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Apolipoprotein (apo) E4 is the major known genetic risk factor for
Alzheimer’s disease (AD). We have shown in vitro and in vivo that
apoE4 preferentially undergoes aberrant cleavage in neurons,
yielding neurotoxic C-terminal-truncated fragments. To study the
effect of these fragments on amyloid-β (Aβ) clearance/deposition
and their potential synergy with Aβ in eliciting neuronal and be-
havioral deficits, we cross-bred transgenic mice expressing apoE3,
apoE4, or apoE4(Δ272–299) with mice expressing human amyloid
protein precursor (APP) harboring familial ADmutations (hAPPFAD).
At 6–8 mo of age, hAPPFAD mice expressing apoE3 or apoE4 had
lower levels of hippocampal Aβ (94% and 89%, respectively) and
lessAβdeposition (89%and 87%) than hAPPFADmicewithout apoE,
whereas hAPPFAD mice expressing mouse apoE had higher Aβ lev-
els. Thus, human apoE stimulates Aβ clearance, but mouse apoE
does not. Expression of apoE4(Δ272–299) reduced total Aβ levels
by only 63% and Aβ deposition by 46% compared with hAPPFAD
mice without apoE. Unlike apoE3 and apoE4, the C-terminal-
truncated apoE4 bound poorly with Aβ peptides, leading to de-
creased Aβ clearance and increased Aβ deposition. Despite their
lower levels of Aβ and Aβ deposition, hAPPFAD/apoE4(Δ272–299)
mice accumulated pathogenic Aβ oligomers and displayed neuronal
and behavioral deficits similar to or more severe than those in
hAPPFAD mice. Thus, the C-terminal-truncated apoE4 fragment in-
efficiently clears Aβ peptides and acts in concert with low levels
of Aβ to elicit neuronal and behavioral deficits in mice.

animal model | neurodegeneration

Alzheimer’s disease (AD) is a complex neurodegenerative
disorder likely caused by interactions among multiple ge-

netic and environmental factors. Mutations in amyloid protein
precursor (APP), presenilin-1 (PS1), and PS2 have been linked
to early-onset familial AD (1–3), which accounts for <5% of AD
cases. All mutations affect APP processing and alter the pro-
duction of amyloid-β(Aβ) peptides (1, 2). Several transgenic
mouse models have been developed to study the effects of Aβ on
neuronal and behavioral deficits (4). The J20 line of transgenic
mice expressing human APP harboring familial AD mutations
(hAPPFAD) accumulates neurotoxic Aβ peptides and display syn-
aptic and cognitive deficits at 5–6 mo of age (5–7).
Apolipoprotein (apo) E4, one of three isoforms of apoE

(apoE2, apoE3, and apoE4), is the major genetic risk factor for
late-onset AD, which accounts for >95% of AD cases (8–10).
ApoE4 carriers account for 65–80% of all AD cases, highlighting
the importance of apoE4 in AD pathogenesis (11). Emerging
data suggest that apoE4 contributes to AD by interacting with
different pathogenic factors through various pathways (12–15).
Several mouse models have been established to study the roles

of apoE4 in AD pathogenesis. Neuron-specific apoE4 transgenic
mice (NSE-apoE4) develop neuronal and spatial learning and
memory deficits (16–18). Astrocyte-specific apoE4 transgenic
mice (GFAP-apoE4) display working memory deficits without
significant neuronal deficits (19). ApoE4 knock-in (apoE4-KI)
mice also develop neuronal and behavioral deficits (20). When

cross-bred with hAPPFAD mice, both apoE3 and apoE4, re-
gardless of the cellular source, efficiently clear Aβ from the brain
in young mice; however, at older ages, apoE4 mice have more Aβ
deposits than apoE3 mice, again regardless of the cellular source
of apoE (21–24).
We demonstrated that neurons express apoE in response to

brain insults and injury (25, 26). Neuronal apoE undergoes ab-
errant proteolysis, with apoE4 being more susceptible to cleav-
age than apoE3, generating C-terminal-truncated fragments that
are more abundant in human AD brains than in controls (27–
29). The apoE4 fragments are neurotoxic in neuronal cultures
(27, 30) and cause AD-like neuronal and behavioral deficits in
transgenic mice expressing high levels of the fragment at young
ages (6–7 mo) (28) or low levels of the fragment at old ages (12–
13 mo; ref. 31).
Here, we tested the effect of C-terminal-truncated apoE4 on

Aβ clearance and deposition and its potential synergy with Aβ in
eliciting neuronal and behavioral deficits. For this purpose, we
cross-bred J20 hAPPFAD mice and apoE4(Δ272–299) transgenic
mice, in which a major apoE4 fragment found in AD brains was
expressed in neurons at low levels (31).

Results
Generation of hAPPFAD Mice Expressing Human apoE3, apoE4, apoE4
(Δ272–299), or Mouse apoE. To determine the effect of the apoE4
fragment on Aβ levels in brains, we crossbred transgenic mice
expressing the C-terminal-truncated human apoE4 [apoE4
(Δ272–299)] at low levels (31) with the J20 line of hAPPFAD
mice (5). To avoid the potential combined effect of human and
mouse apoE (mE), both parental lines were first bred onto the
mouse apoE knockout (mEKO) background. The mice used in
this study were hAPPFAD/apoE4(Δ272–299)/mEKO, hAPPFAD/
mEKO, apoE4(Δ272–299)/mEKO, and mEKO. To generate
hAPPFAD/apoE3/mEKO and hAPPFAD/apoE4/mEKO mice as
additional controls, we crossed NSE-apoE3/mEKO and NSE-
apoE4/mEKO mice (16) with hAPPFAD/mEKO mice. hAPPFAD
mice expressing endogenous mouse apoE (hAPPFAD/mE) were
also included in the study as additional controls. Expression of
different forms of apoE at similar levels did not alter the levels
of hAPPFAD in transgenic mice (Fig. S1). Because we were in-
terested in studying the potentially additive or synergistic effect
of the apoE4 fragment with Aβ on neuronal and behavioral
deficits, we used young mice at 6–8 mo of age, before hAPPFAD
mice display extensive Aβ deposition (5). We focused our neu-
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ropathological studies on the hippocampus because it is prefer-
entially affected in AD.

Higher Hippocampal Aβ Levels in hAPPFAD/apoE4(Δ272–299) Mice than
in hAPPFAD Mice Expressing apoE3 or apoE4. As determined by
ELISA, Aβ(1–x) and Aβ42 levels in the hippocampus were 94%
lower in hAPPFAD/apoE3/mEKO and 89% lower in hAPPFAD/
apoE4/mEKO mice than in hAPPFAD/mEKO mice (Fig. 1 A and
B), consistent with the strong stimulation of Aβ clearance by
apoE3 and apoE4 (21–24). However, the Aβ(1–x) and Aβ42 levels
were significantly higher in hAPPFAD/apoE4/mEKO than in
hAPPFAD/apoE3/mEKO mice, suggesting that apoE4 is less able
to clearAβ or has a higher tendency to retainAβ than apoE3. Total
Aβ and Aβ42 levels were 3.5-fold and 6.8-fold higher in hAPPFAD/
apoE4(Δ272–299)/mEKO than in hAPPFAD/apoE4/mEKO mice,
but 63% and 65% lower than in hAPPFAD/mEKO mice (Fig. 1
A andB). Thus, the apoE4 fragment is less able to clear Aβ or has a
higher tendency to retain Aβ than the full-length apoE4. hAPPFAD
mice with endogenous mouse apoE (hAPPFAD/mE) had higher
total Aβ levels than hAPPFAD/mEKO mice and similar levels of
Aβ42, suggesting that mouse apoE does not significantly stimulate
Aβ clearance or strongly retains Aβ in the brain.
The ratio of Aβ42 to total Aβ is frequently used to indicate the

fibrillogenic potential of a mixture of Aβ species (5). This ratio was
about twofold higher in hAPPFAD/apoE4(Δ272–299)/mEKOmice
than in hAPPFAD/apoE3/mEKO and hAPPFAD/apoE4/mEKO
mice, although significantly lower than in hAPPFAD/mEKO mice
(Fig. 1C). Thus, apoE4 fragment preferentially affects Aβ42
clearance and/or retention, compared with the full-length apoE3
and apoE4. The ratio of Aβ42 to total Aβ was similar in hAPPFAD/
mE and hAPPFAD/mEKO mice (Fig. 1C), suggesting that mouse

apoE affects the clearance and/or retention of Aβ42 and other Aβ
species equally.

Greater Hippocampal AβDeposition in hAPPFAD/apoE4(Δ272–299) Mice
than in hAPPFAD Mice Expressing apoE3 or apoE4. To assess Aβ de-
position, we immunostained brain sections with the 3D6 mono-
clonal antibody and quantified the area of Aβ deposits in the
hippocampus (5). Aβ accumulation in hAPPFAD/apoE3/mEKO
and hAPPFAD/apoE4/mEKO mice was mostly in the hilus of the
dentate gyrus (Fig. 1 G and H) and only about 11% and 13% of
the area, respectively, of those in hAPPFAD/mEKO mice (Fig.
1I), which were more widespread (Fig. 2E), as reported (32). The
Aβ deposits in hAPPFAD/mE mice were dense-core like (Fig. 1D)
and Thioflavin S positive (Fig. S2), whereas the deposits in
hAPPFAD/mEKO mice were Thioflavin S-negative diffuse pla-
ques (Fig. 1E and Fig. S2). The area of Aβ deposition was five-
fold greater in hAPPFAD/apoE4(Δ272–299)/mEKO mice than in
hAPPFAD/apoE3/mEKO or hAPPFAD/apoE4/mEKO mice (Fig.
1I). The location and morphology of Aβ deposits were similar in
hAPPFAD/apoE4(Δ272–299)/mEKO mice and hAPPFAD/mEKO
mice (Fig. 1 E and F), although the area was 46% smaller in
hAPPFAD/apoE4(Δ272–299)/mEKO mice (Fig. 1I). There were
no Thioflavin S-positive plaques in hAPPFAD/apoE4(Δ272–299)/
mEKO mice (Fig. S2). Thus, mouse apoE stimulated dense-core
plaque formation (32), whereas human apoE4 fragment led to
more diffuse Aβ accumulation in the brain parenchyma.

ApoE4(Δ272–299) Is Not Present in AβDeposits and Has a Lower Binding
Affinity forAβ than apoE4.Double immunofluorescence staining for
apoE and Aβ revealed that apoE3 and apoE4 localized within Aβ
deposits in the dentate gyrus of the hippocampus in hAPPFAD/
apoE3/mEKO and hAPPFAD/apoE4/mEKO mice (Fig. 2 B and
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Fig. 1. Aβ levels in the hippocampus of different mice at 6–8 mo of age. (A and B) Levels of Aβ1-x (A) and Aβ42 (B) were determined by a sandwich ELISA in
hippocampal lysates. (C) Aβ42/Aβ1-x ratios for each genotype. InA–C, values aremean± SEM;n= 11–17per genotype. *P< 0.05, **P< 0.01. (D–H) Serial sections (30
μmthick, collected 300 μmapart) fromAPP/mE (D), APP/mEKO (E), APP/E4-272/mEKO (F), APP/E3/mEKO (G), andAPP/E4/mEKO (H) micewere immunostainedwith
3D6 monoclonal antibody. (I) Percent area of Aβ deposition determined by densitometry. Values are mean ± SEM n = 4–17 per genotype. *P < 0.05, **P < 0.01.
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C). In hAPPFAD/mEKO mice, as expected, there was no apoE
staining in neurons or Aβ deposits (Fig. 2A). Surprisingly, apoE4
(Δ272–299) was not detected within any Aβ deposits in the CA1,
CA3, and dentate gyrus of hAPPFAD/apoE4(Δ272–299)/mEKO
mice (Fig. 2 D–F). Thus, apoE4(Δ272–299) may not interact as
effectively with Aβ in vivo as apoE3 and apoE4.
To test this possibility, we performed an in vitro binding assay

in which different forms of apoE were incubated in 96-well plates
coated with Aβ peptides. Although the apoE detection antibody
had equal affinity for apoE4 and apoE4(Δ272–299) (Fig. 2I),
apoE4(Δ272–299) bound poorly to both Aβ40 and Aβ42 compared
with apoE4 (Fig. 2 G and H), suggesting that the C-terminal re-
gion of apoE (aa 272–299) is critical for its interaction with
Aβ. Thus, the higher Aβ levels in hAPPFAD/apoE4(Δ272–299)/
mEKO mice than in hAPPFAD/apoE4/mEKO mice (Fig. 1 A and
B) are likely due to the decreased ability of apoE4(Δ272–299) to
bind with Aβ, leading to decreased Aβ clearance.

ApoE4 Fragment Acts in Concert with Aβ to Elicit Neuronal Deficits in
Mice. We next determined whether the apoE4 fragment and Aβ
act in concert to elicit neuronal deficits. We first immunostained
for MAP2, a dendritic marker (16). ApoE4(Δ272–299)/mEKO
mice, which had no Aβ accumulation in the hippocampus, showed
a trend toward lower MAP2 immunoreactivity (IR) in the hilus
and molecular layer of the dentate gyrus compared with mEKO
mice (Fig. 3 A, B, E, and F), which had similar MAP2 IR to
apoE3 transgenic mice, as we reported (33). hAPPFAD/mEKO
mice, which had high levels of Aβ in the hippocampus (Fig. 1 A,

B, E, and I), had a significant reduction in MAP2 IR in the hilus
and molecular layer of the dentate gyrus (Fig. 3 A, C, E, and F).
Importantly, the MAP2 reduction in both areas was similar in
hAPPFAD/apoE4(Δ272–299)/mEKO mice, which had 63% lower
Aβ levels and 46% less Aβ deposition than hAPPFAD/mEKO
mice (Fig. 1 A, B, F, and I), and in hAPPFAD/mEKO mice (Fig. 3
A, C, E, and F). There was no significant difference in MAP2 IR
in the CA1 area of the hippocampus among the various groups
of mice (Fig. 3G). Thus, the apoE4 fragment appears to act in
concert with low levels of Aβ to cause a pronounced decrease in
MAP2 levels, probably a reflection of dendritic impairment spe-
cifically in the hilus and molecular layer of the dentate gyrus.
Interestingly, the premature death of hAPPFAD mice, as reported
(17, 28, 34), was also similar in hAPPFAD/mEKO and hAPPFAD/
apoE4(Δ272–299)/mEKO mice (Fig. 3H), although the latter had
significantly lower Aβ levels and Aβ deposition.
We then immunostained for calbindin, an activity-dependent

calcium binding protein that is significantly decreased in the
dentate gyrus of mouse models of AD and whose levels correlate
with cognitive impairment (6). ApoE4(Δ272–299)/mEKO mice,
which had no Aβ accumulation in the hippocampus, displayed
moderately less calbindin IR in the molecular layer of the dentate
gyrus than mEKO mice (Fig. 4 A, B, E). This suggests that the
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apoE4 fragment alone can cause a moderate decrease in calbin-
din. hAPPFAD/mEKO mice, which had high levels of Aβ in the
hippocampus (Fig. 1 A, B, E, and I), had a greater reduction in
calbindin IR (Fig. 4 A, C, and E). Importantly, the calbindin re-
duction was similar in hAPPFAD/apoE4(Δ272–299)/mEKO mice,
which had 63% lower Aβ levels and 46% less Aβ deposition than
hAPPFAD/mEKO mice (Fig. 1 A, B, F, and I), and in hAPPFAD/
mEKO mice (Fig. 4 C–E). Thus, the apoE4 fragment appears to
act in concert with low levels of Aβ to cause a pronounced de-
crease in calbindin levels. Furthermore, hAPPFAD/apoE4(Δ272–
299)/mEKO mice had significantly reduced calbindin IR in the
CA1 stratum radiatum layer of the hippocampus, unlike mice
expressing either apoE4(Δ272–299) or hAPPFAD alone (Fig. 4F),
supporting a synergistic effect of the apoE4 fragment and Aβ in
this subregion.
We also analyzed granule cells of the dentate gyrus for expres-

sion of Fos, an immediate-early gene encoding a synaptic activity-
dependent protein. A reduction in the number of Fos-positive
granule cells indicates neuronal impairment (6). hAPPFAD/mEKO
mice, which had high levels of Aβ accumulation, and hAPPFAD
mice expressing apoE4(Δ272–299), which had significantly lower
Aβ accumulation, had similar reductions in the number of Fos-
positive granule cells to levels much lower than those in mice not
expressing any apoE or only apoE4(Δ272–299) (Fig. S3). These
results further support a concerted neurotoxic effect of the apoE4
fragment and low levels of Aβ.

ApoE4 Fragment Acts in Concert with Aβ to Elicit Behavioral Deficits
in Mice.We also determined whether the apoE4 fragment and Aβ
act in concert to induce behavioral deficits. Spatial learning and
memory were assessed by the Morris water maze test. At 5–9 mo
of age, mEKO mice quickly learned to find the hidden platform

(Fig. 5A). It has been reported that mEKO mice at this age learn
as well as wild-type mice in the Morris water maze (35). How-
ever, hAPPFAD/mEKO mice showed a mild, but significant def-
icit in spatial learning (Fig. 5A). ApoE4(Δ272–299)/mEKO mice
did not differ significantly from mEKO mice in the hidden
platform trial at this young age (Fig. 5A). hAPPFAD/apoE4
(Δ272–299)/mEKO and hAPPFAD/mEKO mice had similar
impairments in spatial learning (Fig. 5A), although the former
had 63% lower Aβ levels and 46% less Aβ deposition (Fig. 1 A,
B, and I). Swim speeds did not differ among various groups (Fig.
S4), indicating that the impairment was not due to motor deficits.
All mice performed equally well in visible platform trials (Fig.
5A). In the probe trials 72 h (Fig. 5B) and 120 h (Fig. 5C) after
the last hidden platform trial, hAPPFAD/apoE4(Δ272–299)/
mEKO mice had impaired memory retention, whereas apoE4
(Δ272–299)/mEKO and hAPPFAD/mEKO mice did not (Fig. 5 B
and C), suggesting a concerted or synergistic detrimental effect
of apoE4 fragment and Aβ on memory retention.
In the elevated plus maze, both mEKO and apoE4(Δ272–

299)/mEKO mice had normal levels of anxiety at 5–9 mo of age
(Fig. 5D). However, the abnormalities in anxiety were observed
in hAPPFAD/mEKO mice and further increased in hAPPFAD/
apoE4(Δ272–299)/mEKO mice (Fig. 5D).

Accumulation of Pathogenic Aβ Oligomers in hAPPFAD/apoE4(Δ272–
299)/mEKO Mice with Low Levels of Total Aβ. In searching for
mechanisms underlying the concerted effects of apoE4 fragment
and low levels of Aβ on neuronal and behavioral deficits, we
measured Aβ*56, a pathogenic Aβ oligomer that correlates with
learning and memory deficits in different lines of hAPPFAD mice
(36–38). Aβ*56 isolated from hAPPFAD mouse brains also elicits
memory deficits when injected into the brains of wild-type rats
(36). Interestingly, hAPPFAD/apoE4(Δ272–299)/mEKOmice had
a trend toward significantly increased Aβ*56 levels (P = 0.05)
compared with hAPPFAD/mEKO mice (Fig. S5), although the
former had 63% lower Aβ levels (Fig. 1A and B). The overall
hAPP levels were comparable in the two groups of mice (Figs. S1
and S5). Thus, apoE4 fragments enhance the accumulation of
pathogenic Aβ*56 in the presence of low levels of Aβ, possibly
contributing to neuronal and behavioral deficits.

Discussion
This study shows that hAPPFAD/apoE4(Δ272–299)/mEKO mice
had much higher levels of total Aβ and Aβ42 and more Aβ
deposits than hAPPFAD/apoE3/mEKO and hAPPFAD/apoE4/
mEKO mice at 6–8 mo of age. ApoE4(Δ272–299) did not
colocalize with Aβ in deposits and had a lower binding affinity
for Aβ42 and Aβ40. Thus, it likely has a reduced ability to clear Aβ
than full-length apoE3 and apoE4, rather than a greater ten-
dency to stimulate Aβ deposition. Furthermore, the C-terminal-
truncated apoE4 fragment acts in concert with lower levels of Aβ
to elicit neuronal and behavioral deficits in mice at 5–9 mo of
age. Thus, apoE4 fragments and Aβ may act in concert to con-
tribute to AD pathogenesis.
Importantly, our data demonstrate that the C-terminal 28

amino acids (amino acids 272–299) in apoE are critical in me-
diating its interaction with Aβ, and thus Aβ clearance, at least in
mice. ApoE has two structural domains—a N-terminal domain
(amino acids 1–191) containing the receptor binding region
(amino acids 135–150), and a C-terminal domain (amino acids
222–299) containing the lipid-binding region (amino acids 241–
272), which are linked by a hinge region (amino acids 192–221;
ref. 39). In vitro studies of the interaction between apoE and Aβ
identified the lipid-binding domain as the binding partner for Aβ
peptides (40, 41). Our findings suggest that the C-terminal 28
amino acids (amino acids 272–299) affect the conformation of this
domain, altering its interaction with Aβ. Consistent with this pos-
sibility, biophysical studies suggest that the lipid-binding domain
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Fig. 4. Immunostaining of calbindin in different mice at 6–8 mo of age. (A–
D) Calbindin staining in representative sections from mEKO (A), E4-272/
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notype. *P < 0.05, **P < 0.01. IR, immunoreactivity; A.U., arbitrary units.
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has a less organized structure in C-terminal-truncated apoE4 than
in apoE4 (42, 43). We reported that C-terminal-truncated apoE4
fragments are more abundant in AD brains than in age-matched
controls (27, 28). Others reported lower levels of apoE4 in AD
brains than in controls (44). Thus, an increase in the ratio of C-
terminal-truncated apoE4 to apoE4, which conveys a decreased
ability to clear Aβ, might contribute to increased Aβ accumulation
and amyloid plaque formation in AD patients with apoE4.
Our data confirm that both apoE3 and apoE4 stimulate Aβ

clearance in young mice, whereas mouse apoE stimulates Aβ
deposition, compared with the absence of apoE (22, 24, 32). This
observation has implications for understanding the effect of
apoE on Aβ metabolism and for validating and interpreting
clinical trials of anti-Aβ therapy. Almost all preclinical drug
development studies related to Aβ are performed in hAPPFAD
mice with mouse apoE (45). If mouse apoE differs significantly
from human apoE in regulating Aβ metabolism (mouse apoE
stimulates Aβ deposition, whereas human apoE stimulates Aβ
clearance), as demonstrated in the current and previous studies
(22, 24, 32), drugs that work well in hAPPFAD mice with mouse
apoE might not work well in AD patients with human apoE. This
might explain, at least to some extent, the unsatisfactory out-
come of many clinical trials targeting Aβ (45). Thus, hAPPFAD
mice expressing different forms of human apoE are more reli-
able models for preclinical studies of drugs targeting Aβ. How-
ever, in hAPPFAD mice expressing human apoE3 or apoE4,
significant Aβ accumulation usually appears after 12–16 mo of
age. Thus, hAPPFAD/apoE4(Δ272–299)/mEKO mice, which de-
velop significant Aβ accumulation and neuronal and behavioral
deficits at 6–8 mo of age, represent an alternative mouse model
for studying anti-AD drugs targeting both Aβ and apoE4.
Previously, we observed neuronal and behavioral deficits in

transgenic mice expressing high levels of C-terminal-truncated
apoE4 fragments at a young age (6–7 mo; ref. 28) or low levels in
old age (12–13 mo; ref. 31). Here, we show that low levels of
apoE4 fragments elicit marginal neuronal and behavioral deficits
in young mice (5–9 mo), but in combination with low levels of Aβ,
which alone do not cause deficits at low levels (46, 47), lead to

significant premature death and more pronounced neuronal and
behavioral deficits in mice at a young age. Thus, although Aβ is
not necessary for apoE4 fragments to be involved in neuropa-
thology, low levels of both cause early-onset neuronal and be-
havioral deficits in mice. Importantly, apoE4 fragments enhanced
the accumulation of pathogenic Aβ*56 in the presence of low
levels of Aβ; however, it is not clear whether this was due to in-
creased formation or decreased clearance of Aβ*56 in the pres-
ence of apoE4 fragments. The greater abundance of apoE4
fragments in AD brains than in age-matched controls (27, 28)
might facilitate Aβ*56 accumulation, contributing to learning and
memory deficits. Thus, in mice, apoE4 fragments alone can elicit
neuronal and behavioral deficits, and the additional presence of
low levels of Aβ or Aβ*56 accelerates the deficits. ApoE4 frag-
ments may act in the same way to contribute to the pathogenesis
and lower the age of onset of AD in humans. Consequently,
apoE4 cleavage should also be considered a target for anti-AD
drug development (12–15).

Materials and Methods
J20 hAPPFAD mice expressing hAPP harboring the Swedish (K670N,M671L)
and Indiana (V717F) mutations (5) were backcrossed with murine apoE
knockout mice (mEKO) and subsequently cross-bred with NSE-apoE3, NSE-
apoE4 (16), or low expresser Thy1-apoE4(Δ272–299) mice (31) on the mEKO
background. Aβ(1-x) and Aβ42 levels in the hippocampus were measured by
ELISA (6). Aβ*56 oligomers in the cortex and hippocampus were measured as
reported (36). Aβ load and MAP2 fluorescence intensities were quantified
using Image J software (NIH; ref. 48). The calbindin immunoreactivity (IR)
and the number of Fos-positive granule cells were quantified as described
(6). Morris water maze test was used to determine the spatial learning and
memory (17, 28, 31, 34). The elevated plus maze was performed to assess
anxiety (31, 34). Data are presented as mean ± SEM or SD. Detailed methods
can be found in SI Materials and Methods.
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