
Improving CSF biomarker accuracy in
predicting prevalent and incident
Alzheimer disease

C.M. Roe, PhD
A.M. Fagan, PhD
M.M. Williams, MD
N. Ghoshal, MD, PhD
M. Aeschleman, BA
E.A. Grant, PhD
D.S. Marcus, PhD
M.A. Mintun, MD
D.M. Holtzman, MD
J.C. Morris, MD

ABSTRACT

Objective: To investigate factors, including cognitive and brain reserve, which may independently
predict prevalent and incident dementia of the Alzheimer type (DAT) and to determine whether
inclusion of identified factors increases the predictive accuracy of the CSF biomarkers A�42, tau,
ptau181, tau/A�42, and ptau181/A�42.

Methods: Logistic regression identified variables that predicted prevalent DAT when considered
together with each CSF biomarker in a cross-sectional sample of 201 participants with normal
cognition and 46 with DAT. The area under the receiver operating characteristic curve (AUC) from
the resulting model was compared with the AUC generated using the biomarker alone. In a second
sample with normal cognition at baseline and longitudinal data available (n � 213), Cox propor-
tional hazards models identified variables that predicted incident DAT together with each biomar-
ker, and the models’ concordance probability estimate (CPE), which was compared to the CPE
generated using the biomarker alone.

Results: APOE genotype including an �4 allele, male gender, and smaller normalized whole brain
volumes (nWBV) were cross-sectionally associated with DAT when considered together with ev-
ery biomarker. In the longitudinal sample (mean follow-up � 3.2 years), 14 participants (6.6%)
developed DAT. Older age predicted a faster time to DAT in every model, and greater education
predicted a slower time in 4 of 5 models. Inclusion of ancillary variables resulted in better cross-
sectional prediction of DAT for all biomarkers (p � 0.0021), and better longitudinal prediction for
4 of 5 biomarkers (p � 0.0022).

Conclusions: The predictive accuracy of CSF biomarkers is improved by including age, education,
and nWBV in analyses. Neurology® 2011;76:501–510

GLOSSARY
AD � Alzheimer disease; AUC � area under the receiver operating characteristic curve; CDR � Clinical Dementia Rating;
CPE � concordance probability estimate; CS � collateral source; DAT � dementia of the Alzheimer type; GDS � Geriatric
Depression Scale; LP � lumbar puncture; MMSE � Mini Mental-State Examination; nWBV � normalized whole brain volume;
ROC � receiver operating characteristic.

Disease-modifying therapies likely will be most effective if administered during the preclinical
stage of Alzheimer disease (AD), prior to dementia symptom development.1,2 Although several
AD biomarkers are under investigation, few studies address their predictive accuracy for de-
mentia of the Alzheimer type (DAT).

Promising CSF biomarkers are based on assays of proteins that are pathologically misfolded,
and include amyloid-�42 (A�42), the primary component of senile plaques, along with tau and
phosphorylated tau (ptau181), the principal components of neurofibrillary tangles.1 These
markers may become abnormal, indicating AD-type pathology in cognitively normal individu-
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als a decade or more before the appearance of
dementia symptoms.3 This possibility sug-
gests that biomarkers alone may not yield
ideal diagnostic accuracy for prevalent DAT
and underscores the importance of under-
standing the temporal relationships between
biomarker levels in cognitively normal adults,
symptomatic AD (i.e., incident AD), and fac-
tors that modify those relationships, to avoid
exposing healthy people to potential side-
effects of AD medications many years before
these drugs are needed.

Factors that are associated with cognitive im-
pairment on their own may confound relation-
ships between biomarkers and clinical
symptoms.4 Additionally, cognitive and brain
reserve studies5–9 indicate that several factors
modify the association between AD pathology
and dementia. We sought to identify factors that
predict prevalent and incident DAT when con-
sidered concomitantly with the CSF biomarkers
of A�42, tau, and ptau181 and to determine
whether including these factors increases the
predictive accuracy of biomarker models in
identifying prevalent and incident DAT.

METHODS Participants were volunteers with normal or im-
paired cognition enrolled in longitudinal, prospective studies of
aging and memory at the Washington University Charles F. and
Joanne Knight Alzheimer’s Disease Research Center. The
present study represents a secondary analysis of data from partic-
ipants who had lumbar puncture (LP) for collection of CSF from
June 18, 1998 (when CSF collection was instituted) through
October 23, 2008 (figure e-1 on the Neurology® Web site at
www.neurology.org). Detailed information regarding recruit-
ment, enrollment, and clinical assessment has been published.10

Briefly, participants are community-dwelling individuals re-
cruited from the greater St. Louis, MO, area. Individuals with a
medical or psychiatric illness (e.g., cancer requiring chemother-
apy) that could interfere with longitudinal follow-up or adversely
impact cognition are excluded. At study entry and all subsequent
yearly assessments, each participant is accompanied by a collateral
source (CS), usually a family member or close friend. The partici-
pant and their CS complete separate semi-structured interviews
conducted by experienced clinicians. The participant completes a
general physical and neurologic examination, health and medication
histories, the Mini Mental-State Exam (MMSE),11 the Geriatric
Depression Scale (GDS),12 and psychometric testing. Participants
are also asked to undergo brain imaging with MRI.

Standard protocol approvals, registrations, and patient
consents. Study protocols were approved by the Washington
University Medical Center Human Subjects Committee, and
written informed consent was obtained from all participants.

Clinical assessment for dementia. A Clinical Dementia
Rating (CDR)13–15 is generated for each participant by experi-
enced clinicians who use the information obtained from the par-

ticipant and CS interviews to determine the presence of
dementia. Clinician trainees review teaching and reliability vid-
eotapes of participants until 80% agreement or better is achieved
with the gold standard videotapes. Impairment in each of 6 do-
mains (memory, orientation, judgment and problem solving,
community affairs, home and hobbies, and personal care) is de-
fined as decline due only to cognitive change. The global CDR is
derived from ratings of each domain in accordance with a stan-
dard scoring algorithm: CDR 0 � normal cognition and CDR
0.5 � very mild, CDR 1 � mild, CDR 2 � moderate, and
CDR 3 � severe dementia. The reliability of the CDR has been
established.15–17

For participants who receive a CDR of 0.5 or above, indicat-
ing abnormal cognition, a clinical diagnosis is assigned. A diag-
nosis of DAT is based on evidence that the participant has
experienced the gradual onset and progression of memory and
other cognitive problems that represents a change from a previ-
ous higher level of functioning, and that interferes with usual
activities at home and in the community. The validity of this
diagnosis has been demonstrated by subsequent progressive cog-
nitive and functional decline18 and by the neuropathologic diag-
nosis of AD in 92% of those coming to autopsy.19 Clinicians are
unaware of the CSF results for each participant.

Collection and analysis of CSF. Following an overnight
fast, 20–30 mL of CSF was obtained at 8:00 AM from partici-
pants by a trained neurologist using a 22-gauge Sprotte spinal
needle. To avoid possible gradient effects, samples were gently
inverted and centrifuged at low speed. Tubes were frozen at
�84°C20 after aliquotion into polypropylene tubes. ELISA (In-
notest; Innogenetics, Ghent, Belgium) was used to analyze CSF
samples for A�42, tau, and ptau181. Analysis of CSF is conducted
by 2 trained scientists with over 25 years of experience, who are
blind to the results of the participant’s clinical assessment.

Inclusion criteria. Patients were 50 years or older at the time
of first LP. Only participants with data available for all study
variables at the time of data analysis were included so that predic-
tive models could be compared for the same individuals.

Statistical analyses. Analyses were conducted using SAS ver-
sion 9.1 (SAS Institute, Inc, Cary, NC).

Cross-sectional analyses. These analyses used data from par-
ticipants with a diagnosis of normal cognition or DAT at the
closest clinical assessment within 1 year before or after the LP.
Logistic regression was used to identify candidate variables (see
below) that were independently related to DAT diagnosis when
considered together with each CSF biomarker (A�42, tau,
ptau181, and the ratios of tau/A�42 and ptau181/A�42). The bi-
omarker was entered into the model first, and the stepwise selec-
tion procedure then identified additional demographic, brain
reserve, cognitive reserve, and other variables linked to cognitive
impairment that improved model fit. A significance level of 0.05
was used for entering and exiting effects. A receiver operating
characteristic curve (ROC) and the area under the curve (AUC)
were calculated from the resulting model. Higher AUC values
indicate better predictive accuracy, reaching a maximum at 1,
which signifies perfect prediction. A second logistic regression
was performed including the biomarker as the sole predictor of a
DAT diagnosis, which generated an AUC based on the biomar-
ker alone. The AUCs from both models were then compared
and tested21 to determine whether the expanded model resulted
in increased predictive accuracy.

We also compared the AUCs generated from the 5 models
assessing the biomarkers as sole predictors with each other, and
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the AUCs generated from the 5 stepwise models with each other.
Leave-one-out estimation was used to cross-validate the ROCs
and their AUCs.

Longitudinal analyses. Data from participants with normal
cognition (CDR 0) at the closest clinical assessment within 1
year prior to or 1 month after their first LP and with at least one
subsequent clinical assessment were used. A concordance proba-
bility estimate (CPE),22 reflecting the predictive accuracy of the
Cox proportional hazards model, was calculated for models us-
ing each of the 5 biomarker variables as the sole predictor of time
to a diagnosis of DAT. Additional Cox proportional hazards
models were used to determine which of the candidate variables
were independent predictors of time to DAT when considered
together with each of the biomarker variables. In these analyses,
the biomarker was entered into the model first, and stepwise
selection was used to identify additional variables that improved
model fit. A significance level of 0.05 was used for entering and
exiting effects. The CPE resulting from the expanded stepwise
model was then compared to the CPE yielded using the biomar-
ker as the sole predictor, to determine whether addition of the
variables identified in the stepwise procedure resulted in in-
creased predictive accuracy. In all models, data from participants
who died, did not develop dementia, or did not return for
follow-up assessment were censored at the date of their most
recent clinical assessment. The CPEs generated from the 5 mod-
els assessing the biomarkers as sole predictors were compared
with each other, as were the CPEs generated from the 5 stepwise
models.

Candidate variables available for stepwise selection.
With one exception, the same candidate variables were used in
the cross-sectional and longitudinal analyses. These included age
at LP, gender, race, APOE genotype, and the CS rating of the
participant’s general physical health (excellent, good, mild, or
moderate impairment). Candidate variables used as proxies for
cognitive reserve (i.e., the efficient use of brain networks or the
ability to recruit alternate brain networks or cognitive strategies)7

were years of education23–29 and occupational attainment23,30 as
reflected in the occupation ranking of the Hollingshead Index of
Social Position.31 Normalized whole brain volume (nWBV)32

(measured using the methods of Buckner et al.33) and clinical
history of stroke were taken as proxies of brain reserve, which
reflects the numbers and health of neurons in the cortex.7 Other
candidate variables represented factors known or suggested to
cause cognitive impairment themselves, which may confound
the association between AD pathology and cognition. These in-
cluded depressive symptoms34 (scores on the GDS12 and a clini-
cal diagnosis of depression or bereavement), a concomitant
medical condition that may interfere with cognition (e.g., vita-
min B12 deficiency, alcoholism, sleep apnea), or use of a medi-
cation that may interfere with cognition (e.g., benzodiazepines/
sedatives, anticholinergics, opiates). In preliminary analyses, the
tau and the ptau181/A�42 variables yielded very small, and very
large, odds and hazards ratios, respectively. Therefore, tau values
were divided by 10, and ptau181/A�42 ratios were multiplied by
10, before use in the statistical analyses. These linear transforma-
tions resulted in exactly the same p values throughout the mod-
els, but easier interpretation of odds and hazards ratios for these
variables.

Because 32.9% of participants who would have otherwise
met criteria for the longitudinal analyses did not have structural
imaging data available at the time of analysis, nWBV was not
included in the primary longitudinal analyses. In exploratory
analyses, however, we repeated the Cox proportional hazards

models using stepwise selection with the subsample for which
nWBV was available.

RESULTS Table 1 shows the demographic charac-
teristics for the cross-sectional (n � 247) and longi-
tudinal (n � 213) samples. Some participants (n �
161) were represented in both samples.

Cross-sectional identification of DAT. Models testing

each biomarker alone. Forty-six (18%; 34 � CDR 0.5,
11 � CDR 1, 1 � CDR 2) participants in the cross-
sectional sample had DAT. Lower values of CSF
A�42, and higher values of each of the other biomar-
ker variables, were associated with having DAT vs
normal cognition (table 2). AUC values for models
based on the individual biomarkers ranged from
0.762 to 0.867 (table e-1). The highest AUCs were
generated by CSF tau and tau/A�42, and the lowest
by CSF A�42 and ptau181 (table e-2).

Expanded models. An APOE genotype containing an
�4 allele (APOE4), gender, and nWBV were indepen-
dent predictors of DAT when considered with each of
the CSF biomarkers in the expanded models, such that
APOE4 genotype increased, but female gender and
larger nWBVs decreased, the likelihood of DAT (table
2). Worse physical health rating also helped to predict
DAT in the models testing tau, ptau181, and ptau181/
A�42, and higher GDS scores were associated with
DAT in the A�42 and ptau181 models (table 2). A his-
tory of stroke or TIA was an additional independent
predictor of DAT in the tau/A�42 stepwise model (ta-
ble 2). Figure 1 shows the increase in the AUC as each
variable is added to the expanded model for each bi-
omarker. Each of the expanded models yielded an AUC
that was higher than that obtained for the model based
on the CSF biomarker alone (table e-1). There was no
difference across the AUCs generated by the 5 ex-
panded models (p � 0.3531).

Longitudinal prediction of future DAT. Models testing

each biomarker alone. Fourteen participants (6.6%)
with normal cognition at baseline developed DAT
over a mean follow-up period of 3.2 � 1.6 years.
Each biomarker was associated with time to DAT,
with lower values of CSF A�42 and higher values of
the other biomarkers associated with more rapid time
to DAT development (table 3 ). The model testing
A�42 generated a higher CPE than each of the re-
maining biomarkers, the CPEs for which did not dif-
fer from each other (tables 3 and e-3).

Expanded models. Considered together with the bi-
omarker variable, older age was independently related
to a faster time to DAT diagnosis in all predictive mod-
els and more years of education predicted a slower time
to DAT in 4 of the 5 models (table 3). With the excep-
tion of CSF A�42, the CPEs resulting from the ex-
panded models were significantly higher than the CPE
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generated by testing the biomarker alone (tables 3
and e-4). Although the small increase in the CPE
for A�42 was not significant, the enhanced models
for the other biomarkers increased the CPEs for
their respective models to a level that did not differ
(p � 0.2740) from that of the expanded A�42

model, nor from that of each of the other ex-
panded biomarker models (figure 2).

Exploratory analysis for the subsample with nWBV.

Seven (4.9%) of the 143 participants with baseline
nWBV measurement developed DAT over the
follow-up period. In the analyses including nWBV
among the candidate variables for stepwise selection,

education and nWBV were independently associated
with time to DAT when considered together with
each biomarker (table 3). Unlike the analyses on the
entire longitudinal sample, age no longer met entry
criteria for any of the models (table 3).

DISCUSSION We found that the identification by
CSF biomarkers of individuals with prevalent symp-
tomatic AD and the predictive power of the biomar-
kers for the future onset of symptomatic AD among
individuals with normal cognition can be improved
by including variables reflecting attributes of the in-

Table 1 Demographics for cross-sectional and longitudinal samples at baseline

Cross-sectional sample (n � 247)

Longitudinal sample (n � 213)DAT (n � 46) Normal cognition (n � 201)

No. or mean % or SD No. or mean % or SD No. or mean % or SD

A�42, pg/mL 428.4 198.3 629.5 233.4 625.0 238.4

tau, pg/mL 548.0 242.1 291.0 158.1 302.2 166.3

ptau181, pg/mL 83.5 39.9 53.8 24.4 54.5 24.6

tau/A�42 1.53 1.01 0.57 0.52 0.60 0.57

ptau181/A�42 0.23 0.15 0.10 0.08 0.11 0.09

Age at LP, y 73.7 7.1 66.4 9.4 68.3 9.4

Women 20 43.5% 140 69.7% 148 69.5%

Minority race 4 8.7% 24 11.9% 20 9.4%

Education, y 14.9 3.1 15.7 2.6 15.5 2.7

Occupation group

Higher executives 14 30.4% 56 27.9% 57 26.8%

Business managers 10 21.7% 61 30.4% 63 29.6%

Administrative personnel 6 13.0% 28 13.9% 32 15.0%

Clerical and sales 8 17.4% 34 16.9% 37 17.4%

Skilled/semiskilled employees 5 10.9% 13 6.5% 12 5.6%

Unskilled employees 3 6.5% 9 4.5% 12 5.6%

Follow-up time, y — — — — 3.2 1.6

General physical health rating

Excellent 21 45.7% 94 46.8 101 47.4%

Good 20 43.5% 95 47.3% 99 46.5%

Mild or moderate impairment 5 10.9% 12 6.0% 13 6.1%

Medical condition that may
interfere with cognition

4 8.7% 14 7.0% 17 8.0%

Medication that may interfere
with cognition

11 23.9% 59 29.4% 67 31.5%

Depression or bereavement
diagnosis

8 17.4% 26 12.9% 31 14.6%

Geriatric Depression Scale score 2.0 2.4 1.0 1.4 1.0 1.4

Normalized whole brain volume,
% estimated total intracranial
volume

73.4 3.0 78.3 3.4 77.9 3.3

Time between LP and
index/baseline clinical
assessment, y

0.30 0.12 0.28 0.16 0.32 0.18

Abbreviations: DAT � dementia of the Alzheimer type; LP � lumbar puncture.
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dividual in predictive equations. Although the pre-
dictive value of the biomarkers differed from each
other when considered alone, addition of these an-
cillary variables led to predictive values that were
similar across all biomarker models. This was true

for both cross-sectional and longitudinal predic-
tion of DAT.

The accurate cross-sectional identification of
DAT was improved by nWBV, gender, and APOE
�4 when considered together with all CSF biomark-

Table 2 Results of cross-sectional analysesa

OR

OR 95% CI

p Value AUC

AUC 95% CI p Value for difference
between AUCsLower Upper Lower Upper

A�42 alone 0.995 0.993 0.997 �0.0001 0.768 0.690 0.845 �0.0001

Expanded model

A�42 0.997 0.994 0.999 0.0056 0.909 0.860 0.958

APOE4 5.096 1.977 13.137 0.0007

Female 0.408 0.169 0.986 0.0464

nWBV 0.672 0.586 0.771 �0.0001

GDS total score 1.359 1.020 1.810 0.0361

Tau alone 1.062 1.042 1.082 �0.0001 0.834 0.768 0.900 0.0013

Expanded model

Tau 1.048 1.024 1.074 0.0001 0.933 0.900 0.965

APOE4 8.651 2.951 25.358 �0.0001

Female 0.259 0.097 0.694 0.0072

nWBV �0.0001

Physical health rating 0.0134

Ptau181 alone 1.030 1.018 1.041 �0.0001 0.762 0.683 0.841 �0.0001

Expanded model

ptau181 1.022 1.007 1.037 0.0047 0.922 0.884 0.960

APOE4 9.207 3.176 26.692 �0.0001

Female 0.356 0.140 0.901 0.0293

nWBV 0.659 0.561 0.774 �0.0001

GDS total score 1.376 1.006 1.882 0.0458

Physical health rating 0.0272

Tau/A�42 alone 5.932 3.435 10.243 �0.0001 0.867 0.814 0.920 0.0021

Expanded model

Tau/A�42 3.705 1.936 7.092 �0.0001 0.930 0.893 0.966

APOE4 5.028 1.892 13.363 0.0012

Female 0.284 0.111 0.730 0.0089

nWBV 0.708 0.609 0.823 �0.0001

History of stroke or TIA 14.056 1.330 148.489 0.0280

Ptau181/A�42 alone 2.541 1.842 3.505 �0.0001 0.826 0.761 0.890 0.0008

Expanded model

Ptau181/A�42 1.834 1.255 2.679 0.0017 0.920 0.882 0.958

APOE4 6.852 2.459 19.094 0.0002

Female 0.356 0.144 0.879 0.0251

nWBV 0.655 0.559 0.768 �0.0001

Physical health rating 0.0407

Abbreviations: AUC � area under the receiver operating characteristic curve; GDS � Geriatric Depression Scale (scores range from 0 to 15, with higher
scores indicating more depressive symptoms); nWBV � normalized whole brain volume; OR � odds ratio.
a Interpretation of odds ratios for continuous variables includes consideration of the unit of measurement. For example, the odds ratio of 0.995 for A�42

(measured in pg/mL) listed in the first column above indicates that the likelihood of being in the dementia of the Alzheimer type group relative to the normal
cognition group is decreased by 0.5% for each pg/mL increase in A�42.
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Figure 1 Discriminating persons with dementia of the Alzheimer type from those with normal cognition

(A) A�42, (B) Tau, (C) Ptau181, (D) Tau/A�42, (E) Ptau181/A�42. Increase in area under the receiver operating characteristic curve as each variable is added to
the expanded model for each biomarker. GDS � Geriatric Depression Scale; nWBV � normalized whole brain volume.
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Table 3 Results of longitudinal analysesa

HR 95% CI

p Value CPE SE

p Value for
difference
between CPEsHR Lower Upper

A�42

Biomarker alone 0.995 0.992 0.998 0.0015 0.76 0.05

Expanded model 0.3218

A�42 0.996 0.992 0.999 0.0142 0.78 0.05

Age, y 1.078 1.019 1.140 0.0092

Education, y 0.804 0.673 0.961 0.0162

Subsample with nWBV available

A�42 0.994 0.987 1.001 0.0918

Education, y 0.714 0.514 0.993 0.0453

nWBV 0.726 0.561 0.938 0.0143

Tau

Biomarker alone 1.029 1.009 1.050 0.0046 0.61 0.04

Expanded model 0.0002

Tau 1.024 1.003 1.046 0.0254 0.73 0.04

Age, y 1.100 1.044 1.160 0.0004

Subsample with nWBV available

Tau 1.043 1.011 1.076 0.0076

Education, y 0.619 0.404 0.956 0.0306

nWBV 0.596 0.433 0.822 0.0016

Ptau181

Biomarker alone 1.016 1.001 1.030 0.0329 0.59 0.04

Expanded model 0.0015

Ptau181 1.014 0.998 1.031 0.0908 0.73 0.04

Age, y 1.100 1.042 1.161 0.0005

Education, y 0.824 0.693 0.981 0.0297

Subsample with nWBV available

Ptau181 1.028 1.007 1.050 0.0098

Education, y 0.606 0.392 0.936 0.0240

nWBV 0.565 0.396 0.808 0.0017

Tau/A�42

Biomarker alone 2.382 1.520 3.734 0.0002 0.59 0.02

Expanded model 0.0010

Tau/A�42 2.403 1.392 4.150 0.0016 0.74 0.04

Age, y 1.099 1.037 1.165 0.0014

Education, y 0.818 0.684 0.979 0.0284

Subsample with nWBV available

Tau/A�42 4.227 1.676 10.659 0.0023

Education, y 0.600 0.388 0.927 0.0214

nWBV 0.613 0.441 0.853 0.0036

Ptau181/A�42

Biomarker alone 1.761 1.283 2.418 0.0005 0.60 0.03

Expanded model 0.0022

Ptau181/A�42 1.743 1.195 2.542 0.0039 0.74 0.04

Age, y 1.096 1.035 1.161 0.0017

Education, y 0.800 0.667 0.960 0.0165

—Continued
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ers studied. Larger nWBVs were associated with a
lower likelihood of DAT, consistent with the idea
that volume may function as a marker of brain re-
serve,32 enabling one to cope better with AD-related
pathology prior to overt symptoms. Smaller brain
volumes may also reflect neuronal death. These two
explanations are not incompatible.

The cross-sectional association of gender with
DAT may be due to the greater tendency for men to
enroll in our longitudinal studies when they are expe-
riencing dementia symptoms compared to women.
Therefore, the cross-sectional effect of gender may
differ in other samples. We found no effect of gender
on prediction of incident DAT.

We found that, after controlling for relationships
between APOE �4 and the biomarker levels them-
selves, APOE �4 adds additional predictive power.
This suggests that APOE genotype may be linked to
additional pathologic processes other than those re-
flected in CSF biomarker values studied or investi-
gated here. We previously found that APOE �4,

together with age, is related to CSF AB42 levels
among cognitively normal individuals.35 That study
also suggested that other, as yet unknown, factors are
related to abnormal biomarker levels, as some indi-
viduals with low CSF A�42 did not have an APOE �4
allele, and APOE �4 was unrelated to CSF tau and
ptau levels.

Age did not enhance the cross-sectional predictive
ability of any CSF biomarker model, despite its well-
known status as an AD risk factor. However, brain
volume decreases with normal aging,36 and the Pear-
son product-moment correlation between age and
nWBV was �0.80 (p � 0.0001) in this sample.
Since variation of the two factors is shared (i.e.,
they are highly correlated), once one factor is
present in the model, the other adds little addi-
tional predictive value and does not meet the crite-
ria for stepwise selection.

Interestingly, education did not independently
predict DAT when considered together with CSF bi-
omarkers in the cross-sectional sample, although it
was previously found to interact with fibrillar brain
A� to predict dementia symptoms.27 Thus, the abil-
ity of particular ancillary variables to improve predic-
tion using biomarkers may differ depending on the
type of biomarker used (e.g., CSF measures vs amy-
loid imaging).

Longitudinally, only education and age helped
to predict incident DAT in the primary analyses.
However, our follow-up period and number of in-
cident DAT cases were modest. Studies examining
a longer follow-up period may reveal additional
important ancillary variables. In the exploratory
analyses conducted on the smaller subsample with
nWBV available, education continued to contrib-
ute to predictive accuracy but nWBV replaced age
as an important longitudinal predictor. Again, this
is probably due to the close correlation between
age and nWBV.

In our previous work, A�42 values below 500
pg/mL were generally considered to be abnormal.37,38

Figure 2 Predicting time to incident dementia of the Alzheimer type from
cognitive normality at baseline

Increase in concordance probability estimate with the addition of age and education in the
expanded biomarker models.

Table 3 Continued

HR 95% CI

p Value CPE SE
p Value for difference
between CPEsHR Lower Upper

Subsample with nWBV available

Ptau181/A�42 2.535 1.390 4.623 0.0024

Education, y 0.584 0.379 0.901 0.0150

nWBV 0.586 0.410 0.836 0.0032

Abbreviations: CI � confidence interval; CPE � concordance probability estimate; HR � hazards ratio; nWBV�normalized
whole brain volume.
a Interpretation of hazards ratios for continuous variables includes consideration of the unit of measurement. For example,
the hazards ratio of 0.995 for A�42 (measured in pg/mL) listed in the first column above indicates that the hazards rate is
decreased by 0.5% for each pg/mL increase in A�42.
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Among participants in the main longitudinal analy-
ses, and over a modest follow-up period, 64.3% (9/
14) of those who developed DAT had A�42 values
below 500 pg/mL at baseline, whereas only 31.7%
(63/199) of those who did not develop DAT had
A�42 values below this level. Similarly, tau/A�42 ra-
tios of greater than 1.0 (roughly indicating both ab-
normal tau and abnormal A�42 levels) were found
for 50% (7/14) of those who developed DAT vs
12.6% (25/199) of those who did not. Stated differ-
ently, our results suggest that cognitively normal in-
dividuals who later develop DAT are likely to have
“abnormal” biomarker levels at baseline.

Considered alone, tau-based CSF assays were su-
perior to A�42 in identifying prevalent DAT,
whereas A�42 better predicted incident DAT, consis-
tent with a model of AD development whereby the
major pathologic effects of A� are exerted in preclin-
ical AD, and of tau in symptomatic AD.3

Limitations include the use of a convenience sam-
ple, the few participants with nWBV available in the
longitudinal sample, as well as the relatively short
follow-up period (a mean of 3.2 years). Given these
limitations, our results suggest that factors shown in
previous research to mediate, or confound, associa-
tions between AD pathology and dementia can be
used to improve the predictive accuracy of CSF bi-
omarkers. These results provide a starting point to-
ward the development of AD risk models which
incorporate CSF biomarker values together with in-
dividual patient attributes. These risk models can be
used in the clinical setting to accurately predict time
to development of AD symptoms, helping physicians to
make informed treatment decisions and patients to plan
for the future.

AUTHOR CONTRIBUTIONS
Statistical analysis was conducted by Dr. Catherine M. Roe.

ACKNOWLEDGMENT
The authors thank the participants, investigators, and staff of the AD

Research Center Clinical (participant assessments) and Genetics Cores

(genotyping) and the investigators and staff of the Adult Children Study’s

Biomarker Core for CSF analytes. They also thank Dr. Mithat Gönen of

Memorial Sloan-Kettering Cancer Center for providing statistical soft-

ware and Halley Hindman for help in data collection.

DISCLOSURE
Dr. Roe receives research and salary support from the NIH/NIA and from

the Charles and Joanne Knight Alzheimer Research Initiative of the

Knight Alzheimer’s Disease Research Center. Dr. Fagan serves on the

speakers’ bureau for the Alzheimer’s Association. Dr. Williams serves on a

scientific advisory board for Centene; serves on a speakers’ bureau for the

Alzheimer’s Association; and receives research support from Eli Lilly and

Company, Bristol-Myers Squibb, and the NIH. Dr. Ghoshal receives re-

search support from Elan Corporation/Janssen, Eli Lilly and Company,

Wyeth/Pfizer Inc, Novartis, Bristol-Myers Squibb, and the NIH (NIA/

NINDS). Ms. Aeschleman reports no disclosures. Dr. Grant receives re-

search and salary support from the NIH/NIA. Dr. Marcus has a patent

pending re: a software system to select and perform automated medical

imaging analysis; serves as a consultant for Avid Radiopharmaceuticals,

Inc.; and receives research support from the US Department of Defense

and the NIH. Dr. Mintun is currently employed as Chief Medical Officer

for Avid Radiopharmaceuticals, Inc. (all work on this project was done

while faculty at Washington University); has served as a consultant for

Avid Radiopharmaceuticals, Inc.; and receives research support from the

NIH. Dr. Holtzman serves on scientific advisory boards for Satori Phar-

maceuticals and EnVivo Pharmaceuticals; serves as an Associate Editor of

Annals of Neurology, the Journal of Neuroscience, Neurobiology of Disease,

and Experimental Neurology; may accrue revenue on pending patents re:

Methods for Measuring the Metabolism of Neurally Derived Biomol-

ecules in Vivo; Use of Anti-AB Antibody to Treat Traumatic Brain Injury;

Methods to Treat Alzheimer’s Disease or Other Amyloid Beta Accumula-

tion Associated Disorders; Humanized Antibodies That Sequester abeta

Peptide; Diagnostic for Early Stage Alzheimer’s Disease; and Predictive

Diagnostic for Alzheimer’s Disease; serves as a consultant to Merck Se-

rono, Eli Lilly and Company, Takeda Pharmaceutical Company Limited,

Abbott, Comentis, Inc., Eisai Inc., and AstraZeneca; is cofounder of and

receives board of directors compensation from C2N Diagnostics LLC;

receives research support from AstraZeneca, Pfizer Inc., Eli Lilly and

Company, Elan Corporation, Forest Laboratories, Inc., the NIH, Cure

Alzheimer’s Fund, and Fidelity Foundation; has received compensation

from Washington University from license revenue received for licensing

of patent applications to C2N Diagnostics LLC; and may receive future

royalty payments for Washington University licensing patents to C2N

Diagnostics, LLC and Eli Lilly and Company. Dr. Morris serves on scien-

tific advisory boards for AstraZeneca, Bristol-Myers Squibb, Genentech,

Inc., Merck Serono, Novartis, Pfizer Inc, Schering-Plough Corp., Eli Lilly

and Company, Wyeth, and Elan Corporation; serves on the editorial ad-

visory board of Alzheimer’s Disease and Associated Disorders; receives royal-

ties from publishing Mild Cognitive Impairment and Early Alzheimer’s

Disease (John Wiley and Sons, 2008), Dementia (Clinical Publishing,

2007), Handbook of Dementing Illnesses, 2nd edition (Taylor & Francis,

2006) and for an editorial in Lancet Neurology (Elsevier, 2008); and re-

ceives research support from Elan Corporation, Wyeth, Eli Lilly and

Company, Novartis, Pfizer Inc, Avid Radiopharmaceuticals, the NIH,

and from the Dana Foundation.

Received May 14, 2010. Accepted in final form September 20, 2010.

REFERENCES
1. Carrillo MC, Blackwell A, Hampel H, et al. Early risk

assessment for Alzheimer’s disease. Alzheimers Dement
2009;5:182–196.

2. Hansson O, Zetterberg H, Buchhave P, Londos E, Blen-
now K, Minthon L. Association between CSF biomarkers
and incipient Alzheimer’s disease in patients with mild
cognitive impairment: a follow-up study. Lancet Neurol
2006;5:228–234.

3. Fagan AM, Head D, Shah AR, et al. Decreased cerebrospi-
nal fluid A�42 correlates with brain atrophy in cognitively
normal elderly. Ann Neurol 2009;65:176–183.

4. Roe CM, Mintun MA, Ghoshal N, et al. Alzheimer’s dis-
ease identification using amyloid imaging and reserve vari-
ables: proof of concept. Neurology 2010;75:42–48.

5. Katzman R, Terry R, DeTeresa R, et al. Clinical, patholog-
ical, and neurochemical changes in dementia: a subgroup
with preserved mental status and numerous neocortical
plaques. Ann Neurol 1988;23:138–144.

6. Stern Y. What is cognitive reserve? Theory and research
application of the reserve concept. J Int Neuropsychol Soc
2002;8:448–460.

7. Stern Y. Cognitive reserve. Neuropsychologia 2009;47:
2015–2028.

8. Mortimer JA. Brain reserve and the clinical expression of
Alzheimer’s disease. Geriatrics 1997;52:S50–S53.

Neurology 76 February 8, 2011 509



9. Valenzuela MJ. Brain reserve and the prevention of de-
mentia. Curr Opin Psychiatry 2008;21:296–302.

10. Berg L, McKeel DW Jr, Miller JP, et al. Clinicopathologic
studies in cognitively healthy aging and Alzheimer disease:
relation of histologic markers to dementia severity, age,
sex, and apolipoprotein E genotype. Arch Neurol 1998;55:
326–335.

11. Folstein MF, Folstein SE, McHugh PR. Mini-mental
State: a practical method for grading the cognitive state of
patients for the clinician. J Psychiatr Res 1975;12:189–
198.

12. Sheikh JI, Yesavage JA. Geriatric Depression Scale (GDS):
recent evidence and development of a shorter version. In:
Clinical Gerontology: A Guide to Assessment and Inter-
vention. New York: The Haworth Press; 1986:165–173.

13. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL.
A new clinical scale for the staging of dementia. Br J Psy-
chiatry 1982;140:566–572.

14. Morris JC. The Clinical Dementia Rating (CDR): current
version and scoring rules. Neurology 1993;43:2412–2414.

15. Williams MM, Roe CM, Morris JC. Stability of the Clini-
cal Dementia Rating: 1979–2007. Arch Neurol 2009;66:
773–777.

16. Burke WJ, Miller JP, Rubin EH, et al. Reliability of the
Washington University Clinical Dementia Rating. Arch
Neurol 1988;45:31–32.

17. Morris JC, Ernesto C, Schafer K, et al. Clinical demen-
tia rating training and reliability in multicenter studies:
the Alzheimer’s Disease Cooperative study experience.
Neurology 1997;48:1508 –1510.

18. Morris JC, Storandt M, Miller JP, et al. Mild cognitive
impairment represents early-stage Alzheimer’s disease.
Arch Neurol 2001;58:397–405.

19. Storandt M, Grant EA, Miller JP, Morris JC. Longitudinal
course and neuropathological outcomes in original versus
revised MCI and in PreMCI. Neurology 2006;67:467–
473.

20. Fagan AM, Mintun MA, Mach RH, et al. Inverse relation
between in vivo amyloid imaging load and cerebrospinal
fluid A�42 in humans. Ann Neurol 2006;59:512–519.

21. DeLong ER, DeLong DM, Clarke-Pearson DL. Compar-
ing the areas under two or more correlated receiver operat-
ing characteristic curves: a nonparametric approach.
Biometrics 1988;44:837–845.

22. Gönen M, Heller G. Concordance probability and dis-
criminatory power in proportional hazards regression.
Biometrika 2005;92:965–970.

23. Stern Y, Gurland B, Tatemichi TK, Wilder D, Mayeux R.
Influence of education and occupation on the incidence of
Alzheimer’s disease. JAMA 1994;271:1004–1010.

24. Stern Y, Alexander GE, Prohovnik I, Mayeux R. Inverse rela-
tionship between education and parietotemporal perfusion
deficit in Alzheimer’s disease. Ann Neurol 1992;32:371–375.

25. Mortimer JA, Snowdon DA, Markesbery WR. Head cir-
cumference, education, and risk of dementia: findings

from the Nun Study. J Clin Exp Neuropsychol 2003;25:

671–679.

26. Roe CM, Xiong C, Miller JP, Morris JC. Education and

Alzheimer disease without dementia; Support for the cog-

nitive reserve hypothesis. Neurology 2007;68:223–228.

27. Roe CM, Mintun MA, D’Angelo G, Xiong C, Grant EA,

Morris JC. Alzheimer disease and cognitive reserve: educa-

tion effect varies with carbon 11-labeled Pittsburgh Com-

pound B uptake. Arch Neurol 2008;65:1467–1471.

28. Kemppainen NM, Aalto S, Karrasch M, et al. Cognitive

reserve hypothesis: Pittsburgh Compound B and fluorode-

oxyglucose positron emission tomography in relation to

education in mild Alzheimer’s disease. Ann Neurol 2008;

63:112–118.

29. Bennett DA, Wilson RS, Schneider JA, et al. Education

modifies the relation of AD pathology to level of cogni-

tive function in older persons. Neurology 2003;60:

1909 –1915.

30. Stern Y, Alexander GE, Prohovnik I, et al. Relationship

between lifetime occupation and parietal flow: implica-

tions for a reserve against Alzheimer’s disease pathology.

Neurology 1995;45:55–60.

31. Hollingshead AB. Hollingshead two factor index of social

position (1957). In: Miller DC, ed. Handbook of Research

Design and Social Measurement, 5th ed. Newbury Park,

CA: Sage Publications; 1991:351–359.

32. Mori E, Hirono N, Yamashita H, et al. Premorbid brain

size as a determinant of reserve capacity against intellectual

decline in Alzheimer’s disease. Am J Psychiatry 1997;154:

18–24.

33. Buckner RL, Head D, Parker J, et al. A unified ap-

proach for morphometric and functional data analysis

in young, old, and demented adults using automated

atlas-based head size normalization: reliability and vali-

dation against manual measurement of total intracranial

volume. NeuroImage 2004;23:724 –738.

34. Vicioso BA. Dementia: when is it not Alzheimer disease?

Am J Med Sci 2002;324:84–95.

35. Morris JC, Roe CM, Xiong C, et al. APOE predicts A�

but not tau Alzheimer’s pathology in cognitively normal

aging. Ann Neurol 2010;67:122–131.

36. Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner

RL. Normative estimates of cross-sectional and longitudi-

nal brain volume decline in aging and AD. Neurology

2005;64:1032–1039.

37. Fagan AM, Roe CM, Xiong C, Morris JC, Holtzman DM.

Cerebrospinal fluid tau/�-amyloid42 ratio as a prediction

of cognitive decline in nondemented older adults. Arch

Neurol 2007;64:343–349.

38. Fagan AM, Mintun MA, Shah AR, et al. Cerebrospinal

fluid tau and ptau181 increase with cortical amyloid depo-

sition in cognitively normal individuals: implications for

future clinical trials of Alzheimer’s disease. EMBO Mol

Med 2009;1:371–380.

510 Neurology 76 February 8, 2011


