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Abstract
To circumvent the barriers encountered by macromolecules at the gastrointestinal mucosa,
sufficient therapeutic must be delivered in close proximity to cells1. Previously, we have shown
that silicon nanowires penetrate the mucous layer and adhere directly to cells under high shear2. In
this work, we characterize potential reservoirs and load macromolecules into space created
between nanowires. We show significant increases in loading capacity due to nanowires while
retaining adhesion of loaded particles under high shear.
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Mucosal tissues, such as those lining the oral cavity and gastrointestinal tract, have great
potential for delivery of therapeutic macromolecules, but drug absorption is often thwarted
by chemical and physical barriers. The epithelia is covered in a 1–50 μm motile mucus gel
layer with pores of roughly 100 nm3–5. Like chyme, which clears the entire small intestine
within 150 to 240 minutes6, 7, the mucus layer turns over every 50–170 minutes8. As a
result of the viscosity and motility of the mucus, therapeutic macromolecules take longer to
diffuse to cells, increasing their susceptibility to degradation and removal1.

Adhesion and encapsulation technologies have been developed to combat the harsh
gastrointestinal environment. Increased residence time in the upper small intestine and
adhesion in close proximity or directly to cells increases the local concentration gradient at
the epithelial layer, promoting transport9–11. Encapsulation in polymers, microparticles, or
nanoparticles can protect therapeutics from degradation, ensuring that they remain active
until they are released near the tissue.

Numerous adhesives have been developed with the intent of increasing microparticle
gastrointestinal residence time. However, most chemical adhesives function through
mucoadhesion, primarily attaching to the mucus layer on top of the tissue, and thus being
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removed within a few hours12. Recent advances in nanotechnology have produced drug-
encapsulating nanoparticles of varying materials and geometries. Although these
nanoparticles can cross the mucus barrier and can be endocytosed relatively quickly13,
because of their small size, nanoparticles lose a considerable fraction of loading volume to
the encapsulation material14, 15, and may lead to potentially toxic accumulations in the liver,
kidneys, and spleen16, 17. Microparticles can be fabricated with hollow reservoirs or
engineered pores using photolithography, etching, or anodization9, 18. Although these
technologies significantly improve loading capacity compared to nanoparticles, the
additional fabrication complexity considerably increases the overall cost of the devices, and
the larger size reduces diffusion through the mucus layer.

We have shown that integrating the diffusive properties at the nanoscale, in the form of a
conformal silicon nanowire coating, with size and loading capacity of microparticles can
result in direct microparticle-cell adhesion through structure alone, creating a significantly
more robust adhesive2, 19. Here we show that a nanoengineered microparticle (NEMP)
system offers a simple alternative to complex fabrication of hollow reservoirs and pores
comprised of a reservoir between the nanowires at their base where drug may be loaded,
thus displaying adhesion and loading in a single platform.

In this work, solid NEMPs and controlled pore glass particles (collectively termed
“devices”) were characterized for adsorptive surface area, then loaded with model molecules
and tested for elution properties. Using a surface tension loading approach, therapeutics
were loaded into a reservoir formed by the base of the nanowires, leaving the exterior
portion of the nanowires free to adhere to cells. Furthermore, variations in nanowire length
and loading solution concentration were evaluated to optimize the loading capacity of
nanowire coatings. Lastly, loaded devices were introduced to cells and subjected to shear
flow of a model mucous layer to determine the effect of loading on adhesion.

Nanowire length, and thus surface area, has been shown to affect adhesion to cells2 and may
affect device loading volume. Increased surface area due to the nanowires may improve
loading capacity by providing a surface for protein to adsorb; alternately, increased
nanowire length can enlarge the space available to create a loading reservoir at the base of
the nanowires. Using Krypton gas to measure absorptive surface area, we found that the
nanowires increase surface area roughly in proportion to their length (see Supporting
Information); ie: 1.4 μm long nanowires increase surface area roughly 1.5-fold over
uncoated controls and 12.1 μm long nanowires increase surface area roughly 12.8-fold.
Nonetheless, relying on a 10 to 20-fold increase in surface area for protein adsorption due to
nanowires is not sufficient to carry therapeutic levels of drug.

Thus, devices were loaded with trypan blue, bovine serum albumin (BSA), insulin, and
immunoglobulin G (IgG) using an evaporation technique allowing surface tension and
capillary action to draw drug into the pores between nanowires and/or onto the surface of the
devices (Figure 1a). During loading, capillary forces pull molecules into the base of the
nanowires similar to how drugs were loaded into nanotubes or pores10, 20–22. A washing
step was necessary in order to remove debris and drug not incorporated into the devices.
Devices were imaged prior to elution experiments to determine the distribution of drug
within the nanowires or on the surface (Figure 1.b and c). At this stage, the nanowire-coated
devices demonstrated minimal matting of the nanowires enmeshed in crystals.

Loaded CPG particles were then placed in solution and elution was measured up to a week
(data is only presented up to 48 hours because of the degradation time for model proteins).
The model molecules can be classified into different groups based on their elution
characteristics. Larger molecules, including insulin (6 kDa), BSA (66 kDa), and IgG (150
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kDa), tended to have a longer term release as molecules captured at the base of the
nanowires or in the pores elute (Figure 2.a and b show typical curves for IgG at 2.5 hr and
48 hr, other curves are available in the Supporting Information). IgG and insulin showed
nearly linear elution profiles to 24 hours (r2 values of both were 0.99) and eluted 15.0 mg
and 18.9 mg of protein per ml devices in that time, respectively, comparing favorably to the
volume of drug necessary to make a therapeutic impact (see Supporting Information).
Smaller molecules like trypan blue had a burst release, with nearly all molecules eluted by
30 minutes.

Despite its larger molecular weight, IgG has one of the highest elution volumes. Since IgG
requires salts to solubilize significantly23, more of the other model proteins may be rinsed
off of the devices during the rinse step, resulting in a comparatively lower elution. A similar
effect may explain the high elution volumes of insulin, which is poorly soluble at neutral
pH. Overall, the amount of drug eluted from nanowire-coated particles was greater than
uncoated particles for each molecule (significant at α=0.01 for all molecules). This finding
suggests that the nanowires add an additional reservoir for drug, presumably at their base.

To test this hypothesis, microspheres without pores were loaded with BSA (Figure 3).
Microspheres with longer nanowires held significantly more drug than those with short or no
nanowires. This suggests that longer nanowires create a larger reservoir at their base.
Although the CPG particles could load some BSA even without nanowires (Figure 3.b), the
nanowires significantly increase the loading capacity of the CPG. Elution curves for the
nanowire-coated devices without pores (3.a and 3.c) show an initial burst release within 40–
60 minutes that is most likely coming from the protein that has adsorbed onto the outer
portions of the nanowires allowing them to be more quickly released into solution. The rest
of the material is “caked” into the nanowire matrix, which takes longer to reconstitute and
longer to elute. Thus, the lack of pores in the microspheres did not decrease loading in
nanowire-coated devices, confirming that the nanowire are responsible for an additional
drug reservoir.

Nanowire-coated microspheres were loaded at various concentrations of BSA to determine a
maximum effective loading capacity (Figure 4). Although the nanowires are visible and
mainly uncoated at 1 and 10 mg/ml, at 50 and 100 mg/ml loading solutions the wires
become more matted, indicating saturation. When loaded devices are incubated in PBS, the
spheres loaded with higher concentrations (50 and 100 mg/ml) elute roughly the same
amount of BSA, significantly more than that eluted from the 10 mg/ml spheres (Figure 3c).
Thus, increasing loading solution concentration increases the amount of drug loaded into the
nanowire reservoir, though it saturates around 50 mg/ml.

Because loading drug molecules into the nanowire reservoir could mask nanowires from
cells, thereby reducing adhesion, the loaded devices were tested for adhesion strength under
shear. Devices were introduced to cells in a mucous layer model (2% Type II porcine gastric
mucin), then subjected to increasing flow rates.

Loaded, nanowire-coated, CPG particles adhered significantly better than loaded, uncoated
CPG particles (Figure 5.a). Nearly 60% of nanowire-coated CPG were retained at 167
dynes/cm2. The CPG particles are non-spherical, so the orientation of the longer sides to the
surface will reduce the particle flow profile10, 24; a low shear helps particles situate
optimally, increasing the surface area of devices in contact with cells, as is observed up to
16.7 dynes/cm2 in this case.

The levels of loading also affected adhesion (Figure 5.b), reducing adhesion significantly at
physiological shears (up to 15 dynes/cm2). A general trend confirmed that particles that
were loaded in more concentrated solutions, leading to more matted and masked nanowires,
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did not adhere as well as those with less drug loading. Thus, there is an optimal level of
loading that allows for enough volume of therapeutic to be included, but does not impair
adhesion significantly. Perhaps a loading concentration of 50 mg/ml in this case might make
sense, since in figure 3c, we can see that the elution from a 50 and 100 mg/ml concentration
elutes similarly, and in figure 5b, we can see that 50 mg/ml loading concentration does not
impair adhesion as much as 100 mg/ml loading concentration. Ultimately, devices with
longer nanowires could be fabricated, allowing significantly more drug to be loaded without
losing adhesion.

Long silicon nanowires have been shown to increase adhesion in numerous cell types and
under various harsh conditions2, 19. This work shows that these nanowires can also have
another function – as a loading reservoir for therapeutic molecules of different sizes.
Compared to controlled pore glass, the reservoir created at the base of the nanowires holds
significantly more volume of drug molecules. Longer nanowires, which create a more
voluminous nanowire shell on the exterior of the devices, offer a greater loading capacity.
Although there is a tradeoff between adhesive strength and loading volume, devices with
suitable volumes of drug can still retain significant adhesive strength (as in the case of the
CPG particles and the 50 mg/ml loaded spheres). Furthermore, because nanowires may be
grown up to 40 μm, a much larger loading capacity may be realizable without impacting
adhesion.

In addition to composing a structure-mediated adhesive, nanowires also create a sizable
reservoir at their base, able to carry and elute 15–20 mg of protein per ml of device. In this
work, we chose to focus on a proof of concept, device optimization, and the effects of
loading on nanowire adhesion. Because silicon nanowires may be chemically modified to
carry targeting molecules on the wire or specifically on the tip25, a simple nanowire coating
provides at least three significant functionalities to a drug delivery device: targeting,
adhesion, and a loading reservoir. Integrating the nanoengineered loading reservoir into a
multifunctional, hierarchical device simplifies processing and fabrication, and improves the
scalability of this type of system.

Furthermore, nanowire coatings may be useful for delivering drugs to numerous mucosal
surfaces, such as nasal, buccal, oral, ocular, and vaginal tissue19. Nanowires adhere strongly
to numerous tissue types and are robust under many conditions. Because of their strength,
adhesion, and loading capacity, nanoengineered, structure-mediated functional platforms
may prove useful for adhesives, drug-eluting coatings for medical implants, or tissue
regeneration surfaces as well as drug delivery.
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Figure 1.
Drug loading. A) schematic of nanowire drug reservoir. As solution evaporates, drug
molecules are pulled into the base of the nanowires by capillary action, then crystallize
there, leaving the exterior nanowires exposed. Stock (b) and loaded (c) controlled pore glass
devices. Devices were loaded with bovine serum albumin.
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Figure 2.
Elution from controlled pore glass devices. A) and B) Elution of IgG from nanowire-coated
devices (black) and uncoated devices (gray) for 2.5 hours (A) and 48 hours (B). C) Total
elution at 48 hours. Nanowire-coated devices – black, uncoated devices – gray. Error bars on
all plots are standard error of the mean.
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Figure 3.
Elution from nanowire-coated spheres. A) Spheres with different nanowire lengths (no
nanowires - square, short nanowires - diamond, and long nanowires - triangle). Error bars
are standard deviation. b) Elution of bovine serum albumin (BSA) for a given weight of
devices at 2 hr. Despite having pores, the controlled pore glass without nanowires (white)
did not elute as much BSA as the devices with nanowires (black), indicating that the
majority of the loading is happening in the nanowires. Error bars indicated standard error of
the mean. c) Spheres with various loading concentrations (10 mg/ml – circle, 50 mg/ml –
diamond, 100 mg/ml – square). Error bars are standard deviation.
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Figure 4.
Loaded and unloaded microspheres. a) Unloaded control spheres. B) unloaded nanowire-
coated spheres. C–f) 1, 10, 50, and 100 mg/ml loaded (respectively). Scale bar is 5 μm in all
images.
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Figure 5.
Adhesion of loaded particles. A) Adhesion for nanowire-coated controlled pore glass
devices loaded with albumin (nanowire-coated – gray square, uncoated control – black
diamond). Error bars are standard deviation. B) Adhesion for nanowire-coated spheres
loaded with varying concentrations of albumin (unloaded – black diamond, 10 mg/ml – dark
gray square, 50 mg/ml – light gray triangle, 100 mg/ml – white circle). Error bars are 95%
confidence intervals as calculated for a Kaplan Meier Survival Curve.
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