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  Voltage-gated K+ (Kv) channels have been considered to 

be a regulator of membrane potential and neuronal 

excitability. Recently, accumulated evidence has indicated 

that several Kv channel subtypes contribute to the control 

of cell proliferation in various types of cells and are worth 

noting as potential emerging molecular targets of cancer 

therapy. In the present study, we investigated the effects of 

the Kv1.1-specific blocker, dendrotoxin-ĸ (DTX-ĸ), on 

tumor formation induced by the human lung adenocarcinoma 

cell line A549 in a xenograft model. Kv1.1 mRNA and 

protein was expressed in A549 cells and the blockade of 

Kv1.1 by DTX-ĸ, reduced tumor formation in nude mice. 

Furthermore, treatment with DTX-ĸ significantly increased 

protein expression of p21Waf1/Cip1, p27Kip1, and p15INK4B and 

significantly decreased protein expression of cyclin D3 in 

tumor tissues compared to the control. These results 

suggest that DTX-ĸ has anti-tumor effects in A549 cells 

through the pathway governing G1-S transition.
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Introduction 

It is widely known that voltage-gated K+ (Kv) channels 
play a vital role in processes of excitable cells such as 
regulation of membrane potential and neuronal activity 
[10]. However, Kv channels are also found in non- 
excitable cells including immune cells [25,30], alveolar 
epithelial cells [2,19] and various types of cancer cells 
[23]. Several subtypes of Kv channels are overexpressed 
when the cells become cancerous and selective knock- 
down of Kv channels inhibit cell proliferation [1,13,14, 
21]. Therefore, Kv channels may be involved in the 
proliferation of cancer cells even though the mechanism is 

not yet clearly understood. Recently, Kv channels have 
been suggested as emerging molecular targets for the 
treatment of various cancers [6,7,13,14,18,24,31,36]. 

Dendrotoxin-κ (DTX-κ), isolated from Dentroapis 
polylepis, is known to inhibit the Kv1 family of channels in 
a nanomolar range [9]. It is known that DTX-ĸ has a much 
higher selectivity for Kv1.1 than αDTX because several 
residues in the N-terminus and β-turn of DTX-ĸ are critical 
for interaction with Kv channels whereas αDTX bind to 
targets through its N-terminus [29,34]. 

It has been proven that cell growth is controlled by several 
cell cycle-related proteins known as cyclins. Most cyclins 
have partners called cyclin-dependent kinases (Cdk) and 
regulation of the cell cycle is determined by the activity of 
Cdks and their inhibitors such as p21Waf1/Cip1, p27Kip1, and 
p15INK4B [15,20]. Cyclin D1-3 is an important factor in the 
regulation of G1 progression and activation of Cdk4 and 
Cdk6 [20]. In addition, both p21Waf1/Cip1 and p27Kip1 are 
able to inhibit multiple cyclin-Cdk complexes and 
p15INK4B binds to Cdk4 and Cdk6 [15,20]. Both p21Waf1/Cip1 
and p27Kip1 are involved in G1-S transition of the cell cycle 
phase and play an important role in the determination of 
cell cycle progression [16]. 

In the present study, we investigated the effects of 
DTX-ĸ, a selective Kv1.1 blocker, on tumor growth 
induced by human lung adenocarcinoma A549 cells in 
nude mice. In addition, we explored the mechanisms of 
anti-proliferative effects induced by DTX-ĸ in nude mice.

Materials and Methods

Cell culture
Human lung adenocarcinoma A549 cells and MRC-5 

cells derived from normal fetal lung tissue [12] were grown 
in RPMI 1640 (Welgene, Korea) and MEM (ATCC, USA) 
medium with 10% fetal bovine serum (Welgene, Korea) 
and a 1% antibiotic-antimycotic solution (Sigma, USA) in 
a humidified 95% air / 5% CO2 at 37oC. The medium was 
changed every other day. 
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Fig. 1. mRNA and protein expression of Kv1.1 in MRC-5 and 
A549 cells. (A) The mRNA of Kv1.1 was detected with the 
predicted product size in MRC-5 and A549 cells. The PCR 
product was electrophoresed on 1.5% agarose gel and visualized 
by ethidium bromide. (B) Kv1.1 protein was found with the 
expected molecular weight in A549 cells.

Chemicals 
DTX-ĸ was purchased from the Alomone Labs (Israel) 

and dissolved in distilled water. The concentration of the 
stock solution was 10 μM and diluted to the appropriate 
concentration before the experiment.

Total RNA extraction and RT-PCR
Cultured MRC-5 and A549 cells were collected and total 

RNA was extracted using RNAiso Plus (Takara Bio, Japan) 
following the manufacturer’s instructions. The concentration 
and purity of total RNA was measured at 260 and 280 nm 
by UV spectrophotometer (Thermo Fisher Scientific, USA). 
Total RNA (2 μg) was reverse transcribed using a random 
hexamer and M-MLV reverse transcription kit (Promega, 
USA) in a 20 μL volume. Freshly synthesized cDNA was 
used for the PCR reaction using 1× GoTaq green master mix 
(Promega, USA) with the following conditions: initial 
denaturation at 94oC for 5 min; 35 cycles at 94oC for 40 sec, 
55oC for 40 sec, and 72oC for 1 min; and a final extension 
at 72oC for 7 min. The primers used for the amplification of 
Kv1.1 mRNA were 5´-ACATTGTGGCCATCATTCCT-3´ 
and 5´-GCTCTTCCCCCTCAGTTTCT-3´ and synthesized 
by Bioneer (Bioneer, Korea). A negative control was 
generated by replacing the cDNA with distilled water.

Cell proliferation assay
Both MRC-5 and A549 cells (6 × 104 cells/mL, 200 

μL/well) were prepared in a 96-well plate with 10% FBS 
and 1% antibiotic-antimycotic solution. After 24 h, DTX-ĸ 
diluted in PBS was added to the cells for 24 h and 72 h; the 
medium and DTX-ĸ was changed every other day. To 
measure cell viability, a 0.5 mg/mL methylthiazoltetrazolium 
solution (Sigma, USA) was added, and the plate was 
incubated for 3 h at 37oC to allow the formation of formazan. 
The formazan was dissolved in dimethyl sulfoxide (Sigma, 
USA) and the absorbance was determined at 490 nm using 
a microplate reader (Emax; Molecular Devices, USA).

Western blot analysis
All proteins were lysed with 1× passive lysis buffer 

(Promega, USA) and quantified by a BCA protein assay kit 
(Pierce, USA). Approximately 50 μg of protein were 
electrophoresed on a 10∼15% polyacrylamide gel and 
transferred to a 0.45 μm PVDF membrane (Pall Corporation, 
USA). The blots were blocked with 1× TBS-Tween 20 
containing 5% nonfat milk (5% TTBS; Difco, USA) and 
were incubated with primary antibodies against Kv1.1 (1：
500; Millipore, USA), p21Waf1/Cip1, p27Kip1, p15INK4B and 
cyclin D3 (1：1,000; Cell Signaling Technology, USA) in 
5% TTBS. The next day, the blots were incubated with 
horseradish peroxidase-conjugated goat anti-rabbit or 
anti-mouse secondary antibody (1：6,000; Cell Signaling 
Technology, USA). An enhanced chemiluminescent detection 
kit (iNtRon Biotechnology, Korea) was used to visualize 

antibody binding and the intensity of the bands was 
measured using Image J software 1.42q (NIH, USA).

Xenograft model and DTX-ĸ injection 
CAnN.Cg-Foxn1nu/CrijOri 6-week old male nude mice 

were obtained from Orient Bio (Orient Bio, Korea) and 
housed according to the guidelines of the Institute of 
Laboratory Animal Resources, Seoul National University. 
The mice were anesthetized with 25 mg/kg zoletil 50 (Virbac 
Laboratory, France) and 2% rompun (Bayer, Germany) in 
a 2：1 ratio (1 mL/kg) and inoculated subcutaneously into 
the right flank with 5 × 105 cells suspended in 50 μL 10% 
RPMI medium. Four weeks after inoculation, the mice were 
randomly divided into control and treatment groups. For the 
treatment group, 30 μL of 5 nM DTX-ĸ was injected 
intratumorally daily for about 1 week and the same volume 
of distilled water was injected into the control group. Tumor 
size was measured every 2 days and tumor tissues were 
collected immediately after the mice were sacrificed. The 
tissues were stored in liquid nitrogen until they were used. 
Tumor volume was determined by the formula: volume = 
(width × length × depth) × (π/6).

Statistical analysis
All values are presented as means ± SE. Statistical 

significance was determined by a t-test or Mann-Whitney U 
test using the statistical program (SAS version 9.1; SAS, USA).
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Fig. 2. Inhibition of cell proliferation by DTX-ĸ in MRC-5 and 
A549 cells. (A) Addition of DTX-ĸ to MRC-5 cells did not affect
cell proliferation. (B) The proliferation of A549 cells was 
significantly reduced by incubation with DTX-ĸ for 72 h 
compared to the control. Data are expressed as the mean ± SE of 
three or five independent experiments (***p ＜ 0.0001).

Fig. 3. Suppression of tumor growth in the xenograft model by 
DTX-ĸ treatment. (A) Representative image of tumor tissue in the
nude mice control group and DTX-ĸ treatment group taken 7 days
after DTX-ĸ treatment. (B) Inhibition of Kv1.1 using DTX-ĸ led
to the suppression of tumor growth compared to the control. Solid
and dashed lines represent the control group and DTX-ĸ group, 
respectively. Data are expressed as the means ± SE (control group: 
n = 2, DTX-ĸ group: n = 5; *p ＜ 0.05, **p ＜ 0.01).

Results

Expression of Kv1.1mRNA and protein in A549 cells
PCR and Western blot analysis were performed to detect 

Kv1.1 mRNA and protein obtained from the non-cancerous 
MRC-5 cell line and adenocarcinoma A549 cells. Using 
gene-specific primers, Kv1.1 mRNA was detected with a 
product size of 498 base pairs in A549 cells. A negative 
control experiment was carried out to exclude PCR reagent 
contamination (Fig. 1A). In addition, the protein expression 
of Kv1.1 was observed in A549 cells as shown in Fig. 1B. 
On the other hand, very low expression of Kv1.1 mRNA and 
protein was observed in MRC-5 cells (Fig. 1).

Effect of DTX-ĸ on proliferation in MRC-5 and 
A549 cells

To evaluate whether the selective blocker of Kv1.1, 

DTX-ĸ, induces the inhibition of proliferation in MRC-5 
and A549 cells, an MTT assay was carried out. After 
treatment with DTX-ĸ at various concentrations, the 
proliferation of A549 cells was significantly inhibited by 
72%∼84% at 72 h compared to the control (Fig. 2B). After 
24 h of DTX-ĸ treatment, the growth of A549 cells was not 
significantly altered. On the other hand, the proliferation of 
non-cancerous MRC-5 cells was not affected by treatment 
with DTX-ĸ for 72 h even at a high concentration (Fig. 2A). 
This result suggests that Kv1.1 is specifically involved in 
cancer cell proliferation.

Inhibition of tumor growth by treatment with DTX-ĸ
In order to investigate whether DTX-ĸ affects tumor 

growth induced by A549 cells, an in vivo experiment using 
a xenograft model was performed. After treatment with 5 
nM DTX-ĸ for 7 days, the tumor volume was significantly 
reduced compared to the water-injected control (control 
group: n = 2, DTX-ĸ group: n = 5) (Fig. 3). There was no 
difference in body weight between the control group and 
DTX-ĸ treatment group (data not shown).

Up- or down-regulation of p21
Waf1/Cip1

, p27
Kip1

, 
p15

INK4B
, and cyclin D3 proteins in tumor tissues

To identify the cell signaling molecules involved in the 
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Fig. 4. Increased protein expression of p21Waf1/Cip1, p27Kip1, and p15INK4B and decreased protein expression of cyclin D3 upon treatment
with DTX-ĸ. This figure shows a representative image from Western blot analysis and relative protein expression levels of p21Waf1/Cip1

(A), p27Kip1 (B), p15INK4B (C), and cyclin D3 (D). The protein expression levels were normalized to that of β-actin. Furthermore, data
were normalized to the values obtained for the control group and presented as means ± SE (control group: n = 2, DTX-ĸ group: n = 6;
*p ＜ 0.05).

anti-tumor effect of DTX-ĸ, expression of p21Waf1/Cip1, 
p27Kip1, p15INK4B and cyclin D3 protein were examined by 
Western blot analysis. As shown in Fig. 4, intratumoral 
injection of 5 nM DTX-ĸ significantly increased protein 
expression of p21Waf1/Cip1, p27Kip1, and p15INK4B by 
approximately 3.6-fold, 3.4-fold, and 3.5-fold, respectively, 
compared to the control. In contrast, protein expression of 

cyclin D3 significantly decreased by 0.3-fold in tumor 
tissues of nude mice compared to the control (control 
group: n = 2, DTX-ĸ group: n = 6).

Discussion

In the present study, we investigated the anti-tumor 
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effects of DTX-ĸ, a selective blocker of Kv1.1, using 
human lung adenocarcinoma cell lines. Intratumoral 
treatment with DTX-ĸ inhibited the tumor growth induced 
by A549 cells. In addition, protein expression of cyclin 
dependent kinase inhibitors (CDKIs), p21Waf1/Cip1, p27Kip1, 
and p15INK4B was significantly increased while expression 
of cyclin D3 was significantly decreased.

The effect of Kv1.1 on cell proliferation was previously 
reported in a human breast cancer cell line and gastric 
epithelial cell line in vitro [22,35]. Treatment with 1 and 10 
nM α-DTX prevented the proliferation of a human breast 
cancer cell line by 20% and 30%, respectively [22], and the 
specific blockade of Kv1.1 using siRNA reduced the 
proliferation of a gastric epithelial cell line [35]. However, 
there has been no report showing the effects of DTX-ĸ in vivo.

Recently, it has been consistently shown that G1-S 
progression is inhibited by blocking Kv channels [3,5,21, 
26,32,39]. For example, blocking human ether à go-go K+ 
channels inhibits the proliferation of human breast cancer 
cells. This is accompanied by G1-S transition [3,21] and 
increases protein levels of p21Waf1/Cip [21]. The use of a 
selective blocker of Kv1.3 reduced the proliferation of 
oligodendrocyte progenitor cells by inducing G1 phase 
arrest and down-regulation of cyclin D protein levels [5]. 
Blocking of Kv1.5 [32] and Kv7.5 [26] are also involved in 
inhibition of skeletal muscle cell proliferation through 
accumulation of p21Waf1/Cip1 and p27Kip1 and reduction of 
cyclin A and cyclin D1 protein expression during G1-S 
transition [32]. Similar to the previous reports, our results 
also support the hypothesis that the inhibition of tumor 
growth by DTX-ĸ in A549 cells occurs through the G1-S 
transition pathway. 

At the present time, the exact mechanism responsible for 
cell cycle regulation via Kv1.1 is unknown. One possible 
mechanism is that CDKIs such as p21Waf1/Cip1, p27Kip1, and 
p15INK4B and cyclins may be able to bind directly to Kv1.1. 
It has been demonstrated that the pro-apototic Bcl-2 family 
member Bax directly interacts with Kv1.3 K+ channels [8]. 
Alternatively, adaptor proteins may be involved in the 
interaction between Kv1.1 and CDKIs (or cyclins) that 
regulates cell cycle progression. Further understanding of 
the regulation mechanism of Kv1.1 is required. Recently, it 
has been shown that TRPM2 channel, a member of the 
transient receptor potential protein family and TREK-1 
[33], two pore domain K+ channel, are expressed in the 
nucleus region of prostate cancer cell lines. Moreover, the 
distribution of TRPM2 channels was in the plasma 
membrane and cytoplasm of non-cancerous prostate cells 
[38]. Therefore, Kv1.1 in A549 cells may not be localized 
in the plasma membrane and could be distributed in 
intracellular regions including nucleus, similar to TRPM2 
and TREK-1 channels. Further studies are required to 
determine the localization of Kv1.1 in A549 cells.

Recently, several papers have been published showing in 

vivo anti-tumor effects associated with blocking ion channels 
[4,11,17,27,28,37,40]. For example, the specific blockade 
of Kv1.5 or human ether à go-go-related gene using siRNA 
or shRNA reduces tumor growth in human gastric cancer 
cells [17,27,40]. Blocking not only Kv channels but also 
transient receptor potential channel and ATP-sensitive 
potassium channels prevents tumor progression in several 
types of cancer in vivo [11,28,37,41]. Taken together, these 
results demonstrate that the selective inhibition of Kv1.1 is 
able to suppress the tumor growth of A549 cells in a xenograft 
model. This is the first evidence of Kv1.1 involvement in 
proliferation of human lung adenocarcinoma A549 cells. 
Based on our results, selective blockers of Kv1.1 including 
DTX-ĸ are potential therapeutic candidates for the treatment 
of human lung cancer.
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