.3 (9.2) 76.2 (6.0) 72.0 (5.9) 0.1721

M/F 11/14 7/13 8/3 7/5 0.0821

Education, y 16.0 (2.7) 15.3 (2.2) 14.1 (2.7) 12.7 (2.4) 0.0023

CDR-SBb 0.04 (0.14) 0.94 (0.48) 1.45 (0.83) 4.80 (0.59) �0.0001

CVLT-delb 11.2 (2.6) 6.3 (2.1) 3.0 (2.1) 1.3 (1.5) �0.0001

DMN-GM 0.453 (0.024) 0.441 (0.036) 0.415 (0.028) 0.422 (0.047) 0.0072

MMSE 28.3 (1.4) 27.3 (1.5) 25.8 (1.8) 24.3 (2.3) �0.0001

fMRI taskb 0.84 (0.10) 0.80 (0.10) 0.65 (0.11) 0.62 (0.11) �0.0001

Abbreviations: CDR-SB � Clinical Dementia Rating–sum of boxes score; CVLT-del � Cali-
fornia Verbal Learning Test 20-minute delay score; DMN-GM � default mode network
gray matter probability; fMRI task performance � percentage correct trials on fMRI
task; MCIc � mild cognitive impairment converters; MCInc � mild cognitive impairment
nonconverters.
a Values are mean (SD).
b Denotes statistically significant ( p � 0.05) difference between MCInc and MCIc.

Figure 1 Default mode network (DMN) template

The template mask used for the goodness-of-fit index. Color overlay created from DMN component in normal control
subjects based on a one-sample t test corrected for multiple comparisons using a family-wise error correction (p � 0.05)
and cluster size threshold of 10 voxels. Notice significant clusters of DMN expression in the posterior cingulate/precuneus,
ventromedial frontal, and inferior parietal lobule regions.
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subjects with MCI was 2.4 (�0.8) years. Eleven
(33%) subjects with MCI converted.

Functional connectivity: GOF index analyses. GOF
index differed among the 4 groups (F � 8.41, p �
0.0001) (figure 2), with the highest values for con-
trols and lowest for subjects with AD. The mean
GOF index for the MCI nonconverters was higher
than that for MCI converters (p � 0.02). Among the

MCI group, the GOF index correlated with change
from baseline in CDR-SB score (r � �0.40, p �

0.035). Four models were used to evaluate the effects
of clinical, structural imaging, and fMRI variables on
cognitive outcomes (conversion to dementia as well
as change in CDR-SB) in subjects with MCI at
follow-up (table 2). Both GOF index and gray mat-
ter index had significant effects on conversion to de-
mentia as well as change in CDR-SB in models that
included age, education, and MMSE. In models that
included baseline CVLT, GOF index showed a trend
to significance with regard to change in CDR-SB.
CVLT score was correlated with task performance in
the scanner (p � 0.01) and GOF index was not a
predictor of conversion (p � 0.09) when task perfor-
mance was covaried.

Voxel-wise one-sample t tests of DMN expression
in the MCI converters and nonconverters revealed
significant clusters in the posterior cingulate/precu-
neus and bilateral inferior parietal lobules in convert-
ers and in the posterior cingulate/precuneus and left
inferior parietal lobule in nonconverters (figure 3).

DISCUSSION The topographic distribution of the
DMN network (posterior cingulate, lateral parietal,
medial frontal regions) is similar to that of fibrillar
amyloid deposition in patients with AD as deter-
mined by in vivo studies using amyloid PET scans,
and it has been suggested that overactivity in the
DMN in young life may set up a metabolic and phys-
iologic milieu predisposing individuals to amyloid
deposition and AD in later life.2 There is thus great
interest in further studies of this network in subjects
at risk for AD.

Prior studies have demonstrated a loss of func-
tional connectivity in the DMN in AD and MCI;
they have largely been cross-sectional studies de-
signed to identify brain regions in which functional
connectivity is altered, to test the diagnostic utility in
AD, or to correlate with other biomarkers, such as

Table 2 Results of models examining fMRI connectivity and cognitive declinea

Variables in model

Cognitive outcome tested in models

Model 1: conversion to AD Model 2: D CDR-SB Model 3: conversion to AD Model 4: D CDR-SB

GOF 10.64 (0.025) �20.16 to 1.12� �3.84 (0.0075) ��1.23 to �6.44� 11.41 (0.17) �28.09 to �5.26� �2.77 (0.07) �0.17 to �5.70�

DMN-GM 70.75 (0.040) �139.49 to 2.02� �32.51 (0.0036) ��12.56 to �52.46� 61.62 (0.13) �142.48 to �19.23� �26.59 (0.01) ��7.60 to �45.59�

Age 0.07 (0.65) �0.37 to �0.23� �0.01 (0.83) �0.09 to �0.11� �0.02 (0.95) �0.56 to �0.60� �0.02 (0.73) �0.08 to �0.11�

Education 0.33 (0.29) �0.96 to �0.30� �0.13 (0.35) �0.14 to �0.41� — —

MMSE 1.16 (0.053) �2.36 to �0.04� �0.20 (0.30) �0.18 to �0.59� — —

CVLT-del — — 1.42 (0.075) �3.02 to �0.17� �0.24 (0.11) �0.05 to �0.52�

Abbreviations: AD � Alzheimer disease; CDR-SB � Clinical Dementia Rating–sum of boxes score; CVLT-del � California Verbal Learning Test delayed
recall score; GOF � goodness of fit; DMN-GM � default mode network gray matter probability.
a Entries are arranged as follows: parameter value ( p value) �95% confidence interval�.

Figure 2 Box whisker plot of goodness-of-fit
(GOF) index

Box whisker plot of GOF index for subjects with Alzheimer
disease (AD), mild cognitive impairment converters (MCIc),
mild cognitive impairment nonconverters (MCInc), and nor-
mal control (NC) groups. Plot depicts the median, interquar-
tile range, and range of values for each group.
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amyloid PET.5,8 For example, a prior study4 pro-
posed the GOF measure in an fMRI study of 13
subjects with AD and 13 elderly controls, finding a
sensitivity and specificity of 85% and 77%, for group
classification, a range considered clinically relevant
by the Working Group on Biomarkers in AD. Our
study confirms these prior cross-sectional reports of
DMN dysfunction in AD and MCI12 and extends
those with additional new findings. Our study shows
that fMRI-measured DMN connectivity GOF indi-
ces are in a continuum going from highest integrity
in normal elderly to intermediate values in subjects
with MCI to lowest in subjects with AD. Further,
baseline fMRI DMN indices in MCI were correlated
with change from baseline in CDR-SB, a functional
global measure widely used in clinical trials. Our
models also show a significant relationship between
DMN indices and future conversion to AD over a 2-
to 3-year follow-up period, above and beyond simple
measures routinely used in general practice, such as
age and baseline MMSE.

We also examined whether brain atrophy contrib-
uted to our fMRI findings by covarying for a VBM-
based index of gray matter volume in the DMN.
These volumes differed among the 4 groups signifi-
cantly and volume loss predicted cognitive decline in
MCI in some of our models, as expected. However,

the effect of fMRI connectivity measures on cogni-
tive decline remained significant after covarying for
this gray matter volume index, suggesting that the
connectivity differences were independent of re-
gional DMN atrophy. Although we did not measure
hippocampal volumes in the current study, there is
consensus25,26 that hippocampal atrophy is an early
event in MCI and thus it would be of interest for
future studies to examine the relationship between
hippocampal atrophy and altered DMN connectivity
using a more focused ROI-based connectivity ap-
proach to see which comes first and whether the two
have a greater predictive value when combined.

Finally, our study found significant correlations
between GOF indices and baseline memory perfor-
mance (recall accuracy) both in clinic and in scanner.
This finding is not surprising given that both vari-
ables may reflect the underlying relationship between
DMN dysfunction and its cognitive manifestations.
fMRI indices of DMN connectivity did not have a
significant additional predictive value above and be-
yond baseline neuropsychological measure of delayed
recall, which may be reflective of the covariance be-
tween these variables. Of note, however, there was a
strong trend in both variables, particularly when cog-
nitive decline was treated as a continuous variable
(change in CDR-SB score), perhaps a more sensitive

Figure 3 Mild cognitive impairment nonconverters (MCInc) and mild cognitive impairment converters (MCIc)
default mode networks (DMN)

(A) MCInc DMN. (B) MCIc DMN. Cover overlays display the results of one-sample t tests in SPM8 corrected for multiple
comparisons using a family-wise error correction (p � 0.05). Note significant clusters of DMN expression in the posterior
cingulate/precuneus and bilateral inferior parietal lobules in the MCInc (A), and in the posterior cingulate/precuneus and left
inferior parietal lobule in the MCIc (B).
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measure than the categorical outcome of conversion.
Because our sample size was relatively small, it would
be important to test this further in a larger study.
Our data show that severity level is on a continuum
both cognitively and by DMN connectivity endo-
phenotypes, which in turn is associated with different
progression and conversion rates. This is not surprising
since it is known that MCI is a heterogeneous group
and hence fMRI may offer promise to study brain
mechanisms underlying such heterogeneity.

There are technical issues related to our study that
merit consideration. The annualized conversion rate
in our MCI sample (13%) was in the same range as
many prior population studies,27 suggesting that our
sample was similar to other clinical samples.28 As
stated above, the covariance between task perfor-
mance and disease severity makes it difficult to dis-
tinguish the mechanisms underlying fMRI group
differences. Our study was performed with generally
similar and rigorous methods as that of a prior
study,4 using a data-driven ICA approach. Though
the GOF index was calculated in an identical fash-
ion, the prior study used a different task and a tem-
plate derived from resting state data in young
subjects. In both our studies, however, the DMN
could be easily extracted in an automated fashion.

Although we used task-related rather than resting-
state fMRI data, previous work has shown that the
distribution of the major nodes of the DMN deter-
mined from resting state or task-related data are quite
similar overall.29,30 This suggests that the main topol-
ogy of the DMN appears invariant to not only the
particulars of a task, but also to whether task-related
or resting-state data were acquired, and a robust
DMN network can be extracted in a data-driven
manner from both resting-state and task-related
fMRI data. Of course, resting-state has numerous ad-
vantages over task-related fMRI data, including less
performance-related variability, less complicated ac-
quisition and standardization, and possibly more ef-
fectiveness in identifying functional pathology,31 and
therefore it would be preferable to use resting-state
fMRI for clinical biomarker studies, due to simplicity
and less performance-related variability. Our sample
size and follow-up period were relatively limited.
This may explain some of the overlap in GOF index
values between nonconverters and subjects with AD
and it is possible that a longer follow-up period
might have yielded cleared separation of subjects at
an individual level. Hence our data should be viewed
as hypothesis generating rather than confirmatory, and
a larger study with longer follow-up could be designed
based on our findings to test potential prognostic util-
ity. Our measure of connectivity (GOF index), while
data-driven, is not necessarily the only approach and, as

stated previously, region of interest–based connectivity
approaches may yield complimentary insights.

We focused just on the DMN network, although
it is known that there are multiple networks in the
brain that might be related to cognition and AD. In
the future, one may consider supplementing DMN
connectivity analyses with other resting-state or task-
related networks, an approach which has been shown
to improve classification of neuropsychiatric disease
and may optimize future applications of functional
connectivity to prediction of cognitive outcome in
MCI.32 Our findings may also have implications for
the use of DMN indices as a biomarker in therapeu-
tic trials.33
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