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I
f you think about the classes you
expect to take when studying lin-
guistics in graduate school, proba-
bility theory is unlikely to be on the

list. However, recent work in linguistics
and cognitive science has begun to show
that probability theory, combined with the
methods of computer science and statis-
tics, is surprisingly effective in explaining
aspects of how people produce and in-
terpret sentences (1–3), how language
might be learned (4–6), and how words
change over time (7, 8). The paper by
Piantadosi et al. (9) that appears in PNAS
adds to this literature, using probabilistic
models estimated from large databases to
update a classic result about the length
of words.

Quantitative Analysis of Language
The classic finding that Piantadosi et al.
(9) revisit is Zipf’s observation that the
length of words is inversely related to their
frequency: Words that are used often, such
as “the,” tend to be short (10). This was
one of several results obtained through
quantitative analysis of the statistics of
language, of which perhaps the most fa-
mous is the power-law distribution of word
frequencies (known as “Zipf’s Law”). Zipf
explained these regularities by appealing
to a “Principle of Least Effort” (11), which
is sufficiently provocative as to have made
its way into Pynchon’s Gravity’s Rainbow
(12). For the relationship between length
and frequency, the idea is that producing
longer words requires more effort, so
languages should be structured to use such
words infrequently. This work has been
followed by detailed quantitative studies of
the distributions of word frequencies and
word lengths (13, 14).
Zipf’s analyses were done at a time

when mathematical ideas were beginning
to be applied to language, including
probability theory. Three decades earlier,
Markov introduced the idea of modeling
a sequence of random variables by as-
suming that each variable depends only on
the preceding variable (a Markov chain)
using the example of modeling sequences
of letters (15). A simple probabilistic
model for a sequence of letters might be to
choose each letter independently, with
probability proportional to its frequency
in the language, like drawing a set of tiles
in Scrabble. Unfortunately, as Scrabble
players know all too well, putting down
these tiles in sequence is unlikely to make

a word in English. Imagine if you took tiles
from a bag where the probabilities were
determined by how often each letter fol-
lowed the last letter you drew—no more
nasty sequences of all vowels or all con-
sonants! A decade after Zipf published his
analyses, Shannon (16) used these Markov
chains to predict sequences of words, ob-
serving that a reasonable approximation to
English could be produced if each word
was chosen based not just on the previous
word but on the last few words, and in-
troduced a mathematical framework for
analyzing the information provided by

The length of words is

not just related to their

frequency but to their

predictability in context.

a word. In this framework, the informa-
tiveness of a word is given by the negative
logarithm of its probability, matching the
intuition that less probable words carry
more information.
Research applying probability theory

to language slowed with the rise of
Chomskyan linguistics. Chomsky (17) ar-
gued convincingly against the ability of
Markov chains to capture the structure of
sentences. His famous sentence “Colorless
green ideas sleep furiously” was construc-
ted, in part, to illustrate that Markov
chains cannot be used to determine
whether a sentence is grammatical: Each
pair of words in this sequence is unlikely to
occur together, so its probability should be
near zero even though most speakers of
English would agree it is grammatical (if
a little unusual). This argument against
a specific probabilistic model was taken to
refute more generally the relevance of
probability theory to understanding lan-
guage, with formal linguistics turning to
a mathematical framework that had more
in common with logic.
The return of probability theory to lin-

guistics came via work on the more ap-
plied problem of making computers
process human languages. Probability
theory can be used to solve two kinds of
problems: making predictions and making
inferences. Both are relevant to processing
language. If you want to do a good job
of interpreting human speech, it helps to

have a good model of which sequences
of words you are likely to hear. Under-
standing sentences and learning language
are both problems of inductive inference,
requiring a leap that goes from the words
we hear to an underlying structure, and
probability theory (and particularly
Bayesian inference) can be used to solve
these problems. Computational linguists
discovered that ideas from probability
theory could improve algorithms for
speech recognition (18), identifying the
roles that words play in sentences (19) and
inferring the structure of those sentences
(20), and it is now difficult to understand
most papers at a computational linguis-
tics conference without a good education
in statistics.

The Rise of Probability
Probability theory has begun to migrate
from computational linguistics into other
areas of language research. The problems
posed by colorless green ideas can be cir-
cumvented by using more sophisticated
probabilistic models than Markov chains
(21), and theorists are beginning to ask
whether probabilities appear in linguistic
representations (22, 23). Psycholinguists
have begun to examine how the predic-
tability of a word influences its production
and processing (1–3). Language learning
researchers have used probability theory
as the basis for theoretical arguments that
language can be learned (4), as well as in
experiments and models exploring the ac-
quisition of its components (5, 6). Re-
search on how languages change over time
now has access to reconstructions of the
relationships between languages (and the
words themselves) produced using proba-
bility theory (7, 8). Supporting these
probabilistic models is the availability of
large amounts of linguistic data, through
databases that are larger and easier to
access than ever before.
Piantadosi et al. (9) draw on these re-

sources to conduct a deeper analysis of the
factors influencing the length of words.
Their basic empirical result is a nice ex-
tension of Zipf’s original observation,
showing that the length of words is not just
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related to their frequency but to their
predictability in context. By considering
the frequency of a word, Zipf measured
how predictable that word is if you know
nothing else about the words you are likely
to encounter. However, Markov chains
can be used to compute how probable
each instance of a word is based on the
last few words, providing a way to measure
the predictability of a word in its context.
This makes it possible to calculate how
much information is contributed by that
word, using the metric introduced by
Shannon (16). If a word is easy to pre-
dict based on context, it contributes little
information. Piantadosi et al. (9) find that
the average information contributed by
a word is better correlated with its length
than is its overall frequency, suggesting
that the predictability of a word in context
is what matters in determining how long
that word should be.
This refinement of our understanding of

the relationship between the length of
a word and its probability is bolstered by
a theoretical framework that adds pre-
cision to Zipf’s Principle of Least Effort
and connects the relationship between
word length and probability to an idea that
has already proven valuable in other areas
of psycholinguistics. This framework is
based on the “Uniform Information Den-
sity” hypothesis: the idea that human lan-
guages follow the optimal strategy for

communicating information through a
noisy channel, by transmitting information
at a constant rate that matches the ca-
pacity of the channel (2, 24–27). A crude
analogy might be to imagine communica-
tion in terms of pumping oil along a fragile
pipe. If you pump too slowly, it takes too
long; pumping too quickly risks breaking
the pipe; and varying the rate of flow is ei-
ther inefficient or dangerous. The best
strategy is to pump at a constant level set by
the capacity of the pipe. In the case of lan-
guage, we are pumping words at one an-
other; the time it takes to send a word along
the pipe is determined by its length, and the
capacity of the pipe is determined by the
rate at which we can process linguistic in-
formation. The best solution is to send in-
formation at a constant rate, which means
that less predictable words, those that carry
more information, should be longer.
The Uniform Information Density hy-

pothesis shares with the Principle of Least
Effort the notion of optimization, making
the most of a limited resource, but gives
this notion a formal precision that leads to
a variety of other interesting predictions.
For example, including an additional un-
necessary word, such as “that,” in a sen-
tence (e.g., “How big is the family that you
cook for?”) potentially dilutes the infor-
mation density of the sentence (specifi-
cally, the information associated with the
clause beginning with “you”). The infor-

mation density will thus become more
uniform if such words are introduced to
sentences that carry more information,
and people’s word choices seem to follow
this prediction (2). Explanations framed in
terms of information density rather than
least effort also make it clearer that we
should imagine language as being tailored
to fit human minds rather than human
laziness.
Providing a formal framework connect-

ing word length and predictability opens
the door to further analyses using more
sophisticated probabilistic models, and
considering other statistics that might be
relevant to understanding the lengths of
words. There is still a great deal of vari-
ance in the length of words that is not
explained by their predictability. However,
the deeper message behind the results
of Piantadosi et al. (9) is that probability
and information theory can help us rethink
the way that language works, and how it
should be studied. Probabilities can aug-
ment the classic rule-based representa-
tions that are widely used in linguistics,
and information theory provides a way to
formalize ideas like the Principle of Least
Effort in a way that leads to unique pre-
dictions about language. Conversely, per-
haps judgment should be reserved until
Uniform Information Density makes its
own appearance in literary fiction.
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